MA201: Complex Analysis

Assignment 7

(Residue theorem, argument principle, Rouche's theorem and Möbius transforms) July - November 2024

1. Evaluate
$$\int_{|z-\frac{\pi}{2}|=\frac{\pi}{2}} \frac{z}{\cos z} dz$$

Answer: Since $\cos z$ has simple zeros at $\frac{(2n+1)\pi}{2}$ for $n \in \mathbb{Z}$, the function $f(z) = \frac{z}{\cos z}$ has simple poles at $\frac{(2n+1)\pi}{2}$ for $n \in \mathbb{Z}$. In the interior enclosed by the contour $|z - \frac{\pi}{2}| = \frac{\pi}{2}$, the function f has only one pole $z = \frac{\pi}{2}$, which is a simple pole. Hence,

Res
$$\left(f, \frac{\pi}{2}\right) = \left[\frac{z}{-\sin z}\right]_{z=\frac{\pi}{2}} = -\frac{\pi}{2}$$
.

By the Cauchy's residue theorem, we get

$$\int_{|z-\frac{\pi}{2}|} \frac{z \, dz}{\cos z} = 2\pi i \operatorname{Res}\left(f, \frac{\pi}{2}\right) = 2\pi i \times (-\frac{\pi}{2}) = -\pi^2 i$$

2. Using the Cauchy's residue theorem, evaluate $\int_{|z|=2} \frac{(z^2+3z+2)}{(z^3-z^2)} dz$.

Answer: Let $f(z) = \frac{(z^2 + 3z + 2)}{(z^3 - z^2)} = \frac{(z^2 + 3z + 2)}{z^2(z - 1)}$. Then, the point z = 0 is a pole of order 2, and the point z = 1 is a pole of order 1 (i.e. simple pole). Both the poles lie in the interior enclosed by the contour $C = \{z \in \mathbb{C} : |z| = 2\}$.

$$\operatorname{Res}(f, 0) = \frac{1}{1!} \lim_{z \to 0} \frac{d}{dz} \left\{ \frac{z^2(z^2 + 3z + 2)}{z^2(z - 1)} \right\} = -5.$$
$$\operatorname{Res}(f, 1) = \lim_{z \to 1} \frac{(z - 1)(z^2 + 3z + 2)}{z^2(z - 1)} = 6.$$

By the Cauchy's residue theorem, we have

$$\int_C \frac{(z^2 + 3z + 2)}{(z^3 - z^2)} dz = 2\pi i \left[\operatorname{Res}\left(f, \ 0\right) + \operatorname{Res}\left(f, \ 1\right) \right] = 2\pi i \left[-5 + 6 \right] = 2\pi i \,.$$

3. Using the argument principle, evaluate $\frac{1}{2\pi i} \int_C \cot z \, dz$, where $C = \{z \in \mathbb{C} : |z| = 7\}$.

Answer: The function $f(z) = \sin z$ has zeros at $n\pi$, where $n \in \mathbb{Z}$. By the argument principle,

$$\int_C \cot z \, dz = \int_C \frac{f'(z)}{f(z)} \, dz = 2\pi i \, (Z - P) = (2\pi i)(5 - 0) = 10\pi i \, .$$

4. Let $f(z) = (z^3 + 2)/z$ and $C = \{z(t) = 2e^{it}, 0 \le t \le 2\pi\}$. Let Γ denote the image curve under the mapping w = f(z) as z traverses C once. Determine the change in the argument of f(z) as z describes C once. How many times does Γ wind around the origin in the w-plane, and what is the orientation of Γ ? Answer: The function $f(z) = (z^3 + 2)/z$ has a simple pole at z = 0 and has three zeros in |z| < 2.

$$\Delta_C \arg (f(z)) = 2\pi (Z - P)$$

where Z is the number of zeros and P is the number of poles of f in the interior enclosed by C (counting to its multiplicities). So,

$$\Delta_C \arg (f(z)) = 2\pi(3-1) = 4\pi.$$

The image curve Γ winds around the origin two times in the counterclockwise direction in the *w*-plane.

5. Find the number of roots of the equation $z^9 - 2z^6 + z^2 - 8z - 2 = 0$, which are lying in |z| < 1 with the help of Rouché's theorem.

Answer: Take
$$g(z) = z^9 - 2z^6 + z^2 - 2$$
, $f(z) = -8z$ then $P(z) = f(z) + g(z)$. On $|z| = 1$
 $|g(z)| = |z^9 - 2z^6 + z^2 - 2| \le |z|^9 + 2|z|^6 + |z|^2 + 2 \le 6$

and

$$|f(z)| = |-8z| = 8|z| = 8.$$

This implies that

$$|g(z)| \le 6 < 8 = |f(z)|.$$

Since f has only a simple zero at z = 0 in the interior enclosed by |z| = 1. Now the Rouché's theorem, the function $f + g \equiv P$ has only one root in |z| < 1.

6. How many roots of the equation $z^4 - 5z + 1 = 0$ are lying in the disc |z| < 1? And how many roots are lying in the annulus 1 < |z| < 2?

Answer: In the domain |z| < 1:

Set $g(z) = z^4 + 1$, f(z) = -5z and $P(z) = z^4 - 5z + 1$. Observe that

$$|g(z)| = |z^{4} + 1| \leq |z|^{4} + 1 \leq 2 \quad \text{for } |z| = 1$$

$$|f(z)| = |-5z| = 5|z| = 5 \quad \text{for } |z| = 1$$

$$|g(z)| \leq 2 < 5 = |f(z)| \quad \text{on } |z| = 1$$

Since f has only a simple zero at z = 0 in the interior enclosed by |z| = 1. By the Rouché's theorem the equation P(z) = 0 has only one root in |z| < 1.

In the domain
$$|z| < 2$$
:
Set $g(z) = -5z + 1$, $f(z) = z^4$ and $P(z) = z^4 - 5z + 1$.

Observe that

$$|g(z)| = |-5z+1| \le 5|z|+1 \le 11 \quad \text{for } |z| = 2$$
$$|f(z)| = |z^4| = |z|^4 = 16 \quad \text{for } |z| = 2$$
$$|g(z)| \le 11 < 16 = |f(z)| \quad \text{on } |z| = 2$$

By the Rouché's theorem, the function f and f + g = P have the same number of zeros in the interior enclosed by |z| = 2. Since f has only a zero of order 4 at z = 0 in the interior enclosed by |z| = 2, the function f + g = P has four zeros in the interior enclosed by |z| = 2. Therefore, the equation P(z) = 0 has four roots in |z| < 2.

In the domain 1 < |z| < 2:

The equation P(z) = 0 has 4 roots in |z| < 2, and it has 1 root in |z| < 1. It is easy to verify that there is no zero on the set $\{z : |z| = 1\}$. Therefore, we conclude that the equation P(z) = 0 has 3 roots in the domain 1 < |z| < 2.

7. Use Rouché's theorem to prove the fundamental theorem of algebra.

Answer: If $p(z) = z^n + a_1 z^{n-1} + \dots + a_n$ then write $f(z) = z^n$ and $g(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1}$. Now choose R > 0 such that |f(z)| > |g(z)| on the circle |z| = R. Note that

$$\left|\frac{g(z)}{f(z)}\right| = \left|\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \dots + \frac{a_{n-1}}{z}\right| \to 0$$

as $z \to \infty$. i.e. for $\epsilon = 1 > 0$ there exists M > 0 such that

$$\left|\frac{g(z)}{f(z)}\right| < 1$$
 whenever $|z| > M$.

Take R = M + 1 and apply Rouché's theorem.

8. Determine the isolated singularities and compute the residue of the functions

a)
$$\frac{e^z}{z^2 - 1}$$
, b) $\frac{3z}{z^2 + iz + 2}$, c) $\cot \pi z$, d) $\frac{\pi \cot \pi z}{(z + \frac{1}{2})^2}$.

Answer:

a) Singularities at ±1. Residue at $1 = \lim_{z \to 1} (z-1) \frac{e^z}{z^2 - 1} = \frac{e}{2}$ Residue at $-1 = \lim_{z \to -1} (z+1) \frac{e^z}{z^2 - 1} = -\frac{1}{2e}$.

- b) Singularities at i and -2i. Residue at $i = \lim_{z \to i} (z - i) \frac{3z}{z^2 + iz + 2} = 1$ Residue at $-2i = \lim_{z \to -2i} (z + 2i) \frac{3z}{z^2 + iz + 2} = 2$.
- c) Singularities at $\pm n$.

Residue at
$$n = \lim_{z \to n} (z - n) \cot \pi z = \lim_{z \to n} (z - n) \frac{(-1)^n \cos \pi z}{\sin(z - n)\pi} = \frac{1}{\pi}.$$

d) Singularities at $\pm n$ and $-\frac{1}{2}$.

Residue at
$$\pm n = \lim_{z \to \pm n} (z \mp n) \frac{\pi \cot \pi z}{(z + \frac{1}{2})^2} = \frac{1}{(\pm n + \frac{1}{2})^2}.$$

Residue at $-\frac{1}{2} = \lim_{z \to -\frac{1}{2}} \frac{1}{2} \frac{d}{dz} \left[\left(z + \frac{1}{2} \right)^2 \frac{\pi \cot \pi z}{(z + \frac{1}{2})^2} \right] = -\frac{\pi^2}{2}.$

Questions Q9-Q13: do yourself.

9. State where the following mappings are conformal.

(i)
$$w = \sin z$$
 (ii) $w = z^2 + 2z$.

- 10. Show that the mapping $w = \cos z$ is not conformal at $z_0 = 0$.
- 11. Find a bilinear transformation which maps:

(i) 2, $i,\,-2$ onto 1, $i,\,-1.$ (ii) $i,\,-1,\,1$ onto 0, 1, ∞ (iii) $\infty,\,i,\,0$ onto 0, $i,\,\infty$

- 12. Show that the transformation $w = \frac{z-i}{1-iz}$ maps the interior enclosed by the circle |z| = 1 onto the lower half-plane Im (w) < 0.
- 13. Find the image of the straight line $\operatorname{Re}(z) = a$ (constant) in the z-plane under the mapping $w = \frac{z-1}{z+1}$.