Cauchy's Theorem

Question: Under what conditions on f can guarantee the existence of F such that $F' = f$?

- \bullet Definition: (Simply connected domain) A domain D is called simply connected if every simple closed contour (within it) encloses points of D only.
- \bullet A domain D is called multiply connected if it is not simply connected.
- The sets \mathbb{C}, \mathbb{D} and $RHP = \{z : \text{Re } z > 0\}$ are simply connected domains (they have no holes).
- But the sets $\mathbb{C}^*, \mathbb{D} \setminus \{0\}$, and the annulus $A_{a,b} = \{z \in \mathbb{C} : a < |z| < b\}$ are not simply connected domains.

Theorem: If a function f is analytic on a simply connected domain D and C is a simple closed contour lying entirely in D , then

$$
\int_C f(z)dz=0.
$$

We will prove the theorem under an extra hypothesis that f^\prime is a continuous function.

[Recall (Green's Theorem) Let C be a simple closed curve with positive orientation. Let R be the bounded region enclosed by C. If P and Q are continuous with continuous partial derivatives P_x, P_y, Q_x and Q_y within the interior of R, then

$$
\oint_C [P(x,y)dx + Q(x,y)]dy = \iint_R [Q_x(x,y) - P_y(x,y)]dxdy.
$$

Cauchy's Theorem

Proof. Let $f(z) = f(x + iy) = u(x, y) + iv(x, y)$ and $\gamma(t) = x(t) + iy(t)$, $a \le t \le b$ be the curve C. Then

$$
\int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} [u(x(t), y(t)) + iv(x(t), y(t))][x'(t) + iy'(t)]dt
$$

\n
$$
= \int_{a}^{b} (ux' - vy')dt + i \int_{a}^{b} (vx' + uy')dt
$$

\n
$$
= \oint_{C} (udx - vdy) + i \oint_{C} (vdx + udy)
$$

\n
$$
= \iint_{R} (-v_x - u_y)dxdy + i \iint_{R} (u_x - v_y)dxdy,
$$

\n(by Green's theorem)
\n
$$
= 0 \qquad \text{(by CR equations)}.
$$

Let $\gamma(t)=e^{it},\,-\pi < t \leq \pi,$ and $\,$ denotes the circle of radius one with center at zero.

- **1** It follows from Cauchy's theorem that $\int_C f(z)dz = 0$, if $f(z) = e^{z^n}$, $\cos z$, or $\sin z$.
- 2 Z $\int_{C} f(z) dz = 0$ if $f(z) = \frac{1}{z^2}$, or cosec²z from the fundamental theorem as $\frac{d}{dz}(-\frac{1}{z})=\frac{1}{z^2}$ and $\frac{d}{dz}(-\cot z)=\csc^2 z$. Note that here Cauchy's $\frac{dz}{dz}$ $\frac{z}{z}$ and $\frac{dz}{dz}$ corresponding to the integrands are not analytic at zero. 3 Z e^{iz^2}
- C $\frac{1}{z^2+4}$ dz = 0 by Cauchy's theorem. Note that the integrand is not analytic at $z = \pm 2$ but that does not bother us as these points are not enclosed by C.
- **1** If $f(z) = (\text{Im } z)^2$, then $\int f(z) dz = 0$ (check this). As f is not analytic anywhere in $\mathbb C,$ Cauchy's theorem cannot be applied to prove this.

Consequences of Cauchy's Theorem

Independence of path:

• Let D be a simply connected domain and $f: D \to \mathbb{C}$ be analytic. Let z_1 , z_2 be two points in D. If γ_1 and γ_2 be two simple curves joining z_1 and z_2 such that the curves lie entirely in D , then

$$
\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz.
$$

To see this, consider the curve

$$
\gamma(t)=\left\{\begin{array}{ll}\gamma_1(2t), & 0\leq t\leq 1/2; \\ \gamma_2(2(1-t)), & 1/2\leq t\leq 1.\end{array}\right.
$$

(We have just reversed the direction of γ_2 and joined it with γ_1). Then γ is a simple closed curve and by Cauchy's theorem

$$
\int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{-\gamma_2} f(z) dz = 0,
$$

which implies \int γ_1 $f(z)dz = -\gamma_2$ $f(z)dz$. As $-$ ∫ $-\gamma_2$ $f(z)dz = \int$ γ_2 $f(z)$ dz we get the result.

Consequences of Cauchy's Theorem

Existence of antiderivative:

 \bullet If f is an analytic function on a simply connected domain D, then there exists a function F, which is analytic on D such that $F' = f$.

Proof. For $z_0, z \in D$, define

$$
F(z)=\int_{z_0}^z f(w)dw.
$$

The above integral is considered as a contour integral over any curve lying in D and joining z with z_0 . By the previous result, the integral is independent of any path joining z_0 and z , and hence the function F is well defined.

We will show that $F' = f$. If $z + h \in D$, then

$$
F(z+h) - F(z) = \int_{z_0}^{z+h} f(w)dw - \int_{z_0}^{z} f(w)dw = \int_{z}^{z+h} f(w)dw,
$$

where the curve joining z and $z + h$ can be considered as a straight line $l(t) = z + th, t \in [0, 1].$

Thus we get

$$
\left|\frac{F(z+h)-F(z)}{h}-f(z)\right|=\frac{1}{|h|}\left|\int_{z}^{z+h}(f(w)-f(z))dw\right|,
$$

(here we have used the fact that $\int_I dw = h$). Since f is continuous at z, given $\epsilon > 0$, there exists a $\delta > 0$ such that $|f(z + h) - f(z)| < \epsilon$ if $|h| < \delta$. Thus, for $|h| < \delta$, we get from ML inequality that

$$
\frac{1}{|h|}\left|\int_{z}^{z+h}(f(w)-f(z))dw\right|\leq \frac{\epsilon|h|}{|h|}.
$$

That is,

$$
\lim_{h\to 0}\frac{F(z+h)-F(z)}{h}=f(z).
$$

Theorem Let D be the domain bounded by two simple closed positively oriented contours C_1 and C_2 such that C_1 lies entirely in the interior region enclosed by C_2 . If f is analytic in the domain D, then

$$
\int_{C_1} f(z) dz = \int_{C_2} f(z) dz.
$$

Proof. Assume that both C_1 and C_2 have positive (counterclockwise) orientation. We construct two disjoint contours or cuts L_1 and L_2 that join C_1 to C_2 . The contour C_1 is cut into two contours C_1^* and C_1^{**} and the C_2 is cut into two contours C_2^* and C_2^{**} .

 $K_1 = -C_1^* + L_1 + C_2^* - L_2$ and $K_2 = -C_1^{**} + L_2 + C_2^{**} - L_1$.

The function f is analytic on the simply connected domains D_1 and D_2 enclosed by simple closed curves K_1 and K_2 , respectively.

By Cauchy's theorem,

$$
\int_{K_1} f(z)dz = \int_{k_2} f(z)dz = 0.
$$

Also $K_1 + K_2 = C_2^* + C_2^{**} - C_1^* - C_1^{**} = C_2 - C_1$. Thus

$$
\int_{K_1+K_2} f(z) dz = \int_{C_2-C_1} f(z) dz = 0.
$$

This implies that

$$
\int_{C_1} f(z) dz = \int_{C_2} f(z) dz.
$$

Example: If C is any positively oriented simple closed contour surrounding (enclosing) the origin, then

$$
\int_C \frac{1}{z} dz = 2\pi.i
$$

Theorem Let C, C_k ; $k = 1, 2, ..., n$ be simple closed positively oriented contours such that each C_k lies in the region enclosed by C and C_k has no common points with the interior enclosed by C_i if $k \neq j$. Let f be analytic on a domain D consisting of all points in the interior enclosed by C and exterior to each C_k . Then

$$
\int_C f(z)dz = \sum_{k=1}^n \int_{C_k} f(z)dz.
$$

