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Sequential criterion of closed set: A set S ⊆ Rm is closed in Rm if and only if
x ∈ S for every x ∈ Rm and for every sequence (xn) in S with xn → x.

Proof: Let S be closed in Rm and let (xn) be a sequence in S such that xn → x ∈ Rm.
If possible, let x /∈ S. Then x ∈ Rm \S and since Rm \S is open in Rm, there exists r > 0
such that Br(x) ⊆ Rm \ S. Now, since xn → x, there exists n0 ∈ N such that xn ∈ Br(x)
for all n ≥ n0. In particular, xn0 ∈ Rm \ S, which is a contradiction. Hence x ∈ S.

Conversely, let x ∈ S for every x ∈ Rm and for every sequence (xn) in S with xn → x.
If possible, let S be not closed in Rm. Then Rm \ S is not open in Rm and hence there
exists x ∈ Rm \ S such that x /∈ (Rm \ S)0. So B1/n(x) ⊈ Rm \ S for each n ∈ N. Hence
for each n ∈ N, there exists xn ∈ B1/n(x) such that xn /∈ Rm \ S, i.e., xn ∈ S. We have

∥xn − x∥ < 1

n
→ 0, which gives xn → x. Thus we get a contradiction. Therefore S must

be closed in Rm.
Examples:

(a) {(x, y) ∈ R2 : x2 + y2 ≤ 1} is a closed set but not an open set in R2.
(b) More generally, if x0 ∈ Rm and r > 0, then Br[x0] is a closed set but not an open

set in Rm.
(b) {(x, y) ∈ R2 : x2 + y2 < 1} is an open set but not a closed set in R2.

More generally, if x0 ∈ Rm and r > 0, then Br(x0) is an open set but not a closed
set in Rm.

(c) {(x, y) ∈ R2 : 1 < x < 2} is neither open nor a closed set in R2.
(d) Rm is both an open set and a closed set in Rm.

Theorem: Let S be a nonempty closed and bounded subset of Rm. If f : S → Rp is
continuous, then f(S) = {f(x) : x ∈ S} is a closed and bounded subset of Rp.
Proof: Let xn ∈ S for all n ∈ N and let y ∈ Rp such that f(xn) → y. Since S is

bounded, (xn) is a bounded sequence in S and hence by the Bolzano-Weierstrass theorem
in Rm, there exist x0 ∈ Rm and a subsequence (xnk

) of (xn) such that xnk
→ x0. Again,

since S is closed in Rm, x0 ∈ S. Now, since f is continuous at x0, f(xnk
) → f(x0). Also,

f(xn) → y and so y = f(x0) ∈ f(S). Therefore f(S) is closed in Rp.
If possible, let f(S) be not bounded. Then for each n ∈ N, there exists xn ∈ S such

that ∥f(xn)∥ > n. Since S is bounded, (xn) is a bounded sequence in S and hence by
the Bolzano-Weierstrass theorem in Rm, there exist x0 ∈ Rm and a subsequence (xnk

)
of (xn) such that xnk

→ x0. Again, since S is closed in Rm, x0 ∈ S. Now, since f
is continuous at x0, f(xnk

) → f(x0). Thus the sequence (f(xnk
)) must be bounded.

However, ∥f(xnk
)∥ > nk for all k ∈ N and so (f(xnk

)) is not bounded. Thus we get a
contradiction. Therefore f(S) must be bounded.

Example: We know that S1 = {(x, y) ∈ R2 : x2 + y2 ≤ 1} is a closed and bounded
set in R2. Also, R is not a bounded set in R and S2 = {(x, y) ∈ R2 : x2 + y2 < 1} is not
a closed set in R2. Hence there cannot exist any continuous function from S1 onto R or
onto S2.
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Theorem: Let S be a nonempty closed and bounded subset of Rm. If f : S → R is
continuous, then there exist x0, y0 ∈ S such that f(x0) = sup f(S) and f(y0) = inf f(S).

Proof: We have proved above that f(S) is a (nonempty) bounded set in R. Hence
sup f(S), inf f(S) ∈ R. Let α = sup f(S). Then for each n ∈ N, there exists xn ∈ S such
that α − 1

n
< f(xn) ≤ α. Hence f(xn) → α. Since f(xn) ∈ f(S) for all n ∈ N and f(S)

is closed in R (as proved above), α ∈ f(S). So there exists x0 ∈ S such that α = f(x0).
Similarly we can show that there exists y0 ∈ S such that f(y0) = inf f(S).

Remark: A function f : S ⊆ Rm → Rp is called bounded if f(S) is a bounded subset
of Rp. We note that for a bounded function f : S ⊆ Rm → R, it is not necessary that

max f(S) and min f(S) exist. For example, if f(x, y) = x2+y2

1+x2+y2
for all (x, y) ∈ R2, then

f : R2 → R is bounded, because 0 ≤ f(x, y) ≤ 1 for all (x, y) ∈ R2, but there is no
(x0, y0) ∈ R2 such that f(x, y) ≤ f(x0, y0) for all (x, y) ∈ R2.

Limit point: A point x ∈ Rm is said to be a limit point of S ⊂ Rm if for every r > 0,
(Br(x)\{x})∩S ̸= ∅ (i.e. if for every r > 0, there exists y ∈ S such that 0 < ∥x−y∥ < r).
For example, (0, 0) and (1, 0) are limit points of S = {(x, y) ∈ R2 : x2+ y2 < 1} ⊂ R2 but
(1, 1) is not a limit point of S. We note that (0, 0) ∈ S but (1, 0) /∈ S.

Limit: Let x0 be a limit point of S ⊂ Rm. Then y ∈ Rk is said to be a limit
of f : S → Rk as x approaches x0 if for every ε > 0, there exists δ > 0 such that
∥f(x)− y∥ < ε for all x ∈ S satisfying 0 < ∥x− x0∥ < δ.

Such an y, if it exists, is unique because if z ∈ Rk with z ̸= y is also a limit of f as x
approaches x0, then ε =

1
2
∥y− z∥ > 0 and so there exist δ1, δ2 > 0 such that f(x) ∈ Bε(y)

for all x ∈ (Bδ1(x0) \ {x0}) ∩ S and f(x) ∈ Bε(z) for all x ∈ (Bδ2(x0) \ {x0}) ∩ S. If
δ = min{δ1, δ2}, then δ > 0 and since (Bδ(x0)\{x0})∩S ̸= ∅, we can choose x ∈ (Bδ(x0)\
{x0})∩S. Then f(x) ∈ Bε(y)∩Bε(z), which contradicts the fact that Bε(y)∩Bε(z) = ∅,
proved earlier.

The y appearing in the above definition is called the limit of f as x approaches x0 and
we write

lim
x→x0

f(x) = y.

Sequential criterion of limit: Let x0 be a limit point of S ⊂ Rm and let f : S → Rk.

lim
x→x0

f(x) = y ∈ Rk ⇐⇒ for every sequence (xn) in S \ {x0} converging to x0,

the sequence (f(xn)) converges to y.

Proof: Let limx→x0 f(x) = y and let (xn) be a sequence in S \ {x0} such that xn → x0.
If ε > 0, then there exists δ > 0 such that ∥f(x) − y∥ < ε for all x ∈ S satisfying
0 < ∥x − x0∥ < δ. Also, since xn ̸= x0 for all n ∈ N and xn → x0, there exists n0 ∈ N
such that 0 < ∥xn − x0∥ < δ for all n ≥ n0. Hence ∥f(xn)− y∥ < ε for all n ≥ n0. Thus
(f(xn)) → y.

Conversely, let f(xn) → y for every sequence (xn) in S \{x0} with xn → x0. If possible,
let limx→x0 f(x) ̸= y. Then there exists ε > 0 such that for every n ∈ N, there exists
xn ∈ S with 0 < ∥xn − x0∥ < 1

n
and ∥f(xn)− y∥ ≥ ε. Thus (xn) is a sequence in S \ {x0}

such that ∥xn − x0∥ → 0, i.e. xn → x0 but f(xn) ̸→ y. This is a contradiction. Therefore
limx→x0 f(x) = y.
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Examples:

lim
(x,y)→(0,0)

x3

x2 + y2
= 0

but

lim
(x,y)→(0,0)

x2y

x4 + y2
does not exist (in R).

A method for showing the non-existence of limit: Let (x0, y0) be a limit point
of S ⊂ R2 and let f : S → R. Let D ⊆ R such that x0 is a limit point of D and let
φ : D → R such

that (x, φ(x)) ∈ S for all x ∈ D and limx→x0 φ(x) = y0. If lim(x,y)→(x0,y0) f(x, y) = ℓ ∈
R, then

lim
x→x0

f(x, φ(x)) = ℓ.

Proof: Let (xn) be any sequence inD\{x0} such that xn → x0. Since limx→x0 φ(x) = y0,
we get φ(xn) → y0. Now, ((xn, φ(xn))) is a sequence in S \{(x0, y0)} and ((xn, φ(xn))) →
(x0, y0). Since lim(x,y)→(x0,y0) f(x, y) = ℓ, we have f(xn, φ(xn)) → ℓ. Consequently

lim
x→x0

f(x, φ(x)) = ℓ.

Examples:
(a) If f(x, y) = xy

x2+y2
for all (x, y) ∈ R2 \ {(0, 0)}, then

lim
(x,y)→(0,0)

f(x, y)

does not exist (in R) because if m ∈ R, then limx→0 f(x,mx) = limx→0
mx2

x2+m2x2 = m
1+m2 ,

which gives more than one value if we vary m.

(b) If f(x, y) = x2y
x4+y2

for all (x, y) ∈ R2 \ {(0, 0)}, then lim(x,y)→(0,0) f(x, y) does not

exist (in R) because if m ∈ R, then limx→0 f(x,mx
2) = limx→0

mx4

x4+m2x4 = m
1+m2 for all

m ∈ R.
Remark: The polar coordinates in R2 can also be used in the evaluation of certain

limits of functions f : S ⊆ R2 → R. For example, taking x = r cos θ, y = r sin θ, where
r > 0 and θ ∈ [0, 2π), we find that∣∣∣∣ x2

x2 + y2

∣∣∣∣ = |r| cos2 θ

|s| = r → 0 as r → 0 and hence we can conclude that

lim
(x,y)→(0,0)

x2

x2 + y2
= 0.

However, while using this method we should not assume θ to be a constant while taking
limit as r → 0.

Theorem: Let x0 be a limit point of S ⊆ Rm and let f : S → Rk. If f(x) =
(f1(x1), ..., fk(xk)) for all x ∈ S, where fj : S → R for j = 1, . . . , k, then limx→x0 f(x) ex-
ists in Rk iff limx→x0 fj(x) exists in R for each j ∈ {1, ..., k}, and in that case limx→x0 f(x) =
(limx→x0 f1(x), ..., limx→x0 fk(x)).
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Proof: Let us first assume that limx→x0 f(x) = y = (y1, ..., yk) ∈ Rk and let (xn) be any
sequence in S \ {x0} such that xn → x0. Then f(xn) = (f1(xn), ..., fk(xn)) → (y1, ..., yk)
and hence fj(xn) → yj for each j ∈ {1, ..., k}. Consequently limx→x0 fj(x) = yj for each
j ∈ {1, ..., k}.

Conversely, let limx→x0 fj(x) = yj ∈ R for each j ∈ {1, ..., k} and let (xn) be any
sequence in S \ {x0} such that xn → x0. Then fj(xn) → yj for each j ∈ {1, ..., k}
and hence f(xn) = (f1(xn), ..., fk(xn)) → (y1, ..., yk) ∈ Rk. Therefore limx→x0 f(x) =
(y1, ..., yk) ∈ Rk.

Remark: The limit rules for combinations of functions can be given similar to those
for continuity.

Relation between limit and continuity: Let S ⊆ Rm and x0 ∈ S.
If x0 is also a limit point of S, then from the definitions of continuity and limit, it follows
immediately that f : S → Rk is continuous at x0 iff limx→x0 f(x) = f(x0).
On the other hand, if x0 is not a limit point of S, then there exists δ > 0 such that
Bδ(x0) ∩ S = {x0} and so ||f(x) − f(x0)|| = 0 for all x ∈ S satisfying ||x − x0|| < δ.
Consequently f is continuous at x0.

Infinite limits: Let x0 be a limit point of S ⊆ Rn and let f : S → R. Then we write
limx→x0 f(x) = ∞ if for every r > 0, there exists δ > 0 such that f(x) > r for all x ∈ S
satisfying ∥x− x0∥ < δ.
It can be shown that limx→x0 f(x) = ∞ if and only if for every sequence (xn) in S \ {x0}
converging to x0, f(xn) → ∞.
We can also define limx→x0 f(x) = −∞ analogously and obtain its sequential criterion.

Example:

lim
(x,y)→(0,0)

1

x2 + y2
= ∞ but lim

(x,y)→(0,0)

1

x+ y
̸= ∞.

Differentiability of vector valued function of one real variable: A function F :
S ⊂ R → Rk is said to be differentiable at t0 ∈ S0 if limt→t0

1
t−t0

(F (t)−F (t0)) exists (in Rk)

and in that case the derivative of F at t0 is defined as F ′(t0) = limt→t0
1

t−t0
(F (t)−F (t0)).

If F (t) = (f1(t), . . . , fk(t)) for all t ∈ S, then F is differentiable at t0 (t0 ∈ S0) if and
only if fj : S → R is differentiable at t0 for each j ∈ {1, . . . , k}, and in such case
F ′(t0) = (f ′

1(t0), . . . , f
′
k(t0)).

We say that F : S ⊂ R → Rk is differentiable (on S) if F is differentiable at every point
of S.

Example: If F (t) = (cos t, sin t, t) for all t ∈ R, then F : R → R3 is differentiable
(since each component function of F is differentiable) and F ′(t) = (− sin t, cos t, 1) for all
t ∈ R.

Remark: Let F : S ⊂ R → Rk and let t0 ∈ S\∂S be one point of an interval contained
in S. Then the differentiability and the derivative of F at t0 are defined as in the above
definition by considering t→ t+0 or t→ t−0 , whichever is applicable.

Differentiation of composite functions: Differentiable functions can be combined
(in meaningful ways) to produce new differentiable functions. We illustrate this with the
following results. Let F,G : S ⊂ R → Rk be differentiable at t0 ∈ S0. Then
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(a) F +G : S → Rk is differentiable at t0 and (F +G)′(t0) = F ′(t0) +G′(t0).
(b) If F : G : S → Rk is differentiable at t0 and (F ·G)′(t0) = F ′(t0) ·G(t0) + F (t0) ·

G′(t0).
(c) φF : S → Rk is differentiable at t0 and (φF )′(t0) = φ′(t0)F (t0) + φ(t0)F

′(t0),
where φ : S → R is differentiable at t0.

We prove (b). The other two can be similarly proved.
Proof of (b): Let F (t) = (f1(t), . . . , fk(t)) and G(t) = (g1(t), . . . , gk(t)) for all t ∈
S, where fj, gj : S → R for each j ∈ {1, . . . , k}. Then (F · G)(t) = F (t) · G(t) =∑k

j=1 fj(t)gj(t) for all t ∈ S.
Since F and G are differentiable at t0, fj and gj are differentiable at t0 for each j ∈
{1, . . . , k} and hence F ·G is differentiable at t0. Also,

(F ·G)′(t0) =
k∑

j=1

f ′
j(t0)gj(t0) +

k∑
j=1

fj(t0)g
′
j(t0) = F ′(t0) ·G(t0) + F (t0) ·G′(t0).

Chain rule: Let φ : D ⊂ R → R and F : S ⊂ R → Rk be such that φ(D) ⊂ S. If φ is
differentiable at s0 ∈ D0 and F is differentiable at t0 = φ(s0) ∈ S0, then F ◦ φ : D → Rk

is differentiable at s0 and (F ◦ φ)′(s0) = φ′(s0)F
′(φ(s0)).

Proof: Let F (t) = (f1(t), . . . , fk(t)) for all t ∈ S, where fj : S → R for each j ∈
{1, . . . , k}. Since F is differentiable at t0, fj is differentiable at t0 for each j ∈ {1, . . . , k}.
Hence by the chain rule of calculus of one real variable, fj ◦ φ : D → R is differentiable
at s0 and (fj ◦ φ)′(s0) = φ′(s0)f

′
j(φ(s0)). Thus F ◦ φ is differentiable at s0 and

(F ◦ φ)′(s0) = (φ′(s0)f
′
1(φ(s0)), . . . , φ

′(s0)f
′
k(φ(s0))) = φ′(s0)F

′(φ(s0)).

for each j ∈ {1, . . . , k}. Since
(F ◦ φ)(s) = F (φ(s)) = (f1(φ(s)), . . . , fk(φ(s))) = ((f1 ◦ φ)(s), . . . , (fk ◦ φ)(s))

for all s ∈ D, F ◦φ is differentiable at s0 and (F ◦φ)′(s0) =
(
f1 ◦φ

)′
(s0), . . . ,

(
fk ◦φ

)′
(s0)

= (φ′(s0)f
′
1(t0), . . . , φ

′(s0)f
′
k(t0)) = φ′(s0)(f

′
1(t0), . . . , f

′
k(t0)) = φ′(s0)F

′(t0).

Example: Let φ(s) = 2s4 + 3s− 3 for all s ∈ R and F (t) = (2t3, t6 + 9, 5t4 + 1) for all
t ∈ R. Then φ : R → R is differentiable at 1 and F : R → R3 is differentiable at φ(1) = 2.
Hence by chain rule, F ◦ φ : R → R3 is differentiable at 1 and

(F ◦ φ)′(1) = φ′(1)F ′(2) = 11(24, 192, 160) = (264, 2112, 1760).

However, since (F ◦φ)(s) = (2(φ(s))3, (φ(s))6 +9, 5(φ(s))4 +1) for all s ∈ R, in this case
without using the above chain rule also we can directly obtain that F ◦φ is differentiable
at 1 and

(F ◦ φ)′(1) = (264, 2112, 1760).

Partial derivative: Let f : S ⊂ R2 → R and let (x0, y0) ∈ S0. The partial derivative
of f with respect to x (the first variable) at (x0, y0) is defined as

∂f

∂x
(x0, y0) =

∂f

∂x

∣∣∣∣
x0,y0

= fx(x0, y0) = lim
t→0

f(x0 + t, y0)− f(x0, y0)

t
,
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provided this limit exists (in R).
Similarly, the partial derivative of f with respect to y (the second variable) at (x0, y0)

is defined as

∂f

∂y
(x0, y0) =

∂f

∂y

∣∣∣∣
x0,y0

= fy(x0, y0) = lim
t→0

f(x0, y0 + t)− f(x0, y0)

t
,

provided this limit exists (in R).
Thus if f : {x ∈ R : (x, y0) ∈ S}, B = {y ∈ R : (x0, y) ∈ S}, φ(x) = f(x, y0) for all

x ∈ A and ψ(y) = f(x0, y) for all y ∈ B, then fx(x0, y0) = φ′(x0) and fy(x0, y0) = ψ′(y0).
More generally, if f : S ⊂ Rm → R, x0 ∈ S0 and j ∈ {1, . . . ,m}, then the partial

derivative of f with respect to xj at x0 is

∂f

∂xj
(x0) =

∂f

∂xj

∣∣∣∣
x0

= fxj
(x0) = lim

t→0

f(x0 + tej)− f(x0)

t
,

provided this limit exists (in R).


