Series of complex numbers

For a sequence of complex numbers z_n in $\mathbb C,$ the series $\sum_{n=1}^\infty z_n$ converges $n=0$ to z, if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\Bigg|$ $\overline{}$ $\sum_{n=1}^{m} z_n - z$ $n=0$ $\Bigg| < \epsilon,$ $\frac{1}{2}$ whenever $m \geq N$; absolutely if $\sum_{n=0}^{\infty}$ $n=0$ $|z_n|$ converges. If the series $\sum_{n=1}^{\infty}$ $n=0$ z_n converges absolutely, then $\sum_{n=0}^{\infty}$ $n=0$ z_n converges. Let $S_N = \sum_{n=1}^{N}$ $n=0$ z_n be the Nth partial sum of $\sum_{n=0}^{\infty}$ $n=0$ z_n . Then, the series $\sum_{n=1}^{\infty}$ $n=0$ zn converges if and only if the sequence $\{S_N\}$ converges.

- Definition: A series of the form $\sum_{n=0}^{\infty}$ $n=0$ $a_n(z-z_0)^n$, where $a_n \in \mathbb{C}$ and $z_0 \in \mathbb{C}$ is called a **power series** around the point z_0 .
- \bullet For what values of z, do the following power series converge?

\n- **①**
$$
\sum_{n=0}^{\infty} z^n
$$
 ($|z| < 1$, geometric series.)
\n- **②** $\sum_{n=0}^{\infty} \frac{1}{n!} z^n$ (for all *z*, exponential series.)
\n- **③** $\sum_{n=0}^{\infty} n! z^n$, (only $z = 0$)
\n

- If a power series \sum^{∞} a_nz^n converges for some $z_0\in\mathbb{C},$ then it converges for all $z \in \mathbb{C}$ with $|z| < |z_0|$.
- **Proof.** It follows from the hypothesis that there exists $M \geq 0$ such that $|a_nz_0^n|\leq M$ for all $n\in\mathbb{N}$.
- **O** Note that

$$
|a_nz^n|=|a_nz_0|^n\left|\frac{z}{z_0}\right|^n\leq M\left|\frac{z}{z_0}\right|^n.
$$

• The proof will be followed by the comparison test and the behavior of the geometric series.

(Radius of convergence) Given a power series $\sum_{n=1}^{\infty} a_n z^n$, there always $n=0$ exists $0 \leq R \leq \infty$ such that:

1 If $|z| < R$, the series converges absolutely. **2** If $|z| > R$, the series diverges.

The number R is called the **radius of convergence** of the power series.

\n- (a) For
$$
\sum_{n=0}^{\infty} n! z^n
$$
, $R = 0$.
\n- (b) For $\sum_{n=0}^{\infty} z^n$, $R = 1$.
\n- (c) For $\sum_{n=1}^{\infty} \frac{z^n}{n}$, $R = 1$.
\n- (d) For $\sum_{n=1}^{\infty} \frac{z^n}{n!}$, $R = \infty$.
\n

• Remark: Note that no conclusion about convergence can be drawn if $|z| = R$. The power series in (c) the above does not converge if $z = 1$ but converges if $z = -1$.

Question: Why can't the power series converge at every point in $|z| = R$?

 \bullet The formula for calculating R goes precisely as in the case of reals, that is,

$$
\frac{1}{R}=\limsup_{n\to\infty}|a_n|^{\frac{1}{n}}=\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|},
$$

whenever the above limits exist (with the adaptation that division by ∞ (resp. 0) produces 0 (resp. ∞)).

Let R be the radius of convergence of the power series $\sum^{\infty}_{n} a_n z^n$. Then, $n=0$

for all $z \in B(0, R)$, we have

$$
f(z)=\sum_{n=0}^{\infty}a_nz^n
$$

is a well defined function.

• Question: Is f analytic on $B(0, R)$?

Theorem: Suppose $F(z) = \sum^{\infty} a_n z^n$ has the radius of convergence $R > 0$. $n=0$ Then **1** the series $\sum_{n=1}^{\infty}$ na_nz^{n−1} has the same radius of convergence R. n=1 \bullet the function F is differentiable on $B(0,R)$ and $F'(z)=\sum^{\infty}_{n=1}$ $n=1$ na_nz^{n-1} . **Proof.** Since we know $\lim_{n\to\infty} n^{1/n} = 1$, therefore, $\limsup |a_n|^{1/n} = \limsup |na_n|^{1/n}$.

Hence $\sum_{n=1}^{\infty}$ n=0 $a_n z^n$ and $\sum_{n=1}^{\infty}$ $n=1$ na_nz^{n-1} have the same radius of convergence. Now, let $|z| < r < R$, and write

$$
F(z)=S_N(z)+R_N(z),
$$

where

$$
S_N(z)=\sum_{n=0}^N a_nz^n \text{ and } R_N(z)=\sum_{n=N+1}^\infty a_nz^n.
$$

Let us denote

$$
f(z)=\sum_{n=1}^{\infty}a_n nz^{n-1}.
$$

Then, if h is chosen so that $|z + h| < r$, we have

$$
\frac{F(z+h)-F(z)}{h}-f(z) = \left(\frac{S_N(z+h)-S_N(z)}{h}-S'_N(z)\right)
$$

$$
+ \left(S'_N(z)-f(z)\right)+\left(\frac{R_N(z+h)-R_N(z)}{h}\right).
$$

Next, we will show that all three expressions on the right hand-side in the above equation will go to zero for large N and small $|h|$.

Since
$$
a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + ... + ab^{n-2} + ab^{n-1})
$$
, we can write

$$
\left| \frac{R_N(z+h) - R_N(z)}{h} \right| \le \sum_{n=N+1}^{\infty} |a_n| \left| \frac{(z+h)^n - z^n}{h} \right| \le \sum_{n=N+1}^{\infty} |a_n| n r^{n-1},
$$

where we have used the fact that $|z| < r$ and $|z + h| < r$. Since the right most expression is the reminder (or tail) of a convergent series. Given $\epsilon > 0$, we can find $N_1 \in \mathbb{N}$ such that

$$
\left|\frac{R_N(z+h)-R_N(z)}{h}\right|<\frac{\epsilon}{3},\hspace{1cm} (1)
$$

whenever $N > N_1$. Also $\lim_{N \to \infty} S'_N(z) = f(z)$, we can find N_2 so that $N > N_2$ implies that

$$
|S'_N(z)-f(z)|<\frac{\epsilon}{3}.\tag{2}
$$

If $N > max\{N_1, N_2\}$, then both [\(1\)](#page-8-0) and [\(2\)](#page-8-1) will hold together.

Note that $S_N(z)$ is a polynomial, and the derivative of a polynomial is obtained by differentiating it term by term. Given $\epsilon > 0$, we can find a $\delta > 0$ such that

$$
\left|\frac{S_N(z+h)-S_N(z)}{h}-S'_N(z)\right|<\frac{\epsilon}{3},\hspace{1cm} (3)
$$

whenever $|h| < \delta$.

By combining (1) , (2) and (3) , we get

$$
\left|\frac{F(z+h)-F(z)}{h}-f(z)\right|<\epsilon,
$$

whenever $|h| < \delta$.

Corollary: The function $F(z) = \sum_{n=0}^{\infty}$ $n=0$ $a_n z^n$ is infinitely differentiable on $B(0, R)$ and the higher derivatives are also power series obtained via term-by-term differentiation and have the same radius of convergence R .

Theorem: Suppose \sum^{∞} $n=0$ $a_n z^n$ has the radius of convergence $R > 0$. If $0 < r < R$, then the above series converges uniformly on $\overline{B(0,r)}$. **Proof.** If $r < \rho < R$, then $\limsup |a_n|^{\frac{1}{n}} = \frac{1}{R} < \frac{1}{\rho}$. Hence, there exists $N \in \mathbb{N}$ such that $|a_n| < \frac{1}{\rho^n}$ for all $n > N$. Now, if $|z| \le r$, then

$$
|a_nz^n|<\left(\frac{r}{\rho}\right)^n,
$$

whenever $n > N$. This implies

$$
\sum_{n=N+1}^{\infty} |a_n z^n| \leq \sum_{n=N+1}^{\infty} \left(\frac{r}{\rho}\right)^n.
$$

Therefore, the series is uniformly convergent by the Weierstrass M-test.