MA201: Complex Analysis

Assignment 5

(Morera's theorem, Power series, and identity theorem)

July - November, 2024

1. Suppose f is analytic on the open unit disc D and it satisfies $|f(z)| \leq 1$ for all $z \in D$. Show that $|f'(0)| \leq 1$.

Answer: (Hint: Use Cauchy's integral formula)

- 2. If $f : \mathbb{C} \to \mathbb{C}$ is continuous and analytic on $\mathbb{C} \smallsetminus [-1, 1]$, then show that f is entire. **Answer:** (Hint: Use Morera's theorem)
- 3. Define $F(z) = \int_{0}^{z} \sin t^2 e^{-itz} dt$. Show that F is entire and satisfying $|F(z)| \le A e^{B|y|}$ for z = x + iy and for some positive constants A and B. **Answer:** (Hint: Use Morera's theorem)
- 4. Find all the entire functions f such that f(x) = e^x for all x in ℝ.
 Answer: (Hint: Use identity theorem)
- 5. Let f and g be analytic functions on a domain D in C. If $\overline{f}g$ is analytic, then show that either f is constant or $g \equiv 0$.

Answer: Suppose $g \neq 0$. Then there exists $z_0 \in D$ and $\delta > 0$ such that $g \neq 0$ on $B(z_0, \delta)$. Since $\overline{f}g$ is analytic, it follows that $(\overline{f}g)\frac{1}{g} = \overline{f}$ is analytic on $B(z_0, \delta)$. So f and \overline{f} both are analytic $B(z_0, \delta)$. By Cauchy-Riemann equations, f is constant on $B(z_0, \delta)$. Hence, by identity theorem, f is constant on D.

6. Let f be an entire function such that $\lim_{z\to\infty} \left|\frac{f(z)}{z}\right| = 0$. Show that f is constant. **Answer:** Given that $\lim_{z\to\infty} \left|\frac{f(z)}{z}\right| = 0$. For every $\epsilon > 0$, there exists a M > 0 such that $\left|\frac{f(z)}{z}\right| < \epsilon$, whenever |z| > M. That is,

$$|f(z)| < \epsilon |z|$$
, whenever $|z| > M \Longrightarrow f(z) = az + b$

for some constants $a, b \in \mathbb{C}$. Once again

$$\lim_{z \to \infty} \left| \frac{f(z)}{z} \right| = \lim_{z \to \infty} \left| \frac{az+b}{z} \right| = \lim_{z \to \infty} \left| a + \frac{b}{z} \right| = 0.$$

So a = 0 and hence f is constant.

7. Find the radius of convergence of the following power series:

(a)
$$\sum_{n\geq 0} z^{n!}$$
 (**R=1**)
(b) $\sum_{n\geq 0} 2^{n^2} z^n$ (**R=0**)
(c) $\sum_{n\geq 0} \frac{(-1)^n}{n} z^{n(n+1)}$ (**R=1**)

(d)
$$\sum_{n\geq 0} a_n z^n$$
 where $a_n = \begin{cases} 2^n & \text{if } n \text{ is odd} \\ 3^n & \text{if } n \text{ is even.} \end{cases} (\mathbf{R} = \frac{1}{3})$

8. Find the power series expansion of the function $f(z) = \cos^2 z$ about 0.

Answer: We know that $f(z) = \cos^2 z = (1 + \cos 2z)/2$ and

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{2n!}$$

for $z \in \mathbb{C}$. Therefore,

$$f(z) = \cos^2 z = \frac{1}{2} + \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{(2z)^{2n}}{2n!} \quad \text{for } z \in \mathbb{C} .$$