Let γ : [a, b] $\rightarrow \mathbb{C}$ be a smooth curve in the domain D. Suppose that $f(z)$ is a function defined for all points z on γ . If we let C denote the image of γ under the transformation $w = f(z)$, then the parametric equation of C is given by $C(t) = w(t) = f(\gamma(t)), t \in [a, b].$

• Suppose that γ passes through $z_0 = \gamma(t_0)$, $(a < t_0 < b)$ at which f is analytic and $f'(z_0)\neq 0$. Then

$$
w'(t_0) = f'(\gamma(t_0))\gamma'(t_0) = f'(z_0)\gamma'(t_0).
$$

That means \bullet

$$
\text{arg}\, C'(t_0) = \text{arg}\, \, w'(t_0) = \text{arg}\, \, f'(z_0) + \text{arg}\, \, \gamma'(t_0).
$$

Lecture 19 [Conformal Mapping](#page-0-0)

Let $C_1, C_2 : [a, b] \to \mathbb{C}$ be two smooth curves in a domain D passing through z_0 . Then by the above we have

arg $w_1'(t_0)=$ arg $f'(z_0)+$ arg $C_1'(t_0)$ and arg $w_2'(t_0)=$ arg $f'(z_0)+$ arg $C_2'(t_0)$ that means

$$
\text{arg } w_2'(t_0) - \text{arg } w_1'(t_0) = \text{arg } C_2'(t_0) - \text{arg } C_1'(t_0).
$$

Definition: A transformation $w = f(z)$ is said to be conformal if it preserves the angle between oriented curves in magnitude as well as in orientation.

Note: From the above observation, if f is analytic in a domain D and $z_0 \in D$ with $f'(z_0) \neq 0$, then f is conformal at z_0 .

- The function $f(z) = \overline{z}$ does not qualify as a conformal map since it only preserves the magnitude of the angle between two smooth curves, not their orientation. Such transformations are referred to as isogonal mappings.
- Let $f(z) = \overline{z}$. Then f is not a conformal map as it preserves only the magnitude of the angle between the two smooth curves but not orientation. Such transformations are called isogonal mapping.
- Let $f(z) = e^z$. Then f is a conformal at every point in $\mathbb C$ as $f'(z) = f(z) = e^z \neq 0$ for each $z \in \mathbb{C}$.
- Let $f(z) = \sin z$. Then f is a conformal map on $\mathbb{C} \setminus \{(2n+1)\frac{\pi}{2} : n \in \mathbb{Z}\}.$

Definition: If f is analytic at z_0 and $f'(z_0) = 0$, then the point z_0 is called a critical point of f.

The following theorem gives the behavior of an analytic function in a neighborhood of critical point:

Theorem: Let f be analytic at z_0 . If $f'(z_0) = \cdots = f^{(k-1)}(z_0) = 0$ and $f^k(z_0)\neq 0$, then the mapping $w=f(z)$ magnifies the angle at the vertex z_0 by a factor k.

Proof. Since f is analytic at z_0 , we have

$$
f(z) = f(z_0) + (z - z_0)f'(z_0) + \frac{1}{2!}(z - z_0)^2 f''(z_0) + \cdots
$$

= $f(z_0) + (z - z_0)^k \left[\frac{1}{k!} f^k(z_0) + \frac{1}{(k+1)!} (z - z_0) f^{k+1}(z_0) + \cdots \right]$
= $f(z_0) + (z - z_0)^k g(z)$ (say).

That means

$$
f(z) - f(z_0) = (z - z_0)^k g(z)
$$

and

$$
\arg(w - w_0) = \arg(f(z) - f(z_0)) = k \arg(z - z_0) + \arg g(z).
$$

- \bullet Let C_1 and C_2 be two smooth curves passing through z_0 .
- Let the image curves be $K_1 = f(C_1)$ and $K_2 = f(C_2)$.
- **If** z_1 is a variable point approaching to z_0 along C_1 , then $w_1 = f(z_1)$ will approach to $w_0 = f(z_0)$ along the image curves K_1 .
- **•** Similarly, if z_2 is a variable point approaching to z_0 along C_2 , then $w_2 = f(z_2)$ will approach to $w_0 = f(z_0)$ along the image curves K_2
- \bullet Let θ and Φ

be the angle between C_1 , C_2 at z_0 and between K_1 , K_2 at $f(z_0)$ respectively.

Then

$$
\Phi = \lim_{z_1, z_2 \to z_0} \arg \left(\frac{f(z_1) - f(z_0)}{f(z_2) - f(z_0)} \right)
$$
\n
$$
= \lim_{z_1, z_2 \to z_0} \arg \left(\frac{(z_1 - z_0)^k g(z_1)}{(z_2 - z_0)^k g(z_2)} \right)
$$
\n
$$
= \lim_{z_1, z_2 \to z_0} \left[k \arg \frac{z_1 - z_0}{z_2 - z_0} + \arg \frac{g(z_1)}{g(z_2)} \right]
$$
\n
$$
= k\theta.
$$

Question: Find the image of the unit square $\mathcal{S} = \{x + iy : 0 < x < 1, 0 < y < 1\}$ under the map $w = f(z) = z^2$? **Answer:** The map $f(z) = z^2$ is conformal at all $z \neq 0$. So the vertices $z_1 = 1$, $z_2 = 1 + i$ and $z_3 = i$ are mapped onto right angles at the vertices $w_1 = 1, w_2 = 2i$ and $w_3 = i$. But $f''(0) = 2 \neq 0$. So, the angle at the vertex z_0 is magnified by factor 2.

The extended complex plane and Riemann Sphere

- Let S^2 denote the unit sphere $x_1^2 + x_2^2 + x_3^2 = 1$ in R^3 and let $N = (0, 0, 1)$ denotes the "north pole" of S^2 . Identify $\mathbb C$ with $\{(x_1, x_2, 0) : (x_1, x_2) \in \mathbb{R}^2\}$ so that $\mathbb C$ cuts S^2 in the equator.
- For each $z \in \mathbb{C}$, consider the straight line in \mathbb{R}^3 through z and N . This straight line intersects the sphere at precisely one point $Z \neq N$.
- **Question:** What happens to Z as $|z| \to \infty$? Answer: The point Z approaches N.
- \bullet Hence, we identify N with the point ∞ in $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$. Thus, the extended complex plane \mathbb{C}_∞ can be represented as the sphere $\mathcal{S}^2,$ which is known as the Riemann Sphere.

The extended plane and its spherical representation

- Let $z = x + iy \in \mathbb{C}$, and $Z = (X_1, X_2, X_3)$ be the corresponding point on S^2 .
- We want to find X_1, X_2 and X_3 in terms of x and y.
- The parametric equation of the straight line in \mathbb{R}^3 through z and N is given by

$$
\{tN+(1-t)z: t \in \mathbb{R}\} \ \text{ i.e. } \ \{((1-t)x,(1-t)y,t): t \in \mathbb{R}\}.
$$

Since this line intersects \mathcal{S}^2 at $Z=((1-t_0)\mathsf{x},(1-t_0)\mathsf{y},t_0)$, we have

$$
1=(1-t_0)^2x^2+(1-t_0)^2y^2+t_0^2\Longrightarrow t_0=\frac{x^2+y^2-1}{x^2+y^2+1}.
$$

Thus,

$$
X_1 = \frac{2x}{x^2 + y^2 + 1}
$$
, $X_2 = \frac{2y}{x^2 + y^2 + 1}$ and $X_3 = \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}$.

The extended plane and its spherical representation

- Now, we will write x and y in terms of X_1, X_2 and X_3 .
- **•** From the last observation that

$$
1 - X_3 = \frac{2}{x^2 + y^2 + 1}.
$$

Given the point $Z \in S^2$, the corresponding point $z = x + iy \in \mathbb{C}$ is

$$
x=\frac{X_1}{1-X_3} \text{ and } y=\frac{X_2}{1-X_3}.
$$

The correspondence between \mathcal{S}^2 and \mathbb{C}_{∞} is defined by

$$
Z=(X_1,X_2,X_3)\mapsto z=(x+iy)
$$

is called **stereographic projection**.

If a, b, c and d are complex constants such that $ad - bc \neq 0$, then the function

$$
w = S(z) = \frac{az+b}{cz+d}
$$

is called a Möbius transformation. It is also known as a bilinear transformation or a linear fractional transformation.

Observation:

• Every Möbius transformation is a conformal map.

$$
S'(z) = \frac{(cz+d)a - c(az+b)}{(cz+d)^2} = \frac{ad - bc}{(cz+d)^2} \neq 0.
$$

- The map S is analytic on $\mathbb{C} \setminus \{-\frac{d}{c}\}.$
- Composition of two Möbius transformation is a Möbius transformation.

Möbius transformations

- Define $T(w) = \frac{-dw + b}{cw a}$ then $SoT(w) = w$ and $ToS(z) = z$. So S is invertible and $S^{-1} = T$.
- The map $S:\mathbb{C}\setminus \{-\frac{d}{c}\}\to \mathbb{C}\setminus \{-\frac{a}{c}\}$ is one one and onto. If we define $S(-\frac{d}{c}) = \infty$ and $S(\infty) = \frac{a}{c}$, then $S: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$

is a bijection.

Types of Möbius transformations:

- Let $a \in \mathbb{C}$. Then $S(z) = z + a$ is called a *translation* map.
- **•** Let $0 \neq a \in \mathbb{C}$. Then $S(z) = az$ is called a *dilation* map. (If $|a| < 1$, S is called a contraction map, and if $|a| > 1$, S is a called expansion map.)
- Let $\theta \in \mathbb{R}$. Then $S(z) = e^{i\theta} z$ is called a *rotation* map.
- The map $S(z) = \frac{1}{z}$ is called an *inversion* map.