MA201: Complex Analysis

Assignment 6: Hint/ model solutions

(Taylor and Laurent expansions, identity theorem, and maximum modulus theorem) July - November 2024

1. Is there a polynomial P(z) such that $P(z)e^{\frac{1}{z}}$ is an entire function? Justify your answer. **Answer:** No. Notice that there are infinitely many terms in the principal part of $e^{\frac{1}{z}}$ in the Laurent series expansion about 0.

If we multiply it with any polynomial P(z), then also $P(z)e^{\frac{1}{z}}$ has infinitely many terms in the principal part of the Laurent series about 0.

2. Find the Laurent series of the function $f(z) = \exp\left(z + \frac{1}{z}\right)$ around 0. Further, show that for all $n \ge 0$

$$\frac{1}{2\pi} \int_0^{2\pi} e^{2\cos\theta} \cos n\theta d\theta = \sum_{k=0}^\infty \frac{1}{(n+k)!k!}.$$

Answer: Laurent Series of $f(z) = \exp\left(z + \frac{1}{z}\right)$ around 0 is given by

$$\exp\left(z+\frac{1}{z}\right) = \left(\sum_{m=0}^{\infty} \frac{z^m}{m!}\right) \left(\sum_{k=0}^{\infty} \frac{1}{k!z^k}\right)$$
$$= \sum_{n=-\infty}^{\infty} \left(\sum_{m-k=n(k,m\geq 0)} \frac{1}{k!m!}\right) z^n$$
$$= \sum_{n=-\infty}^{\infty} \left(\sum_{k\geq \max(0,-n)} \frac{1}{(n+k)!k!}\right) z^n.$$

It follows from the above expression and the uniqueness of the Laurent series that if $f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$ then

$$a_n = \sum_{k \ge \max(0, -n)} \frac{1}{(n+k)!k!} = \frac{1}{2\pi i} \int_C \frac{f(w)}{w^{n+1}} dw$$

where C is the unit circle. Since the imaginary part of a'_n s is 0 thus,

$$a_n = \Re\left(\frac{1}{2\pi i} \int_C \frac{f(w)}{w^{n+1}} dw\right) = \frac{1}{2\pi} \int_0^{2\pi} e^{2\cos\theta} \cos n\theta d\theta$$

For $n \ge 0$

$$\frac{1}{2\pi} \int_0^{2\pi} e^{2\cos\theta} \cos n\theta d\theta = \sum_{k=0}^\infty \frac{1}{(n+k)!k!}.$$

3. If f and g are entire functions such that $g\bar{f}$ is entire, then either f is constant or $g \equiv 0$. **Answer:** Let $g \not\equiv 0$. That means there is a point $a \in \mathbb{C}$ such that $g(a) \neq 0$. So there is a r > 0 such that $g(z) \neq 0$ for every $z \in B(a, r)$ (as g is continuous at a). Then $\bar{f}(z) = \bar{f}(z)g(z)\frac{1}{g(z)}$ is analytic on B(a, r). But f is analytic on B(a, r). Then f must be a constant on B(a, r). By the identity theorem f is constant on \mathbb{C} . 4. Find the Laurent series expansion of the following functions about the given points $z = z_0$ or in the given region (specify the region where the expansion is valid wherever necessary).

(a)
$$z^2 \exp(1/z)$$
 in the neighborhood of $z = 0$
(b) $\frac{1}{z^2 + 1}$ in the neighborhood of $z = -i$
(c) $f(z) = \frac{z + 3}{z(z^2 - z - 2)}$ for $0 < |z| < 1$ and for $1 < |z| < 2$.
Answer: (a) $f(z) = z^2 \exp(1/z)$
About $z = 0$:
 $z^2 e^{\frac{1}{z}} = z^2 \times \left(1 + \frac{1}{1!}\frac{1}{z} + \frac{1}{2!}\frac{1}{z^2} + \frac{1}{3!}\frac{1}{z^3} + \frac{1}{4!}\frac{1}{z^4} + \cdots\right)$
 $= z^2 + \frac{1}{1!}z + \frac{1}{2!} + \frac{1}{3!}\frac{1}{z} + \frac{1}{4!}\frac{1}{z^2} + \cdots$ for $|z| > 0$.
(b) $\frac{1}{z^2 + 1}$
About $z = -i$:
 $f(z) = \frac{1}{z^2 + 1} = \frac{1}{(z + i)(z - i)} = \frac{1}{(z - (-i))(z + i - 2i)} = \frac{1}{(z - (-i))(-2i)(1 - (\frac{z + i}{2i}))}$
 $\frac{1}{z^2 + 1} = \frac{1}{(z + i)(-2i)} \left[1 - \left(\frac{z + i}{2i}\right)\right]^{-1}$
 $= \frac{1}{(z + i)(-2i)} \left[\sum_{n=0}^{\infty} \left(\frac{z + i}{2i}\right)^n\right]$
 $= (-1) \left[\frac{1}{(z + i)(2i)} + \sum_{n=1}^{\infty} \frac{(z + i)^{n-1}}{(2i)^{n+1}}\right]$

The above series converges for 0 < |z + i| < 2.

(c) $f(z) = \frac{z+3}{z(z^2-z-2)}$ In the domain 0 < |z| < 1:

$$f(z) = \frac{z+3}{z(z^2-z-2)} = \frac{-3}{2z} + \frac{2}{3(z+1)} + \frac{5}{6(z-2)} .$$
$$\frac{z+3}{z(z^2-z-2)} = \frac{-3}{2z} + \frac{2}{3} [1+z]^{-1} - \frac{5}{12} \left[1 - \left(\frac{z}{2}\right)\right]^{-1}$$
$$= \frac{-3}{2z} + \frac{2}{3} \left[\sum_{n=0}^{\infty} (-1)^n z^n\right] - \frac{5}{12} \left[\sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n\right]$$
$$= \frac{-3}{2z} + \sum_{n=0}^{\infty} \left(\frac{(-1)^n 2}{3} + \frac{(-5)}{(12)(2)^n}\right) z^n$$

The above series converges in the domain 0 < |z| < 1.

In the domain 1 < |z| < 2:

$$\frac{z+3}{z(z^2-z-2)} = \frac{-3}{2z} + \frac{2}{3z} \left[1 + \left(\frac{1}{z}\right) \right]^{-1} - \frac{5}{12} \left[1 - \left(\frac{z}{2}\right) \right]^{-1}$$
$$= \frac{-3}{2z} + \frac{2}{3z} \left[\sum_{n=0}^{\infty} \left(\frac{-1}{z}\right)^n \right] - \frac{5}{12} \left[\sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n \right]$$

The above series converges in the domain 1 < |z| < 2.

5. Use the maximum modulus theorem (MMT) to prove the fundamental theorem of algebra.

Answer: If $P(z) \neq 0$ for all $z \in \mathbb{C}$, then $f(z) = \frac{1}{p(z)}$ is entire and by the maximum modulus theorem, $\sup_{|z| \leq R} |f(z)| = |f(z_0)| = M$, where $|z_0| = R$. On the other hand, $|f(z)| \to 0$ when $z \to \infty$. Hence, for $0 < \epsilon < M$, we can choose $R_1 > R$ such that $|f(z)| < \epsilon$ whenever $|z| \geq R_1$. Again, applying the MMT on $\overline{B(0, R_1)}$, we get $\sup_{|z| \leq R_1} |f(z)| = |f(z_1)| \leq \epsilon < M$, where $|z_1| = R_1$. This implies that the maximum modulus is attained the interior point z_0 of $B(0, R_1)$. By MMT, it turns out that f is constant.

6. Let f be a bounded analytic function on the (open) right half-plane (RHP). If f is continuous on the imaginary axis and satisfies $\sup_{y \in \mathbb{R}} |f(iy)| \leq M$, then show that $|f(z)| \leq M$ on the RHP. (Hint: Use maximum modulus theorem to $g_{\epsilon}(z) = (z+1)^{-\epsilon} f(z)$ on an appropriate semi-disc.)

Answer: Let $|f(z)| \leq K$ for $z \in \text{RHP}$. For $\epsilon > 0$, write $g_{\epsilon}(z) = (z+1)^{-\epsilon}f(z)$. On the half circle $S(0, R) = \{z \in \text{RHP} : |z| = R\}$, we get $|g_{\epsilon}(z)| \leq (R-1)^{-\epsilon}K \to 0$, when $R \to \infty$. On the other hand, when $z \in [-iR, iR]$, we have $|g_{\epsilon}(z)| \leq (R-1)^{-\epsilon}M$, which is holds true for each $\epsilon > 0$. Hence $|f(z)| \leq M$ for all $z \in [-iR, iR] \cup S(0, R)$. By the maximum modulus theorem, $|f(z)| \leq M$ on the region $[-iR, iR] \cup \{z \in \text{RHP} : |z| \leq R\}$ for sufficiently large R. Letting $R \to \infty$, we get $|f(z)| \leq M$ for all z in the RHP.

Remark: One can apply MMT in the case when $|f(z)| \leq |f(z_0)|$ for some z_0 in the domain. Only then we can think of the location of z_0 either in the domain or on the boundary of the domain.

Let's focus on the right half-plane (RHP). It's evident that $f(z) = \frac{z}{1+z}$ meets all the conditions of Q6. Clearly |f(z)| < 1 on the RHP. However, the value 1 is not attended by |f(z)| at any point on the RHP. Thus, it is necessary to utilize a technique like the one mentioned above.