Applications of Cauchy's Integral Formula

Lecture 10 Applications of Cauchy's Integral Formula

Fundamental Theorem of Algebra (FTA): Every polynomial p(z) of degree $n \ge 1$ has a root in the complex plane \mathbb{C} .

Proof: Suppose $P(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0$ is a polynomial with no root in \mathbb{C} . Then $\frac{1}{P(z)}$ is an entire function. Since

$$\left|rac{P(z)}{z^n}
ight|=\left|1+rac{a_{n-1}}{z}+\ldots+rac{a_0}{z^n}
ight|
ightarrow 1, ext{ as } |z|
ightarrow\infty,$$

it follows that $|p(z)| \to \infty$ and hence $|1/p(z)| \to 0$ as $|z| \to \infty$. Consequently, $\frac{1}{p(z)}$ is a bounded function. Hence by Liouville's theorem $\frac{1}{p(z)}$ is constant, which is not possible.

Exercise: Show that every polynomial P(z) of degree *n* has exactly *n* many roots in the complex plane \mathbb{C} .

Morera's Theorem

Morera's Theorem: If f is continuous in a simply connected domain D, and if

$$\int_C f(z)dz = 0$$

for every simple closed contour C in D, then f is analytic.

Proof: Fix a point $z_0 \in D$, and define

$$F(z)=\int_{z_0}^z f(w)dw.$$

Use the idea of proof of the existence of antiderivative to show that F' = f. That is, F is complex differentiable. Since f is continuous, F is analytic. Now, by Cauchy integral formula f is analytic.

Result: Let f be a continuous function on an open set D and γ be a simple closed curve in $D \subset \mathbb{C}$. Then, for each $\epsilon > 0$, there exists a polygon P such that

$$\left|\int_{\gamma} f(z)dz - \int_{P} f(z)dz\right| < \epsilon.$$

Proof: Refer to Lemma 1.19, page 65, Functions of one complex variable by J. B. Conway.

Morera's Theorem

Corollary to Morera's Theorem: If *f* is continuous in a simply connected domain *D*, and if $\int_{\partial R} f(z)dz = 0$ for every rectangle *R* in *D*, then *f* is analytic. **Proof:** By the above result, for each $\epsilon > 0$, there exists a polygon *P* such that $|\int_{\gamma} f(z)dz - \int_{P} f(z)dz| < \epsilon$. Now, $\int_{P} f(z)dz = \sum_{j=1}^{n} \int_{\partial R_j} f(z)dz = 0$. Hence $|\int_{\gamma} f(z)dz| < \epsilon$ which is true for each $\epsilon > 0$. Thus, $\int_{\gamma} f(z)dz = 0$. The analyticity of *f* follows from Morera's theorem.

Question: Let $\{f_n\}$, be a sequence of analytic functions converging uniformly to a continuous function f on the open disc B(0, 1). Is f is analytic in B(0, 1)?

By Cauchy's theorem, we know that

$$\int_{\gamma} f_n(z) \, dz = 0$$

 $\forall n \in \mathbb{N}$ and for any closed curve γ in the disc B(0, 1). Then

$$\int_{\gamma} f(z) dz = \int_{\gamma} \lim_{n \to \infty} f_n(z) dz = \lim_{n \to \infty} \int_{\gamma} f_n(z) dz = 0.$$

for every closed curve γ . By Morera's theorem f must be analytic.

Application of Morera's Theorem

Question: Let $h : [a, b] \times B(0, 1) \to \mathbb{C}$ be continuous. If for each fixed t, h(t, z) is analytic function of z in B(0, 1), then

$$H(z) = \int_a^b h(t,z) dt$$

is analytic on B(0,1).

Proof:

- Notice that if $z_n \to z$, then $h(t, z_n) \to h(t, z)$ uniformly for $a \le t \le b$.
- That means $H(z_n) \rightarrow H(z)$. So H is continuous in B(0,1).
- Let γ be any simple closed curve in B(0,1). So by Cauchy's theorem

$$\int_{\gamma} h(t,z) dz = 0.$$

• Then by Fubini's theorem, we get

$$\int_{\gamma} H(z) dz = \int_{\gamma} \left(\int_{a}^{b} h(t,z) dt \right) dz = \int_{a}^{b} \int_{\gamma} h(t,z) dz dt = 0.$$

• By Morera's theorem, H is analytic in B(0,1).

Question: Let D be a domain and let $f : D \to \mathbb{C}$ be continuous. If f is analytic function of z in $D \setminus \mathbb{R}$, then f is analytic on D.

Proof: Let *R* be a closed rectangle contained in *D* and ∂R be the boundary of closed rectangle *R*.

- Case I: R does not meet the real axis. Then $\int_{\partial R} f(z) dz = 0$ by Cauchy's theorem.
- Case II: One edge of R lies on the real axis. For given $\epsilon > 0$ let $R_{\epsilon} = \{z \in R : \text{Im}(z) \ge \epsilon\}$. In this case,

$$\int_{\partial R} f(z) dz = \lim_{\epsilon \to 0} \int_{\partial R_{\epsilon}} f(z) dz.$$

Indeed, the integral along the bottom edge has the form $\int_a^b f(t+i\epsilon)dt$ and converges to $\int_a^b f(t)dt$ as $\epsilon \to 0$ (as $f(t+i\epsilon) \to f(t)$ uniformly for $a \le t \le b$.) • **Case III:** The top edge of *R* is in the upper half plane, and the bottom edge of *R* is in the lower half plane. Let *R*₊ be the part of *R* in the closed UHP and *R*₋ be the part of *R* in the LHP. Then

$$\int_{\partial R} f(z) dz = \int_{\partial R_+} f(z) dz + \int_{\partial R_-} f(z) dz = 0,$$

by the previous case, the analyticity of f follows from Morera's theorem.

Exercise: Let *L* be a line in the complex plane. If *f* is continuous on a domain *D* that is analytic on $D \\ L$, then show that *f* is analytic on *D*.