Let $\gamma : [a, b] \to \mathbb{C}$ be a smooth curve in the domain *D*. Suppose that f(z) is a function defined for all points z on γ . If we let *C* denote the image of γ under the transformation w = f(z), then the parametric equation of *C* is given by $C(t) = w(t) = f(\gamma(t)), t \in [a, b].$

• Suppose that γ passes through $z_0 = \gamma(t_0)$, $(a < t_0 < b)$ at which f is analytic and $f'(z_0) \neq 0$. Then

$$w'(t_0) = f'(\gamma(t_0))\gamma'(t_0) = f'(z_0)\gamma'(t_0).$$

That means

$$\operatorname{arg} \mathcal{C}'(t_0) = \operatorname{arg} \, w'(t_0) = \operatorname{arg} \, f'(z_0) + \operatorname{arg} \, \gamma'(t_0).$$

Lecture 19 Conformal Mapping

Let $C_1, C_2 : [a, b] \to \mathbb{C}$ be two smooth curves in a domain D passing through z_0 . Then by the above we have

arg $w_1'(t_0) = \arg f'(z_0) + \arg C_1'(t_0)$ and arg $w_2'(t_0) = \arg f'(z_0) + \arg C_2'(t_0)$ that means

$$\text{arg } w_2'(t_0) - \text{arg } w_1'(t_0) = \text{arg } C_2'(t_0) - \text{arg } C_1'(t_0).$$

Definition: A transformation w = f(z) is said to be conformal if it preserves the angle between oriented curves in magnitude as well as in orientation.

Note: From the above observation, if f is analytic in a domain D and $z_0 \in D$ with $f'(z_0) \neq 0$, then f is conformal at z_0 .

- The function $f(z) = \overline{z}$ does not qualify as a conformal map since it only preserves the magnitude of the angle between two smooth curves, not their orientation. Such transformations are referred to as isogonal mappings.
- Let f(z) = z̄. Then f is not a conformal map as it preserves only the magnitude of the angle between the two smooth curves but not orientation. Such transformations are called isogonal mapping.
- Let $f(z) = e^z$. Then f is a conformal at every point in \mathbb{C} as $f'(z) = f(z) = e^z \neq 0$ for each $z \in \mathbb{C}$.
- Let $f(z) = \sin z$. Then f is a conformal map on $\mathbb{C} \setminus \{(2n+1)\frac{\pi}{2} : n \in \mathbb{Z}\}$.

Definition: If f is analytic at z_0 and $f'(z_0) = 0$, then the point z_0 is called a critical point of f.

The following theorem gives the behavior of an analytic function in a neighborhood of critical point:

Theorem: Let f be analytic at z_0 . If $f'(z_0) = \cdots = f^{(k-1)}(z_0) = 0$ and $f^k(z_0) \neq 0$, then the mapping w = f(z) magnifies the angle at the vertex z_0 by a factor k.

Proof. Since f is analytic at z_0 , we have

$$f(z) = f(z_0) + (z - z_0)f'(z_0) + \frac{1}{2!}(z - z_0)^2 f''(z_0) + \cdots$$

= $f(z_0) + (z - z_0)^k \left[\frac{1}{k!} f^k(z_0) + \frac{1}{(k+1)!}(z - z_0) f^{k+1}(z_0) + \cdots \right]$
= $f(z_0) + (z - z_0)^k g(z)$ (say).

That means

$$f(z) - f(z_0) = (z - z_0)^k g(z)$$

and

$$\arg(w - w_0) = \arg(f(z) - f(z_0)) = k \arg(z - z_0) + \arg g(z).$$

- Let C_1 and C_2 be two smooth curves passing through z_0 .
- Let the image curves be $K_1 = f(C_1)$ and $K_2 = f(C_2)$.
- If z_1 is a variable point approaching to z_0 along C_1 , then $w_1 = f(z_1)$ will approach to $w_0 = f(z_0)$ along the image curves K_1 .
- Similarly, if z₂ is a variable point approaching to z₀ along C₂, then w₂ = f(z₂) will approach to w₀ = f(z₀) along the image curves K₂
- Let θ and Φ
 be the angle between C₁, C₂ at z₀ and between K₁, K₂ at f(z₀) respectively.

Then

$$\Phi = \lim_{z_1, z_2 \to z_0} \arg \left(\frac{f(z_1) - f(z_0)}{f(z_2) - f(z_0)} \right)$$

=
$$\lim_{z_1, z_2 \to z_0} \arg \left(\frac{(z_1 - z_0)^k g(z_1)}{(z_2 - z_0)^k g(z_2)} \right)$$

=
$$\lim_{z_1, z_2 \to z_0} \left[k \arg \frac{z_1 - z_0}{z_2 - z_0} + \arg \frac{g(z_1)}{g(z_2)} \right]$$

=
$$k\theta.$$

Question: Find the image of the unit square $S = \{x + iy : 0 < x < 1, 0 < y < 1\}$ under the map $w = f(z) = z^2$? **Answer:** The map $f(z) = z^2$ is conformal at all $z \neq 0$. So the vertices $z_1 = 1, z_2 = 1 + i$ and $z_3 = i$ are mapped onto right angles at the vertices $w_1 = 1, w_2 = 2i$ and $w_3 = i$. But $f''(0) = 2 \neq 0$. So, the angle at the vertex z_0 is magnified by factor 2.

The extended complex plane and Riemann Sphere

- Let S^2 denote the unit sphere $x_1^2 + x_2^2 + x_3^2 = 1$ in R^3 and let N = (0, 0, 1) denotes the "north pole" of S^2 . Identify \mathbb{C} with $\{(x_1, x_2, 0) : (x_1, x_2) \in \mathbb{R}^2\}$ so that \mathbb{C} cuts S^2 in the equator.
- For each z ∈ C, consider the straight line in R³ through z and N. This straight line intersects the sphere at precisely one point Z ≠ N.
- Question: What happens to Z as |z| → ∞?
 Answer: The point Z approaches N.
- Hence, we identify N with the point ∞ in C_∞ = C ∪ {∞}. Thus, the extended complex plane C_∞ can be represented as the sphere S², which is known as the Riemann Sphere.

The extended plane and its spherical representation

- Let $z = x + iy \in \mathbb{C}$, and $Z = (X_1, X_2, X_3)$ be the corresponding point on S^2 .
- We want to find X_1, X_2 and X_3 in terms of x and y.
- The parametric equation of the straight line in \mathbb{R}^3 through z and N is given by

$$\{tN + (1-t)z : t \in \mathbb{R}\}$$
 i.e. $\{((1-t)x, (1-t)y, t) : t \in \mathbb{R}\}.$

• Since this line intersects S^2 at $Z = ((1 - t_0)x, (1 - t_0)y, t_0)$, we have

$$1 = (1 - t_0)^2 x^2 + (1 - t_0)^2 y^2 + t_0^2 \Longrightarrow t_0 = \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}.$$

Thus,

$$X_1 = \frac{2x}{x^2 + y^2 + 1}, \ X_2 = \frac{2y}{x^2 + y^2 + 1} \text{ and } X_3 = \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}.$$

The extended plane and its spherical representation

- Now, we will write x and y in terms of X_1, X_2 and X_3 .
- From the last observation that

$$1 - X_3 = \frac{2}{x^2 + y^2 + 1}.$$

• Given the point $Z \in S^2$, the corresponding point $z = x + iy \in \mathbb{C}$ is

$$x = rac{X_1}{1 - X_3}$$
 and $y = rac{X_2}{1 - X_3}$

 $\bullet\,$ The correspondence between S^2 and \mathbb{C}_∞ is defined by

$$Z = (X_1, X_2, X_3) \mapsto z = (x + iy)$$

is called stereographic projection.

If a, b, c and d are complex constants such that $ad - bc \neq 0$, then the function

$$w = S(z) = \frac{az+b}{cz+d}$$

is called a Möbius transformation. It is also known as a bilinear transformation or a linear fractional transformation.

Observation:

• Every Möbius transformation is a conformal map.

$$S'(z)=\frac{(cz+d)a-c(az+b)}{(cz+d)^2}=\frac{ad-bc}{(cz+d)^2}\neq 0.$$

- The map S is analytic on $\mathbb{C} \setminus \{-\frac{d}{c}\}$.
- Composition of two Möbius transformation is a Möbius transformation.

Möbius transformations

- Define $T(w) = \frac{-dw + b}{cw a}$ then SoT(w) = w and ToS(z) = z. So S is invertible and $S^{-1} = T$.
- The map $S : \mathbb{C} \setminus \{-\frac{d}{c}\} \to \mathbb{C} \setminus \{-\frac{a}{c}\}$ is one one and onto. If we define $S(-\frac{d}{c}) = \infty$ and $S(\infty) = \frac{a}{c}$, then $S : \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$

is a bijection.

Types of Möbius transformations:

- Let $a \in \mathbb{C}$. Then S(z) = z + a is called a *translation* map.
- Let $0 \neq a \in \mathbb{C}$. Then S(z) = az is called a *dilation* map. (If |a| < 1, S is called a contraction map, and if |a| > 1, S is a called expansion map.)
- Let $\theta \in \mathbb{R}$. Then $S(z) = e^{i\theta}z$ is called a *rotation* map.
- The map $S(z) = \frac{1}{z}$ is called an *inversion* map.