MA201: Complex Analysis

Assignment 4

(Cauchy's theorem and Cauchy's integral formula) July - November, 2024

1. Show that
$$\int_{\substack{\gamma \\ 2\pi}} \frac{e^{az}}{z^2 + 1} dz = 2\pi i \sin a$$
, where $\gamma(t) = 2e^{it}$, $t \in [0, 2\pi]$.

- 2. Evaluate $\int_{0}^{2\pi} e^{e^{i\theta}} d\theta$.
- 3. Let $f : \mathbb{C} \to \mathbb{C}$ be a function which is analytic on $\mathbb{C} \setminus \{0\}$ and bounded on $B(0, \frac{1}{2})$. Show that $\int_{|z|=R} f(z)dz = 0$ for all R > 0.
- 4. Show that an entire function f satisfying f(z+1) = f(z) and f(z+i) = f(z) for all $z \in \mathbb{C}$ is a constant.
- 5. Let g(z) be an analytic in B(0,2). Compute $\int_{|z|=1}^{|z|=1} f(z)dz$ if $f(z) = \frac{a_k}{z^k} + \dots + \frac{a_1}{z} + a_0 + g(z)$

where a_i 's are complex constants.

- 6. Let f be an entire function such that $|f(0)| \leq |f(z)|$ for all $z \in \mathbb{C}$. Then either f(0) = 0 or f is constant.
- 7. Whether primitive (anti-derivative) of $\frac{1}{z}$ exists on $\mathbb{C} \setminus \{0\}$? If NO, then specify the maximal domain in \mathbb{C} where primitive exists.
- 8. Show that for $m \neq -1$, the z^m has primitive on $\mathbb{C} \setminus \{0\}$.