Möbius transformation and its applications

 Every Möbius transformation is the composition of the translation, dilation and inversion.

Proof. Let $w = S(z) = \frac{az+b}{cz+d}$, $ad - bc \neq 0$ be a Möbius transformation.

First, suppose c = 0. Hence S(z) = (a/d)z + (b/d). If

$$S_1(z) = (a/d)z, S_2(z) = z + (b/d),$$

then $S_2 \circ S_1 = S$, and we are done. Now, let $c \neq 0$, then

$$S_1(z) = z + d/c, S_2(z) = 1/z, S_3(z) = rac{bc - ad}{c^2} z, \ S_4(z) = z + a/c.$$

Then

$$S_4 \circ S_3 \circ S_2 \circ S_1(z) = S(z) = \frac{az+b}{cz+d}.$$

- A point $z_0 \in \mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$ is called a fixed point of a function f if $f(z_0) = z_0$.
- Question: What are the fixed points of a Möbius transformation *S*? Answer:
- If z satisfies the condition

$$S(z)=\frac{az+b}{cz+d}=z,$$

then

$$cz^2-(a-d)z-b=0.$$

- A Möbius transformation can have at most two fixed points unless it is the identity map.
- If c = 0, then $z = -\frac{b}{a-d}$ (∞ if a = d) is the only fixed point of S .

Question: How many Möbius transformations are possible by its action on three distinct points in \mathbb{C}_{∞} ?

Answer: One!

Proof. Let S and T be two Möbius transformations such that

$$S(a) = T(a) = \alpha$$
, $S(b) = T(b) = \beta$ and $S(c) = T(c) = \gamma$,

where a, b, c are three distinct points in \mathbb{C}_{∞} . Consider

$$T^{-1} \circ S(a) = a, T^{-1} \circ S(b) = b \text{ and } T^{-1} \circ S(c) = c.$$

So we have a Möbius transformation $T^{-1} \circ S$ having three fixed points. Hence, $T^{-1} \circ S = I$. That is S = T.

Question: How to find a Möbius transformation if its action on three distinct points in \mathbb{C}_{∞} is given?

Definition: Given four distinct points $z_j \in \mathbb{C}_{\infty}$; j = 1, ..., 4, the cross ratio of z_j 's is defined by

$$(z_1, z_2, z_3, z_4) = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_2 - z_3)(z_1 - z_4)}$$

• If
$$z_2 = \infty$$
, then $(z_1, z_2, z_3, z_4) = \frac{(z_1 - z_3)}{(z_1 - z_4)}$

• If
$$z_3 = \infty$$
, then $(z_1, z_2, z_3, z_4) = \frac{(z_2 - z_4)}{(z_1 - z_4)}$

• If
$$z_4 = \infty$$
, then $(z_1, z_2, z_3, z_4) = \frac{(z_1 - z_3)}{(z_2 - z_3)}$

• The cross ratio defines a Möbius transformation via

$$S(z) = (z, z_2, z_3, z_4) = \frac{(z - z_3)(z_2 - z_4)}{(z_2 - z_3)(z - z_4)}$$

such that $S(z_2) = 1, S(z_3) = 0$ and $S(z_4) = \infty$.

Result: The cross ratio is invariant under Möbius transformation. i. e. if $z_j \in \mathbb{C}_{\infty}$; j = 1, ..., 4 are four distinct points and T is any Möbius transformation, then

$$(z_1, z_2, z_3, z_4) = (T(z_1), T(z_2), T(z_3), T(z_4)).$$

Proof. We know that $S(z) = (z, z_2, z_3, z_4)$ is a Möbius transformation such that $S(z_2) = 1$, $S(z_3) = 0$ and $S(z_4) = \infty$. Then ST^{-1} is a Möbius transformation such that

$$ST^{-1}(Tz_2) = S(z_2) = 1, ST^{-1}(Tz_3) = S(z_3) = 0 \text{ and } ST^{-1}(Tz_4) = S(z_4) = \infty.$$

Since a Möbius transformation is uniquely determined by its action on three distinct points in $\mathbb{C}_\infty,$ we have

$$ST^{-1}(z) = (z, T(z_2), T(z_3), T(z_4)).$$

So

$$ST^{-1}(T(z_1)) = S(z_1) = (z_1, z_2, z_3, z_4) = (T(z_1), T(z_2), T(z_3), T(z_4)).$$

Result: If z_2, z_3, z_4 are three distinct points in \mathbb{C}_{∞} and if w_2, w_3, w_4 are also three distinct points of \mathbb{C}_{∞} , then there is one and only one Möbius transformation S such that $Sz_2 = w_2, Sz_3 = w_3, Sz_4 = w_4$.

Proof

- Let $T(z) = (z, z_2, z_3, z_4), M(z) = (z, w_2, w_3, w_4)$ and put $S = M^{-1} \circ T$.
- Clearly S has desired property.
- If *R* is another Möbius transformation with $Rz_j = w_j$ for j = 2, 3, 4, then $R^{-1} \circ S$ has three fixed points $(z_2, z_3 \text{ and } z_4)$.
- Hence $R^{-1} \circ S = I$. That is, R = S.

Question: Find a Möbius transformation that maps $z_1 = 1, z_2 = 0, z_3 = -1$ onto the points $w_1 = i, w_2 = \infty, w_3 = 1$.

Answer: We know that

$$(z, z_1, z_2, z_2) = (T(z), T(z_1), T(z_2), T(z_2)).$$

That is,

$$(z, 1, 0, -1) = (T(z), i, \infty, 1),$$

which on solving gives

$$T(z) = \frac{(i+1)z + (i-1)}{2z}.$$

Theorem. A Möbius transformation maps circle onto circle. **Proof.**

- Recall that every Möbius transformation is the composition of the translation, dilation and inversion.
- It is easy to show that translation, dilations maps circle onto circle.
- To prove this result, it is enough to show that inversion maps circle onto circle.
- Consider the mapping $w = S(z) = \frac{1}{z} = \frac{\overline{z}}{|z|^2}$.

• If
$$w = u + iv$$
 and $z = x + iy$, then

$$u = \frac{x}{x^2 + y^2}$$
 and $v = -\frac{y}{x^2 + y^2}$.

Similarly,

$$x = \frac{u}{u^2 + v^2}$$
 and $y = -\frac{v}{u^2 + v^2}$

• The general equation of a circle is

$$a(x^{2} + y^{2}) + bx + cy + d = 0.$$
 (1)

• Applying transformation $w = \frac{1}{z}$ (i.e. substituting $x = \frac{u}{u^2 + v^2}$ and $y = -\frac{v}{u^2 + v^2}$) we have

$$a\left(\left(\frac{u}{u^2+v^2}\right)^2+\left(-\frac{v}{u^2+v^2}\right)^2\right)+b\left(\frac{u}{u^2+v^2}\right)+c\left(-\frac{v}{u^2+v^2}\right)+d=0$$

• Which on simplification reduces to

$$d(u^{2} + v^{2}) + bu - cv + a = o$$
 (2)

- Find a Möbius transformation that takes UHP to RHP.
- Find the image of unit disc under the map w = f(z) = ^z/_{1-z}.
 Ans: Re w > -¹/₂.
- Find the image of $D = \{z: |z+1| < 1\}$ under the map

$$w = f(z) = \frac{(1-i)z+2}{(1+i)z+2}$$

