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Series of complex numbers

For a sequence of complex numbers zn in C, the series
∞∑
n=0

zn converges

to z , if for every ε > 0, there exists N ∈ N such that

∣∣∣∣∣
m∑

n=0

zn − z

∣∣∣∣∣ < ε,

whenever m ≥ N;

absolutely if
∞∑
n=0

|zn| converges.

If the series
∞∑
n=0

zn converges absolutely, then
∞∑
n=0

zn converges.

Let SN =
N∑

n=0

zn be the Nth partial sum of
∞∑
n=0

zn. Then, the series
∞∑
n=0

zn

converges if and only if the sequence {SN} converges.
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Power Series

Definition: A series of the form
∞∑
n=0

an(z − z0)n, where an ∈ C and z0 ∈ C

is called a power series around the point z0.

For what values of z , do the following power series converge?

1

∞∑
n=0

zn ( |z | < 1, geometric series.)

2

∞∑
n=0

1

n!
zn (for all z , exponential series.)

3

∞∑
n=0

n!zn, (only z = 0)
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Power Series

If a power series
∞∑
n=0

anz
n converges for some z0 ∈ C, then it converges

for all z ∈ C with |z | < |z0|.
Proof. It follows from the hypothesis that there exists M ≥ 0 such that
|anzn0 | ≤ M for all n ∈ N.
Note that

|anzn| = |anz0|n
∣∣∣∣ zz0
∣∣∣∣n ≤ M

∣∣∣∣ zz0
∣∣∣∣n .

The proof will be followed by the comparison test and the behavior of the
geometric series.
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Power Series

(Radius of convergence) Given a power series
∞∑
n=0

anz
n, there always

exists 0 ≤ R ≤ ∞ such that:

1 If |z | < R, the series converges absolutely.
2 If |z | > R, the series diverges.

The number R is called the radius of convergence of the power series.

(a) For
∞∑
n=0

n!zn, R = 0. (b) For
∞∑
n=0

zn, R = 1. (c) For
∞∑
n=1

zn

n
, R = 1.

(d) For
∞∑
n=1

zn

n!
, R =∞.

Remark: Note that no conclusion about convergence can be drawn if
|z | = R. The power series in (c) the above does not converge if z = 1 but
converges if z = −1.

Question: Why can’t the power series converge at every point in |z | = R?
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Power Series

The formula for calculating R goes precisely as in the case of reals, that is,

1

R
= lim sup

n→∞
|an|

1
n = lim

n→∞

|an+1|
|an|

,

whenever the above limits exist (with the adaptation that division by ∞
(resp. 0) produces 0 (resp. ∞)).

Let R be the radius of convergence of the power series
∞∑
n=0

anz
n. Then,

for all z ∈ B(0,R), we have

f (z) =
∞∑
n=0

anz
n

is a well defined function.

Question: Is f analytic on B(0,R)?
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Power Series

Theorem: Suppose F (z) =
∞∑
n=0

anz
n has the radius of convergence R > 0.

Then

1 the series
∞∑
n=1

nanz
n−1 has the same radius of convergence R.

2 the function F is differentiable on B(0,R) and F ′(z) =
∞∑
n=1

nanz
n−1.

Proof. Since we know lim
n→∞

n1/n = 1, therefore,

lim sup |an|1/n = lim sup |nan|1/n.

Hence
∞∑
n=0

anz
n and

∞∑
n=1

nanz
n−1 have the same radius of convergence.
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Power Series

Now, let |z | < r < R, and write

F (z) = SN(z) + RN(z),

where

SN(z) =
N∑

n=0

anz
n and RN(z) =

∞∑
n=N+1

anz
n.

Let us denote

f (z) =
∞∑
n=1

an nz
n−1.

Then, if h is chosen so that |z + h| < r , we have

F (z + h)− F (z)

h
− f (z) =

(
SN(z + h)− SN(z)

h
− S ′N(z)

)
+ (S ′N(z)− f (z)) +

(
RN(z + h)− RN(z)

h

)
.

Next, we will show that all three expressions on the right hand-side in the

above equation will go to zero for large N and small |h|.
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Power Series

Since an − bn = (a− b)(an−1 + an−2b + . . .+ abn−2 + abn−1), we can write∣∣∣∣RN(z + h)− RN(z)

h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|
∣∣∣∣ (z + h)n − zn

h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|nrn−1,

where we have used the fact that |z | < r and |z + h| < r . Since the right most
expression is the reminder (or tail) of a convergent series. Given ε > 0, we can
find N1 ∈ N such that ∣∣∣∣RN(z + h)− RN(z)

h

∣∣∣∣ < ε

3
, (1)

whenever N > N1. Also lim
N→∞

S ′N(z) = f (z), we can find N2 so that N > N2

implies that

|S ′N(z)− f (z)| < ε

3
. (2)

If N > max{N1,N2}, then both (1) and (2) will hold together.
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Power Series

Note that SN(z) is a polynomial, and the derivative of a polynomial is obtained
by differentiating it term by term. Given ε > 0, we can find a δ > 0 such that∣∣∣∣SN(z + h)− SN(z)

h
− S ′N(z)

∣∣∣∣ < ε

3
, (3)

whenever |h| < δ.

By combining (1), (2) and (3), we get∣∣∣∣F (z + h)− F (z)

h
− f (z)

∣∣∣∣ < ε,

whenever |h| < δ.

Corollary: The function F (z) =
∞∑
n=0

anz
n is infinitely differentiable on B(0,R)

and the higher derivatives are also power series obtained via term-by-term
differentiation and have the same radius of convergence R.
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Power Series

Theorem: Suppose
∞∑
n=0

anz
n has the radius of convergence R > 0. If

0 < r < R, then the above series converges uniformly on B(0, r).

Proof. If r < ρ < R, then lim sup
n→∞

|an|
1
n = 1

R
< 1

ρ
. Hence, there exists N ∈ N

such that |an| < 1
ρn

for all n > N. Now, if |z | ≤ r , then

|anzn| <
(
r

ρ

)n

,

whenever n > N. This implies

∞∑
n=N+1

|anzn| ≤
∞∑

n=N+1

(
r

ρ

)n

.

Therefore, the series is uniformly convergent by the Weierstrass M-test.
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