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Complex integration

Question: Under what conditions on f can guarantee the existence of F such
that F ′ = f ?

Definition: (Simply connected domain) A domain D is called simply
connected if every simple closed contour (within it) encloses points of D
only.

A domain D is called multiply connected if it is not simply connected.

The sets C, D and RHP = {z : Re z > 0} are simply connected domains
(they have no holes).

But the sets C∗, D \ {0}, and the annulus Aa,b = {z ∈ C : a < |z | < b}
are not simply connected domains.
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Cauchy’s Theorem

Theorem: If a function f is analytic on a simply connected domain D and C is
a simple closed contour lying entirely in D, then∫

C

f (z)dz = 0.

We will prove the theorem under an extra hypothesis that f ′ is a continuous
function.
[Recall (Green’s Theorem) Let C be a simple closed curve with positive
orientation. Let R be the bounded region enclosed by C . If P and Q are
continuous with continuous partial derivatives Px ,Py ,Qx and Qy within the
interior of R, then∮

C

[P(x , y)dx + Q(x , y)]dy =

∫∫
R

[Qx(x , y)− Py (x , y)]dxdy .
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Cauchy’s Theorem

Proof. Let f (z) = f (x + iy) = u(x , y) + iv(x , y) and γ(t) = x(t) + iy(t),
a ≤ t ≤ b be the curve C . Then∫ b

a

f (γ(t))γ′(t)dt =

∫ b

a

[u(x(t), y(t)) + iv(x(t), y(t))][x ′(t) + iy ′(t)]dt

=

∫ b

a

(ux ′ − vy ′)dt + i

∫ b

a

(vx ′ + uy ′)dt

=

∮
C

(udx − vdy) + i

∮
C

(vdx + udy)

=

∫∫
R

(−vx − uy )dxdy + i

∫∫
R

(ux − vy )dxdy ,

(by Green’s theorem)

= 0 (by CR equations).
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Cauchy’s Theorem

Let γ(t) = e it , −π < t ≤ π, and C denotes the circle of radius one with center
at zero.

1 It follows from Cauchy’s theorem that
∫
C
f (z)dz = 0, if f (z) = ez

n

,
cos z , or sin z .

2

∫
C

f (z)dz = 0 if f (z) = 1
z2
, or cosec2z from the fundamental theorem as

d
dz

(− 1
z

) = 1
z2

and d
dz

(− cot z) = cosec2z . Note that here Cauchy’s
theorem cannot be applied as the integrands are not analytic at zero.

3

∫
C

e iz
2

z2 + 4
dz = 0 by Cauchy’s theorem. Note that the integrand is not

analytic at z = ±2 but that does not bother us as these points are not
enclosed by C .

4 If f (z) = (Im z)2, then

∫
C

f (z)dz = 0 (check this). As f is not analytic

anywhere in C, Cauchy’s theorem cannot be applied to prove this.
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Consequences of Cauchy’s Theorem

Independence of path:

Let D be a simply connected domain and f : D → C be analytic. Let z1,
z2 be two points in D. If γ1 and γ2 be two simple curves joining z1 and z2
such that the curves lie entirely in D, then∫

γ1

f (z)dz =

∫
γ2

f (z)dz .

To see this, consider the curve

γ(t) =

{
γ1(2t), 0 ≤ t ≤ 1/2;
γ2(2(1− t)), 1/2 ≤ t ≤ 1.

(We have just reversed the direction of γ2 and joined it with γ1). Then γ
is a simple closed curve and by Cauchy’s theorem∫

γ

f (z)dz =

∫
γ1

f (z)dz +

∫
−γ2

f (z)dz = 0,

which implies
∫
γ1

f (z)dz = −
∫
−γ2

f (z)dz . As −
∫
−γ2

f (z)dz =
∫
γ2

f (z)dz we

get the result.
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Consequences of Cauchy’s Theorem

Existence of antiderivative:

If f is an analytic function on a simply connected domain D, then there
exists a function F , which is analytic on D such that F ′ = f .

Proof. For z0, z ∈ D, define

F (z) =

∫ z

z0

f (w)dw .

The above integral is considered as a contour integral over any curve
lying in D and joining z with z0. By the previous result, the integral is
independent of any path joining z0 and z , and hence the function F is
well defined.

We will show that F ′ = f . If z + h ∈ D, then

F (z + h)− F (z) =

∫ z+h

z0

f (w)dw −
∫ z

z0

f (w)dw =

∫ z+h

z

f (w)dw ,

where the curve joining z and z + h can be considered as a straight line
l(t) = z + th, t ∈ [0, 1].
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Consequences of Cauchy’s Theorem

Thus we get∣∣∣∣F (z + h)− F (z)

h
− f (z)

∣∣∣∣ =
1

|h|

∣∣∣∣∫ z+h

z

(f (w)− f (z))dw

∣∣∣∣ ,
(here we have used the fact that

∫
l
dw = h). Since f is continuous at z , given

ε > 0, there exists a δ > 0 such that |f (z + h)− f (z)| < ε if |h| < δ. Thus, for
|h| < δ, we get from ML inequality that

1

|h|

∣∣∣∣∫ z+h

z

(f (w)− f (z))dw

∣∣∣∣ ≤ ε|h|
|h| .

That is,

lim
h→0

F (z + h)− F (z)

h
= f (z).
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Deformation of contours

Theorem Let D be the domain bounded by two simple closed positively
oriented contours C1 and C2 such that C1 lies entirely in the interior region
enclosed by C2. If f is analytic in the domain D, then∫

C1

f (z)dz =

∫
C2

f (z)dz .
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Deformation of contours

Proof. Assume that both C1 and C2 have positive (counterclockwise)
orientation. We construct two disjoint contours or cuts L1 and L2 that join C1

to C2. The contour C1 is cut into two contours C∗1 and C∗∗1 and the C2 is cut
into two contours C∗2 and C∗∗2 .

 

We now form two new contours:

K1 = −C∗1 + L1 + C∗2 − L2 and K2 = −C∗∗1 + L2 + C∗∗2 − L1.

The function f is analytic on the simply connected domains D1 and D2

enclosed by simple closed curves K1 and K2, respectively.
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Deformation of contours

By Cauchy’s theorem, ∫
K1

f (z)dz =

∫
k2

f (z)dz = 0.

Also K1 + K2 = C∗2 + C∗∗2 − C∗1 − C∗∗1 = C2 − C1. Thus∫
K1+K2

f (z)dz =

∫
C2−C1

f (z)dz = 0.

This implies that ∫
C1

f (z)dz =

∫
C2

f (z)dz .

Example: If C is any positively oriented simple closed contour surrounding
(enclosing) the origin, then ∫

C

1

z
dz = 2π.i
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Deformation of contours

Theorem Let C ,Ck ; k = 1, 2, . . . , n be simple closed positively oriented
contours such that each Ck lies in the region enclosed by C and Ck has no
common points with the interior enclosed by Cj if k 6= j . Let f be analytic on a
domain D consisting of all points in the interior enclosed by C and exterior to
each Ck . Then ∫

C

f (z)dz =
n∑

k=1

∫
Ck

f (z)dz .
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