Möbius transformation and its applications

● Every Möbius transformation is the composition of the translation, dilation and inversion.

Proof. Let $w = S(z) = \frac{az+b}{cz+d}$, ad $-bc \neq 0$ be a Möbius transformation.

First, suppose $c = 0$. Hence $S(z) = (a/d)z + (b/d)$. If

$$
S_1(z) = (a/d)z, S_2(z) = z + (b/d),
$$

then $S_2 \circ S_1 = S$, and we are done. Now, let $c \neq 0$, then

$$
S_1(z) = z + d/c
$$
, $S_2(z) = 1/z$, $S_3(z) = \frac{bc - ad}{c^2}z$, $S_4(z) = z + a/c$.

Then

$$
S_4\circ S_3\circ S_2\circ S_1(z)=S(z)=\frac{az+b}{cz+d}.
$$

- A point $z_0 \in \mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$ is called a fixed point of a function f if $f(z_0) = z_0$.
- Question: What are the fixed points of a Möbius transformation S? Answer:
- \bullet If z satisfies the condition

$$
S(z)=\frac{az+b}{cz+d}=z,
$$

then

$$
cz^2-(a-d)z-b=0.
$$

- A Möbius transformation can have at most two fixed points unless it is the identity map.
- If $c = 0$, then $z = -\frac{b}{a-d}$ $(\infty$ if $a = d)$ is the only fixed point of S.

Question: How many Möbius transformations are possible by its action on three distinct points in \mathbb{C}_{∞} ?

Answer: One!

Proof. Let S and T be two Möbius transformations such that

$$
S(a) = T(a) = \alpha, \ \ S(b) = T(b) = \beta \ \text{and} \ \ S(c) = T(c) = \gamma,
$$

where a, b, c are three distinct points in \mathbb{C}_{∞} . Consider

$$
T^{-1} \circ S(a) = a, T^{-1} \circ S(b) = b
$$
 and $T^{-1} \circ S(c) = c$.

So we have a Möbius transformation $\, T^{-1} \circ S$ having three fixed points. Hence, $T^{-1} \circ S = I$. That is $S = T$.

Question: How to find a Möbius transformation if its action on three distinct points in \mathbb{C}_{∞} is given?

Definition: Given four distinct points $z_j \in \mathbb{C}_{\infty}$; $j = 1, ..., 4$, the cross ratio of z_i 's is defined by

$$
(z_1, z_2, z_3, z_4) = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_2 - z_3)(z_1 - z_4)}.
$$

- If $z_2 = \infty$, then $(z_1, z_2, z_3, z_4) = \frac{(z_1 z_3)}{(z_1 z_4)}$
- If $z_3 = \infty$, then $(z_1, z_2, z_3, z_4) = \frac{(z_2 z_4)}{(z_1 z_4)}$
- If $z_4 = \infty$, then $(z_1, z_2, z_3, z_4) = \frac{(z_1 z_3)}{(z_2 z_3)}$
- **•** The cross ratio defines a Möbius transformation via

$$
S(z)=(z, z_2, z_3, z_4)=\frac{(z-z_3)(z_2-z_4)}{(z_2-z_3)(z-z_4)}
$$

such that $S(z_2) = 1, S(z_3) = 0$ and $S(z_4) = \infty$.

Result: The cross ratio is invariant under Möbius transformation. i. e. if $z_i \in \mathbb{C}_{\infty}$; $j = 1, ..., 4$ are four distinct points and T is any Möbius transformation, then

$$
(z_1, z_2, z_3, z_4) = (T(z_1), T(z_2), T(z_3), T(z_4)).
$$

Proof. We know that $S(z) = (z, z_2, z_3, z_4)$ is a Möbius transformation such that $S(z_2)=1, S(z_3)=0$ and $S(z_4)=\infty.$ Then ST^{-1} is a Möbius transformation such that

$$
ST^{-1}(T_{Z2})=S(z_2)=1, ST^{-1}(T_{Z3})=S(z_3)=0 \text{ and } ST^{-1}(T_{Z4})=S(z_4)=\infty.
$$

Since a Möbius transformation is uniquely determined by its action on three distinct points in \mathbb{C}_{∞} , we have

$$
ST^{-1}(z)=(z, T(z_2), T(z_3), T(z_4)).
$$

So

$$
ST^{-1}(T(z_1))=S(z_1)=(z_1,z_2,z_3,z_4)=(T(z_1),T(z_2),T(z_3),T(z_4)).
$$

Result: If z_2, z_3, z_4 are three distinct points in \mathbb{C}_{∞} and if w_2, w_3, w_4 are also three distinct points of \mathbb{C}_{∞} , then there is one and only one Möbius transformation S such that $Sz_2 = w_2$, $Sz_3 = w_3$, $Sz_4 = w_4$.

Proof

- Let $T(z) = (z, z_2, z_3, z_4), M(z) = (z, w_2, w_3, w_4)$ and put $S = M^{-1} \circ T$.
- \bullet Clearly S has desired property.
- **If R** is another Möbius transformation with $Rz_j = w_j$ for $j = 2, 3, 4$, then $R^{-1} \circ S$ has three fixed points $(z_2, z_3$ and z_4).
- Hence $R^{-1} \circ S = I$. That is, $R = S$.

Question: Find a Möbius transformation that maps $z_1 = 1$, $z_2 = 0$, $z_3 = -1$ onto the points $w_1 = i$, $w_2 = \infty$, $w_3 = 1$.

Answer: We know that

$$
(z, z_1, z_2, z_2) = (T(z), T(z_1), T(z_2), T(z_2)).
$$

That is,

$$
(z,1,0,-1)=(T(z),i,\infty,1),
$$

which on solving gives

$$
T(z)=\frac{(i+1)z+(i-1)}{2z}.
$$

Theorem. A Möbius transformation maps circle onto circle. Proof.

- Recall that every Möbius transformation is the composition of the translation, dilation and inversion.
- It is easy to show that translation, dilations maps circle onto circle.
- To prove this result, it is enough to show that inversion maps circle onto circle.
- Consider the mapping $w = S(z) = \frac{1}{z} = \frac{\overline{z}}{|z|}$ $\frac{2}{|z|^2}$.

• If
$$
w = u + iv
$$
 and $z = x + iy$, then

$$
u = \frac{x}{x^2 + y^2}
$$
 and $v = -\frac{y}{x^2 + y^2}$.

• Similarly,

$$
x = \frac{u}{u^2 + v^2}
$$
 and $y = -\frac{v}{u^2 + v^2}$.

• The general equation of a circle is

$$
a(x^2 + y^2) + bx + cy + d = 0.
$$
 (1)

Applying transformation $w = \frac{1}{z}$ (i.e. substituting $x = \frac{u}{u^2 + v^2}$ and $y=-\frac{v}{u^2+v^2}$) we have

$$
a\left(\left(\frac{u}{u^2+v^2}\right)^2+\left(-\frac{v}{u^2+v^2}\right)^2\right)+b\left(\frac{u}{u^2+v^2}\right)+c\left(-\frac{v}{u^2+v^2}\right)+d=0
$$

• Which on simplification reduces to

$$
d(u^2 + v^2) + bu - cv + a = o
$$
 (2)

- \bullet Find a Möbius transformation that takes UHP to RHP.
- Find the image of unit disc under the map $w = f(z) = \frac{z}{1-z}$. **Ans:** Re $w > -\frac{1}{2}$.
- Find the image of $D = \{z : |z + 1| < 1\}$ under the map

$$
w = f(z) = \frac{(1-i)z + 2}{(1+i)z + 2}.
$$

