MA15010H: Multi-variable Calculus

(Lecturenote 2: Sequential continuity and vector differentiability)
July - November, 2025

Sequential criterion of closed set: A set S C R™ is closed in R™ if and only if
x € S for every z € R™ and for every sequence (z,) in S with =, — .

Proof: Let S be closed in R™ and let (x,) be a sequence in S such that z,, - = € R™.
If possible, let x ¢ S. Then z € R™\ S and since R™ \ S is open in R™, there exists r > 0
such that B,(z) CR™\ S. Now, since x,, — z, there exists ny € N such that z,, € B,(z)
for all n > ng. In particular, z,,, € R™ \ S, which is a contradiction. Hence x € S.

Conversely, let 2 € S for every x € R™ and for every sequence (x,,) in S with x,, — x.
If possible, let S be not closed in R™. Then R™ \ S is not open in R™ and hence there
exists € R™\ S such that « ¢ (R™\ S)°. So By,(z) € R™\ S for each n € N. Hence
for each n € N, there exists x, € By/,(x) such that z, ¢ R™\ S, ie., z, € S. We have

1
|z, — x| < — — 0, which gives x,, — x. Thus we get a contradiction. Therefore S must

be closed in R™.
Examples:

(a) {(x,y) € R*: 2% + y*> < 1} is a closed set but not an open set in R

(b) More generally, if 5 € R™ and r > 0, then B, [z¢] is a closed set but not an open
set in R™.

(b) {(z,y) € R? : 22 + y* < 1} is an open set but not a closed set in R?.
More generally, if 2o € R™ and r > 0, then B, (x¢) is an open set but not a closed
set in R™.

(c) {(z,y) € R*: 1 < x < 2} is neither open nor a closed set in R

(d) R™ is both an open set and a closed set in R™.

Theorem: Let S be a nonempty closed and bounded subset of R™. If f: .S — RP is
continuous, then f(S) = {f(z) : z € S} is a closed and bounded subset of R”.

Proof: Let x,, € S for all n € N and let y € R? such that f(z,) — y. Since S is
bounded, (z,) is a bounded sequence in S and hence by the Bolzano-Weierstrass theorem
in R™, there exist xy € R™ and a subsequence (x,,) of (z,) such that z,, — zo. Again,
since S is closed in R™, xy € S. Now, since f is continuous at xq, f(z,,) — f(zo). Also,
f(zn) — yand so y = f(xg) € f(S). Therefore f(S) is closed in RP.

If possible, let f(S) be not bounded. Then for each n € N, there exists x,, € S such
that || f(z,)|| > n. Since S is bounded, (z,) is a bounded sequence in S and hence by
the Bolzano-Weierstrass theorem in R™, there exist z; € R™ and a subsequence (x,, )
of (x,) such that z,, — . Again, since S is closed in R™, z, € S. Now, since f
is continuous at wg, f(z,,) — f(x¢). Thus the sequence (f(z,,)) must be bounded.
However, ||f(x,,)]| > ni for all & € N and so (f(z,,)) is not bounded. Thus we get a
contradiction. Therefore f(.S) must be bounded.

Example: We know that S; = {(z,y) € R? : 22 + y? < 1} is a closed and bounded
set in R?. Also, R is not a bounded set in R and Sy = {(z,y) € R? : 2% + y* < 1} is not
a closed set in R?. Hence there cannot exist any continuous function from S; onto R or

onto Ss.
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Theorem: Let S be a nonempty closed and bounded subset of R™. If f: S — R is
continuous, then there exist zg,yo € S such that f(zo) = sup f(S) and f(yo) = inf f(5).

Proof: We have proved above that f(S) is a (nonempty) bounded set in R. Hence
sup f(5),inf f(S) € R. Let a« = sup f(S). Then for each n € N, there exists x,, € S such
that o« — 1 < f(z,) < a. Hence f(z,) — . Since f(z,) € f(S) for all n € N and f(S5)
is closed in R (as proved above), a € f(S). So there exists zo € S such that a = f(zo).
Similarly we can show that there exists yo € S such that f(yo) = inf f(5).

Remark: A function f: S C R™ — RP? is called bounded if f(S) is a bounded subset
of RP. We note that for a bounded function f : S C R™ — R, it is not necessary that
max f(S) and min f(S) exist. For example, if f(x,y) = % for all (z,y) € R?, then
f : R* = R is bounded, because 0 < f(z,y) < 1 for all (x,y) € R? but there is no
(70,%0) € R? such that f(z,y) < f(zo,yo) for all (z,y) € R

Limit point: A point x € R™ is said to be a limit point of S C R™ if for every r > 0,
(Br(x)\{z})NS # 0 (i.e. if for every r > 0, there exists y € S such that 0 < ||z —y| < r).
For example, (0,0) and (1,0) are limit points of S = {(x,y) € R*: 22 +y* < 1} C R? but
(1,1) is not a limit point of S. We note that (0,0) € S but (1,0) ¢ S.

Limit: Let x¢ be a limit point of S C R™. Then y € RF is said to be a limit
of f : S — R* as x approaches z, if for every ¢ > 0, there exists § > 0 such that
| f(z) —y|| < e forall x € S satisfying 0 < ||z — 2| <.

Such an y, if it exists, is unique because if z € R¥ with z # y is also a limit of f as
approaches o, then € = 1|ly — z|| > 0 and so there exist &1, 85 > 0 such that f(z) € B.(y)
for all z € (Bs, (7o) \ {zo}) NS and f(z) € B.(z) for all © € (Bs,(xo) \ {zo}) N S. If
§ = min{dy, o2}, then § > 0 and since (Bs(zo) \ {xo}) NS # (), we can choose x € (Bs(zo) \
{z0})NS. Then f(z) € B.(y) N B-(z), which contradicts the fact that B.(y) N B.(z) = 0,
proved earlier.

The y appearing in the above definition is called the limit of f as x approaches zy and
we write

lim f(z)=y.

T—T0

Sequential criterion of limit: Let zo be a limit point of S C R™ and let f : S — R*.

lim f(z) =y € R¥ <= for every sequence (z,,) in S\ {z0} converging to o,
T—IT0

the sequence (f(x,)) converges to y.

Proof: Let lim,_,,, f(z) =y and let (x,) be a sequence in S\ {zo} such that x,, — .
If ¢ > 0, then there exists § > 0 such that ||f(z) — y|| < ¢ for all € S satisfying
0 < ||z — x|l < d. Also, since z,, # x for all n € N and z,, — x¢, there exists ny € N
such that 0 < ||z, — zo|| < d for all n > ny. Hence || f(z,) — y|| < ¢ for all n > ng. Thus
(f(zn)) =y

Conversely, let f(z,) — y for every sequence (z,) in S\ {zo} with z, — zo. If possible,
let lim, ., f(z) # y. Then there exists € > 0 such that for every n € N, there exists
Tp € S with 0 < ||z, — 20| < % and || f(z,) —y[| > €. Thus (z,) is a sequence in S\ {zo}
such that ||z, — zo|| — 0, i.e. &, — x¢ but f(x,) /4 y. This is a contradiction. Therefore



Examples:
23
lim ——=0
(9)—(0,0) % + Y

but
2

lim 1
(z2)(0.0) 2* + y?
A method for showing the non-existence of limit: Let (zg,yy) be a limit point
of S c R*and let f : S — R. Let D C R such that z; is a limit point of D and let
¢ : D — R such
that (z,¢(x)) € S for all x € D and lim,_,,, () = yo. If img y)—s (o) f(2,y) =L €
R, then

does not exist (in R).

lim f(z, o)) = .

Proof: Let (z,,) be any sequence in D\{zo} such that x,, — zo. Since lim,_,,, ©(z) = o,
we get (z,) — yo. Now, ((zn, ©(x,))) is a sequence in S\ {(zo, o)} and ((x,,, p(z,))) —
(20, y0). Since lim ) (z0,50) [ (@, y) = £, we have f(x,,p(x,)) — £. Consequently

lim f(x,p(x)) =¢.

T—T0
Examples:
() If f(z,y) = s for all (z,y) € R*\ {(0,0)}, then
lim T,
(r,y)—>(070)f< v)

2

does not exist (in R) because if m € R, then lim, o f(z, mz) = lim,_,o T =

which gives more than one value if we vary m.
(b) If f(z,y) = 2y for all (z,y) € R*\ {(0,0)}, then lim(, )00 f(z,y) does not

T2
exist (in R) because if m € R, then lim, o f(z, mz?) = lim, o mﬂr’ﬁzﬁ = 15z for all
m € R.

Remark: The polar coordinates in R? can also be used in the evaluation of certain
limits of functions f : S C R? — R. For example, taking x = rcos6,y = rsinf, where

r >0 and 0 € [0,27), we find that

m
1+m??

1'2

2
————| = |r|cos” 6
x? + y? I

|s| = — 0 as 7 — 0 and hence we can conclude that

iL’2

Eaolo0) T y?
However, while using this method we should not assume € to be a constant while taking
limit as » — 0.

Theorem: Let zy be a limit point of S € R™ and let f : S — R, If f(z) =
(fi(z1), ..., fi(zg)) for all z € S, where f; : S — R for j =1,...,k, then lim,_,,, f(z) ex-
ists in R¥ iff lim,_,,, f;(x) exists in R for each j € {1, ..., k}, and in that case lim,_,,, f(z) =
(imyyuy f1(2), .o, limg gy fr(2)).

=0.



Proof: Let us first assume that lim,_,,, f(z) =y = (y1, ..., yx) € R¥ and let (x,,) be any
sequence in S\ {zo} such that x, — xo. Then f(z,) = (fi(xn), ., fr(zn)) = (Y1, .-, Yk)
and hence f;(z,) — y; for each j € {1,...,k}. Consequently lim, .., f;(z) = y; for each
Jje{l, ...k}

Conversely, let lim,_,,, fj(x) = y; € R for each j € {1,....,k} and let (x,) be any
sequence in S\ {zo} such that z, — zo. Then f;(x,) — y; for each j € {1,....k
and hence f(z,) = (fi(n), -, fu(zn)) = (Y1, ) € R*. Therefore lim, .., f(z) =
(Y1, ux) € RE.

Remark: The limit rules for combinations of functions can be given similar to those
for continuity.

Relation between limit and continuity: Let S C R™ and zq € S.

If ¢ is also a limit point of S, then from the definitions of continuity and limit, it follows
immediately that f :.S — R¥ is continuous at xg iff lim, ., f(z) = f(z0).

On the other hand, if xy is not a limit point of S, then there exists 6 > 0 such that
Bs(xo) NS = {xo} and so ||f(z) — f(xo)|| = 0 for all x € S satisfying ||z — xo|| < 0.
Consequently f is continuous at z.

Infinite limits: Let ¢ be a limit point of S C R™ and let f : S — R. Then we write
lim, ., f(x) = oo if for every r > 0, there exists § > 0 such that f(z) > r for all z € S
satisfying ||z — xo|| < 0.

It can be shown that lim,_,,, f(z) = oo if and only if for every sequence (z,) in S\ {zo}
converging to zg, f(x,) — 0.

We can also define lim,_,,, f(z) = —oo analogously and obtain its sequential criterion.
Example:
lim ———— =00 but lim £ 0.
(z,y)—(0,0) = Yy (x,y)—(0,0) T + Yy

Differentiability of vector valued function of one real variable: A function F :
S C R — R issaid to be differentiable at to € S° if limy_;, ;= (F(t)—F (o)) exists (in R*)
and in that case the derivative of F' at tg is defined as F'(ty) = lim;_, ﬁ(F(t) — F(tg))-
If F(t) = (fi(t),..., fx(t)) for all t € S, then F is differentiable at to (to € S°) if and
only if f; : § — R is differentiable at t, for each j € {1,...,k}, and in such case
F'(to) = (fi(to), -, fL(t0).

We say that ' : S C R — R* is differentiable (on S) if F is differentiable at every point
of S.

Example: If F(t) = (cost,sint,t) for all t € R, then F' : R — R3 is differentiable
(since each component function of F' is differentiable) and F'(t) = (—sint, cost, 1) for all
teR.

Remark: Let F': S C R — R* and let t, € S\ JS be one point of an interval contained
in S. Then the differentiability and the derivative of F' at t; are defined as in the above
definition by considering ¢ — ¢ or t — ¢, , whichever is applicable.

Differentiation of composite functions: Differentiable functions can be combined
(in meaningful ways) to produce new differentiable functions. We illustrate this with the

following results. Let F, G : S C R — R* be differentiable at ¢, € S°. Then



(a) F+ G : S — R is differentiable at ty and (F + G) (to) = F'(to) + G'(to).
(b) If F: G : S — RF is differentiable at ty and (F' - G) (to) = F'(t) - G(to) + F(to) -
G’ (o).
(c) oF : S — RF is differentiable at to and (pF) (to) = ¢ (to)F (to) + @(to)F' (to),
where ¢ : S — R is differentiable at .
We prove (b). The other two can be similarly proved.
Proof of (b): Let F(t) = (fi(t),..., fe(t)) and G(t) = (g1(t),...,gk(t)) for all t €
S, where f;,g; : S — R for each j € {1,...,k}. Then (F - G)(t) = F(t) - G(t) =
S fi(t)g;(t) for all t € S.
Since F' and G are differentiable at ¢y, f; and g; are differentiable at ¢, for each j €

{1,...,k} and hence F' - G is differentiable at t;. Also,

fi(to)g;(to) + ng (to)g;(to) = F'(to) - G(to) + F(to) - G'(to).

7j=1

Chain rule: Let ¢ : D CR — R and F : S C R — R* be such that (D) C S. If ¢ is

differentiable at s € D and F is differentiable at ty = ¢(s9) € S°, then Fop: D — R*
is differentiable at sy and (F o @) (s0) = ¢'(s0)F'(¢(s0))-
Proof: Let F(t) = (fi(t),..., fiu(t)) for all ¢ € S, where f; : § — R for each j €
{1,...,k}. Since F is differentiable at ¢, f; is differentiable at ¢, for each j € {1,...,k}.
Hence by the chain rule of calculus of one real variable, f; o o : D — R is differentiable
at so and (f; 0 ) (s0) = ¢'(s0) fi(#(s0)). Thus F o ¢ is differentiable at s and

(F'op)'(s0) = (¢'(s0) f1((50)), - - - s ¥ (50) fr(6(s0))) = ¢'(50) F"(1p(50))-
for each j € {1,...,k}. Since
(Fop)(s) = Flp(s)) = (file(s)), -, fu(e(s))) = (freop)(s),. ... (fr o ©)(s))
for all s € D, F oy is differentiable at sy and (F o ¢)(so) = (fi 04,0)/(30), oo (fr ogp)/(so)

= (¢'(s0) fi(ta), - - (50) fr(to)) = ' (s0)(f1(to), - - -, fr(to)) = ¢ (50) F'(to)-

Example: Let ¢(s) = 2s* +3s—3 for all s € R and F(t) = (2t3,¢5 +9,5¢* + 1) for all
t € R. Then ¢ : R — R is differentiable at 1 and F' : R — R? is differentiable at (1) = 2.
Hence by chain rule, F o ¢ : R — R? is differentiable at 1 and

(Fog)(1)=¢(1)F'(2) = 11(24,192, 160) = (264, 2112, 1760).

However, since (F o )(s) = (2(¢(5))?, (©(s))% +9,5(p(s))* + 1) for all s € R, in this case
without using the above chain rule also we can directly obtain that F o ¢ is differentiable
at 1 and

IIM?r

(Foy)(1) = (264,2112, 1760).
Partial derivative: Let f: S C R? — R and let (zg,yo) € S°. The partial derivative
of f with respect to z (the first variable) at (zo,yo) is defined as
of _of - . fl@o+t,y0) — f(w0,%0)
%(*/EanCO - a_ - fx(x07y0> - %E}% t 5

z0,Y0
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provided this limit exists (in R).
Similarly, the partial derivative of f with respect to y (the second variable) at (x¢, yo)
is defined as

of

a—y(wo,yo) = = f,(z0,70) = lim f(xo,yo +1) — f(z0,v0)

t—0 t ’

of
dy

Z0,Y0
provided this limit exists (in R).
Thus if f: {z € R: (z,9) € S},B ={y € R: (z0,y) € S},p(x) = f(z,yo) for all
x e Aand Y(y) = f(xo,y) for all y € B, then f,(x,y0) = ¢'(x0) and f,(zo, yo) = ¢ (o).
More generally, if f : S C R™ — R, 2o € S° and j € {1,...,m}, then the partial
derivative of f with respect to z; at x is
of _of
05" " By

provided this limit exists (in R).

£, () = lim Lo Ftes) = f@o)

t—0 t ’

Zo



