Series of complex numbers

For a sequence of complex numbers z_n in \mathbb{C} , the series $\sum_{n=0}^{\infty} z_n$ converges

- to z, if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\left| \sum_{n=0}^{m} z_n z \right| < \epsilon$, whenever m > N;
- absolutely if $\sum_{n=0}^{\infty} |z_n|$ converges.
- If the series $\sum_{n=0}^{\infty} z_n$ converges absolutely, then $\sum_{n=0}^{\infty} z_n$ converges.
- Let $S_N = \sum_{n=0}^N z_n$ be the Nth partial sum of $\sum_{n=0}^\infty z_n$. Then, the series $\sum_{n=0}^\infty z_n$ converges if and only if the sequence $\{S_N\}$ converges.

- Definition: A series of the form $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, where $a_n \in \mathbb{C}$ and $z_0 \in \mathbb{C}$ is called a **power series** around the point z_0 .
- \bullet For what values of z, do the following power series converge?

- If a power series $\sum_{n=0}^{\infty} a_n z^n$ converges for some $z_0 \in \mathbb{C}$, then it converges for all $z \in \mathbb{C}$ with $|z| < |z_0|$.
- **Proof.** It follows from the hypothesis that there exists $M \ge 0$ such that $|a_n z_0^n| \le M$ for all $n \in \mathbb{N}$.
- Note that

$$|a_nz^n|=|a_nz_0|^n\left|\frac{z}{z_0}\right|^n\leq M\left|\frac{z}{z_0}\right|^n.$$

 The proof will be followed by the comparison test and the behavior of the geometric series.

- (Radius of convergence) Given a power series $\sum_{n=0}^{\infty} a_n z^n$, there always exists $0 \le R \le \infty$ such that:
 - **1** If |z| < R, the series converges absolutely.
 - 2 If |z| > R, the series diverges.

The number R is called the radius of convergence of the power series.

- (a) For $\sum_{n=0}^{\infty} n! z^n$, R = 0. (b) For $\sum_{n=0}^{\infty} z^n$, R = 1. (c) For $\sum_{n=1}^{\infty} \frac{z^n}{n}$, R = 1.
 - (d) For $\sum_{n=1}^{\infty} \frac{z^n}{n!}$, $R = \infty$.
- Remark: Note that no conclusion about convergence can be drawn if |z| = R. The power series in (c) the above does not converge if z = 1 but converges if z = -1.

Question: Why can't the power series converge at every point in |z| = R?

• The formula for calculating R goes precisely as in the case of reals, that is,

$$\frac{1}{R} = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|},$$

whenever the above limits exist (with the adaptation that division by ∞ (resp. 0) produces 0 (resp. ∞)).

• Let R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n z^n$. Then, for all $z \in B(0,R)$, we have

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

is a well defined function.

• Question: Is f analytic on B(0, R)?

Theorem: Suppose $F(z) = \sum_{n=0}^{\infty} a_n z^n$ has the radius of convergence R > 0.

Then

- the series $\sum_{n=1}^{\infty} na_n z^{n-1}$ has the same radius of convergence R.
- 2 the function F is differentiable on B(0,R) and $F'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$.

Proof. Since we know $\lim_{n\to\infty} n^{1/n}=1$, therefore,

$$\limsup |a_n|^{1/n} = \limsup |na_n|^{1/n}.$$

Hence $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=1}^{\infty} n a_n z^{n-1}$ have the same radius of convergence.

Now, let |z| < r < R, and write

$$F(z) = S_N(z) + R_N(z),$$

where

$$S_N(z) = \sum_{n=0}^N a_n z^n$$
 and $R_N(z) = \sum_{n=N+1}^\infty a_n z^n$.

Let us denote

$$f(z) = \sum_{n=1}^{\infty} a_n \, nz^{n-1}.$$

Then, if h is chosen so that |z + h| < r, we have

$$\frac{F(z+h) - F(z)}{h} - f(z) = \left(\frac{S_N(z+h) - S_N(z)}{h} - S'_N(z)\right) + \left(S'_N(z) - f(z)\right) + \left(\frac{R_N(z+h) - R_N(z)}{h}\right).$$

Next, we will show that all three expressions on the right hand-side in the above equation will go to zero for large N and small |h|.

Lecture 11

Power Series

Since $a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + ... + ab^{n-2} + ab^{n-1})$, we can write

$$\left|\frac{R_N(z+h)-R_N(z)}{h}\right| \leq \sum_{n=N+1}^{\infty} |a_n| \left|\frac{(z+h)^n-z^n}{h}\right| \leq \sum_{n=N+1}^{\infty} |a_n| n r^{n-1},$$

where we have used the fact that |z| < r and |z+h| < r. Since the right most expression is the reminder (or tail) of a convergent series. Given $\epsilon > 0$, we can find $N_1 \in \mathbb{N}$ such that

$$\left|\frac{R_N(z+h)-R_N(z)}{h}\right|<\frac{\epsilon}{3},\tag{1}$$

whenever $N>N_1$. Also $\lim_{N\to\infty}S_N'(z)=f(z),$ we can find N_2 so that $N>N_2$ implies that

$$|S_N'(z) - f(z)| < \frac{\epsilon}{3}. \tag{2}$$

If $N > \max\{N_1, N_2\}$, then both (1) and (2) will hold together.

Note that $S_N(z)$ is a polynomial, and the derivative of a polynomial is obtained by differentiating it term by term. Given $\epsilon > 0$, we can find a $\delta > 0$ such that

$$\left|\frac{S_N(z+h)-S_N(z)}{h}-S_N'(z)\right|<\frac{\epsilon}{3},\tag{3}$$

whenever $|h| < \delta$.

By combining (1), (2) and (3), we get

$$\left|\frac{F(z+h)-F(z)}{h}-f(z)\right|<\epsilon,$$

whenever $|h| < \delta$.

Corollary: The function $F(z) = \sum_{n=0}^{\infty} a_n z^n$ is infinitely differentiable on B(0,R)

and the higher derivatives are also power series obtained via term-by-term differentiation and have the same radius of convergence R.

Theorem: Suppose $\sum_{n=0}^{\infty} a_n z^n$ has the radius of convergence R > 0. If

0 < r < R, then the above series converges uniformly on $\overline{B(0,r)}$.

Proof. If $r<\rho< R$, then $\limsup_{n\to\infty}|a_n|^{\frac{1}{n}}=\frac{1}{R}<\frac{1}{\rho}.$ Hence, there exists $N\in\mathbb{N}$ such that $|a_n|<\frac{1}{\rho^n}$ for all n>N. Now, if $|z|\leq r$, then

$$|a_n z^n| < \left(\frac{r}{\rho}\right)^n$$

whenever n > N. This implies

$$\sum_{n=N+1}^{\infty} |a_n z^n| \le \sum_{n=N+1}^{\infty} \left(\frac{r}{\rho}\right)^n.$$

Therefore, the series is uniformly convergent by the Weierstrass M-test.