Singularities

What can we say about the behavior of the following functions at 0?

 $f(z) = \frac{1}{z^9}$ $f(z) = \frac{\sin z}{z}$ $f(z) = \frac{e^{z}-1}{z}$ z $f(z) = \frac{1}{\sin(\frac{1}{z})}$ • $f(z) = \text{Log } z$ $f(z) = e^{\frac{1}{z}}$

In the above, we observe that none of the functions is analytic at 0; however, in each neighborhood of 0 contains a point at which these functions are analytic.

Singularities

Definition: The point z_0 is called a singular point or singularity of f if f is not analytic at z_0 , but each neighborhood of z_0 contains at least one point at which f is analytic.

• Here
$$
\frac{e^z - 1}{z}
$$
, $\frac{1}{z^2}$, $\sin \frac{1}{z}$, $\text{Log } z$, etc. has singularity at $z = 0$.

- $\bar{z}, |z|^2$, Re z, Im z, zRe z are nowhere analytic. That does not mean that every point of $\mathbb C$ is a singularity.
- A singularity can be classified into TWO ways:
	- \bullet A singular point z_0 is said to be an **isolated singularity or isolated singular point** of f if f is analytic in $B(z_0, r) \setminus \{z_0\}$ for some $r > 0$.
	- \bullet A singular point z_0 is said to be a non-isolated singularity if z_0 is not an isolated singular point.

•
$$
\frac{\sin z}{z}
$$
, $\frac{1}{z^2}$, $\sin(\frac{1}{z})$ (0 is an isolated singular point).

1 $\frac{1}{\sin(\pi/z)},$ Log z these functions have non-isolated singularity at 0. If f has an isolated singularity at z_0 , then f is analytic in $B(z_0,r) \setminus \{z_0\}$ for some small $r > 0$. In this case, f has the following Laurent series expansion:

$$
f(z) = \cdots \frac{a_{-n}}{(z-z_0)^n} + \cdots + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-a) + a_2(z-z_0)^2 + \cdots
$$

- **If all** $a_{-n} = 0$ **for all** $n \in \mathbb{N}$ **, then the point** $z = z_0$ **is a removable** singularity.
- The point $z = z_0$ is called a **pole** if all but a finitely many of a_{-n} 's are non-zero. If m is the highest integer such that $a_{-m} \neq 0$, then z_0 is a pole of order m.
- If $a_{-n} \neq 0$ for infinitely many n's, then the point $z = z_0$ is an essential singularity.
- The term a_{-1} is called the **residue** of f at z_0 .

• The following statements are equivalent:

1 f has a removable singularity at z_0 .

2 If all
$$
a_{-n} = 0
$$
 for all $n \in \mathbb{N}$.

9
$$
\lim_{z \to z_0} f(z)
$$
 exists and is finite.

$$
\bigoplus_{z \to z_0} \lim_{(z - z_0)} (z - z_0) f(z) = 0.
$$

 \bullet f is bounded in a deleted neighborhood of z_0 .

• The function
$$
\frac{\sin z}{z}
$$
 has removable singularity at 0.

The following statements are equivalent:

- \bullet f has a pole of at z_0 .
- $\lim_{z\to z_0} |f(z)| = \infty.$

The following statements are equivalent:

 \bullet f has a pole of order m at z_0 .

•
$$
f(z) = \frac{g(z)}{(z - z_0)^m}
$$
, g is analytic at z_0 and $g(z_0) \neq 0$.

1 $\frac{1}{f}$ has a zero of order *m*.

•
$$
\lim_{z \to z_0} (z - z_0)^{m+1} f(z) = 0
$$

•
$$
\lim_{z \to z_0} (z - z_0)^m f(z)
$$
 has removable singularity at z_0 .

The following statements are equivalent:

- \bullet f has an essential singularity at z_0 .
- \bullet The point z_0 is neither a pole nor a removable singularity of f.
- $\lim_{z\to z_0} f(z)$ does not exist.
- There are infinitely many terms in the principal part of the Laurent series expansion of f around the point z_0 .

The limit point of zeros is an isolated essential singularity if the limit is itself a singular point. For example:

$$
f(z)=\sin\frac{1}{z}
$$

Let f be a complex valued function. Define another function g by

$$
g(z)=f\left(\frac{1}{z}\right).
$$

Then the nature of the singularity of f at $z = \infty$ is defined as the nature of the singularity of g at $z = 0$.

- $f(z) = z³$ has a pole of order 3 at ∞ .
- e^z has an essential singularity at ∞ .
- An entire function f has a removable singularity at ∞ if and only if f is constant.(Prove This!)
- An entire function f has a pole of order m at ∞ if and only if f is a polynomial of degree m.(Prove This!)