Singularities

What can we say about the behavior of the following functions at 0?

• $f(z) = \frac{1}{z^9}$ • $f(z) = \frac{\sin z}{z}$ • $f(z) = \frac{e^z - 1}{z}$ • $f(z) = \frac{1}{\sin(\frac{1}{z})}$ • f(z) = Log z• $f(z) = e^{\frac{1}{z}}$

In the above, we observe that none of the functions is analytic at 0; however, in each neighborhood of 0 contains a point at which these functions are analytic.

Singularities

Definition: The point z_0 is called a **singular point** or **singularity of** f if f is not analytic at z_0 , but each neighborhood of z_0 contains at least one point at which f is analytic.

- Here $\frac{e^z 1}{z}$, $\frac{1}{z^2}$, $\sin \frac{1}{z}$, $\log z$, etc. has singularity at z = 0.
- z̄, |z|², Re z, Im z, zRe z are nowhere analytic. That does not mean that every point of C is a singularity.
- A singularity can be classified into TWO ways:
 - A singular point z₀ is said to be an isolated singularity or isolated singular point of f if f is analytic in B(z₀, r) \ {z₀} for some r > 0.
 - A singular point z_0 is said to be a **non-isolated singularity** if z_0 is not an isolated singular point.

If f has an isolated singularity at z_0 , then f is analytic in $B(z_0, r) \setminus \{z_0\}$ for some small r > 0. In this case, f has the following Laurent series expansion:

$$f(z) = \cdots \frac{a_{-n}}{(z-z_0)^n} + \cdots + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-a) + a_2(z-z_0)^2 + \cdots$$

- If all a_{-n} = 0 for all n ∈ N, then the point z = z₀ is a removable singularity.
- The point z = z₀ is called a pole if all but a finitely many of a_{-n}'s are non-zero. If m is the highest integer such that a_{-m} ≠ 0, then z₀ is a pole of order m.
- If $a_{-n} \neq 0$ for infinitely many n's, then the point $z = z_0$ is an essential singularity.
- The term a_{-1} is called the **residue** of f at z_0 .

• The following statements are equivalent:

- f has a removable singularity at z_0 .
- 2 If all $a_{-n} = 0$ for all $n \in \mathbb{N}$.
- 3 $\lim_{z \to z_0} f(z)$ exists and is finite.

$$\lim_{z \to z_0} (z - z_0) f(z) = 0.$$

- f is bounded in a deleted neighborhood of z_0 .
- The function $\frac{\sin z}{z}$ has removable singularity at 0.

The following statements are equivalent:

- f has a pole of at z_0 .
- $\lim_{z\to z_0} |f(z)| = \infty.$

The following statements are equivalent:

• f has a pole of order m at z_0 .

•
$$f(z) = \frac{g(z)}{(z-z_0)^m}$$
, g is analytic at z_0 and $g(z_0) \neq 0$.

• $\frac{1}{f}$ has a zero of order *m*.

•
$$\lim_{z \to z_0} (z - z_0)^{m+1} f(z) = 0$$

•
$$\lim_{z \to z_0} (z - z_0)^m f(z)$$
 has removable singularity at z_0 .

The following statements are equivalent:

- f has an essential singularity at z_0 .
- The point z_0 is neither a pole nor a removable singularity of f.
- $\lim_{z \to z_0} f(z)$ does not exist.
- There are infinitely many terms in the principal part of the Laurent series expansion of *f* around the point *z*₀.

The limit point of zeros is an isolated essential singularity if the limit is itself a singular point. For example:

$$f(z) = \sin \frac{1}{z}$$

Let f be a complex valued function. Define another function g by

$$g(z)=f\left(\frac{1}{z}\right).$$

Then the nature of the singularity of f at $z = \infty$ is defined as the nature of the singularity of g at z = 0.

- $f(z) = z^3$ has a pole of order 3 at ∞ .
- e^z has an essential singularity at ∞ .
- An entire function f has a removable singularity at ∞ if and only if f is constant.(Prove This!)
- An entire function f has a pole of order m at ∞ if and only if f is a polynomial of degree m.(Prove This!)