# Maximum Modulus Theorem and Laurent Series

### Maximum Modulus Theorem

**Maximum Modulus Theorem:** Let  $D \subset \mathbb{C}$  be a domain and  $f : D \to \mathbb{C}$  be analytic, and if there exists a point  $z_0 \in D$  such that  $|f(z)| \leq |f(z_0)|, \forall z \in D$ , then f is constant on D.

**Proof.** Choose an r > 0 such that  $\overline{B(z_0, r)} \subset D$ . Let  $\gamma(t) = z_0 + \rho e^{it}$  for  $0 \le t \le 2\pi$  and  $0 < \rho < r$ . By Cauchy's integral formula, we get

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + \rho e^{it}) dt.$$

Hence

$$|f(z_0)| \leq rac{1}{2\pi} \int_0^{2\pi} |f(z_0 + 
ho e^{it})| \, dt \leq |f(z_0)|.$$

This gives

$$\int_0^{2\pi} \left[ |f(z_0)| - |f(z_0 + \rho e^{it})| \right] dt = 0.$$

It follows that  $|f(z_0)| = |f(z_0 + \rho e^{it})|$  for all t and  $\rho$ . Hence f is constant on  $B(z_0, r)$ . By applying the identity theorem, we conclude that f is constant throughout the domain D.

# Maximum Modulus Theorem



A plot of the modulus of  $\cos z$  (shown in red) in the unit disk centered at the origin (shown in blue).

### Consequences

- If f is analytic in a bounded domain D and continuous on  $\partial D$ , then |f(z)| attains its maximum at some point on the boundary  $\partial D$ .
- Consider the function  $f(z) = e^{e^z}$  for  $z \in D = \{z \in \mathbb{C} : |\text{Im } z| < \frac{\pi}{2}\}$ . Then for  $a \pm i\frac{\pi}{2} \in \partial D = \{\zeta \in \mathbb{C} : |\text{Im } \zeta| = \frac{\pi}{2}\}$ ,

$$f(a\pm i\frac{\pi}{2})=\left|e^{e^{a\pm i\frac{\pi}{2}}}\right|=\left|e^{\pm ie^{a}}\right|=1.$$

Again, if  $x \in \mathbb{R} \subset D$  then,  $f(x) = e^{e^x} \to \infty$  as  $x \to \infty$ .

Minimum Modulus Theorem Let D ⊂ C be a domain and f : D → C be analytic, and if there exists a point z<sub>0</sub> ∈ D such that |f(z)| ≥ |f(z<sub>0</sub>)| for all z ∈ D, then either f is a constant function or f(z<sub>0</sub>) = 0.

Hint. Apply maximum modulus theorem on 1/f.

**Exercise:** Let f be an analytic function on  $D = \{z \in \mathbb{C} : |z| > R\}$ . Suppose there exists M > 0 such that  $|f(z)| \le M$  on  $\partial D$ . If  $\lim_{|z| \to \infty} |f(z)| \le M$ , then show that  $|f(z)| \le M$  on D. (Hint: Use maximum modulus theorem.)

#### Laurent's Theorem

Suppose that  $0 \le r < R$ . Let f be an analytic defined on the annulus

$$A = \operatorname{ann}(a, r, R) = \{z : r < |z - a| < R\}$$

Then for each  $z \in A$ , f(z) has the Laurent series representation

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-a)^n$$

where the convergence is absolute and uniform in  $ann(a, r_1, R_1)$  if  $r < r_1 < R_1 < R$ . The coefficients are given by

$$a_n=rac{1}{2\pi i}\int_{\gamma}rac{f(z)}{(z-a)^{n+1}}\,dz,$$

where  $\gamma(t) = a + se^{it}$ ,  $t \in [0, 2\pi]$  and for any r < s < R. Moreover, this series is unique and  $\sum_{k=-\infty}^{-1} a_n(z-a)^n$  is called (principal part)

and 
$$\sum_{k=0}^{\infty} a_n (z-a)^n$$
 is called (regular/analytic part)

### Examples of Laurent Series

Let 
$$f(z) = \frac{1}{1-z}$$
.

• On the domain |z| < 1

$$f(z) = \frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \ldots + .$$

• On the domain |z|>1 i.e.  $\frac{1}{|z|}<1$ , by the above mentioned fact we have

$$f(z) = \frac{1}{1-z} = \frac{-1}{z(1-\frac{1}{z})} = -\frac{1}{z}\sum_{n=0}^{\infty}\frac{1}{z^n} = -\frac{1}{z} - \frac{1}{z^2} - \dots$$

# Examples of Laurent Series

• Let 
$$f(z) = \frac{\sin z}{z}$$
 domain  $|z| > 0$   
 $f(z) = \frac{\sin z}{z} = \frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n+1)!} = 1 - \frac{z^2}{6} + \frac{z^4}{120} + \cdots$   
• Let  $f(z) = \frac{e^z - 1}{z^3}$  domain  $|z| > 0$   
 $f(z) = \frac{e^z - 1}{z^3} = \frac{1}{z^3} \sum_{1}^{\infty} \frac{z^n}{n!} = \frac{1}{z^2} + \frac{1}{2z} + \frac{1}{6} + \frac{z}{24} + \cdots$   
• Let  $f(z) = e^{\frac{1}{z}}$  domain  $|z| > 0$   
 $f(z) = e^{\frac{1}{z}}$  domain  $|z| > 0$   
 $f(z) = e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{n!z^n} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \cdots$ 

# Examples of Laurent Series

Let 
$$f(z) = \frac{1}{(z-1)(z-2)} = \frac{1}{z-2} - \frac{1}{z-1}$$
  
• Domain  $|z| < 1$ 

$$f(z) = \frac{1}{z-2} - \frac{1}{z-1} = -\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}} + \sum_{n=0}^{\infty} z^n = \sum_{n=0}^{\infty} (1-2^{-n-1})z^n.$$

• Domain 
$$1 < |z| < 2$$
 i.e.  $\frac{1}{|z|} < 1$  and  $\frac{|z|}{2} < 1$ , so we have

$$f(z) = \frac{1}{z-2} - \frac{1}{z-1} = -\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}} - \sum_{n=1}^{\infty} \frac{1}{z^n}$$

• Domain 
$$|z| > 2$$
 i.e.  $\frac{1}{|z|} < 1$  and  $\frac{2}{|z|} < 1$ , in this case we have  
$$f(z) = \frac{1}{z-2} - \frac{1}{z-1} = \sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}} - \sum_{n=1}^{\infty} \frac{1}{z^n} = \sum_{n=1}^{\infty} \frac{2^{n-1}-1}{z^n}.$$

• Let f be an entire function such that  $\lim_{z\to\infty} \left| \frac{f(z)}{z} \right| = 0$ . Show that f is constant.