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Directional derivative: Let f : S ⊆ Rm → R and let x0 ∈ S0. If u ∈ Rm with
∥u∥ = 1, then the directional derivative of f in the direction of u at x0 is defined as

Duf(x0) = f ′
u(x0) = lim

t→0

f(x0 + tu)− f(x0)

t
,

provided this limit exists (in R). Thus if r > 0 is such that Br(x0) ⊆ S and if φ(t) =
f(x0 + tu) for all t ∈ (−r, r), then

Duf(x0) = φ′(0).

We note that D−uf(x0) = −Duf(x0) and if u = ej for some j ∈ {1, . . . ,m}, then

Duf(x0) = fxj
(x0).

Example 0.1. (a) Let f(x, y) = x2 + xy + 2y for all (x, y) ∈ R2. Then

fx(x0, y0) = 2x0 + y0 and fy(x0, y0) = x0 + 2

for all (x0, y0) ∈ R2. If (x0, y0) ∈ R2 and u = (u1, u2) ∈ R2 with ∥u∥ = 1, then

Duf(x0, y0) = (2x0 + y0)u1 + (x0 + 2)u2.

(b) Let f(x, y) =
√
x2 + y2 for all (x, y) ∈ R2. Let (x0, y0) ∈ R2 \ {(0, 0)} and let

u = (u1, u2) ∈ R2 with ∥u∥ = 1. Then

fx(x0, y0) =
x0√
x20 + y20

, fy(x0, y0) =
y0√
x20 + y20

and Duf(x0, y0) =
x0u1 + y0u2√

x20 + y20
.

However, fx(0, 0) and fy(0, 0) do not exist (in R). In fact, Duf(0, 0) does not exist
(in R). We note that f is continuous at (0, 0). Thus the continuity of a function
f : S ⊆ Rm → R at a point x0 ∈ S0 does not guarantee the existence of the partial
derivatives or the directional derivatives of f at x0.

(c) Let f : R2 → R be defined by

f(x, y) =

{
0 if xy = 0,

1 if xy ̸= 0.

Then fx(0, 0) = fy(0, 0) = 0, but if u = (u1, u2) ∈ R2 with ∥u∥ = 1 and u1u2 ̸= 0,
then Duf(0, 0) does not exist. Thus the existence of all the partial derivatives of
a function f : S ⊆ Rm → R at a point x0 ∈ S0 does not guarantee the existence
of the other directional derivatives of f at x0.

(d) Let f : R2 → R be defined by

f(x, y) =

{
x2y

x4+y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).
1
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If u = (u1, u2) ∈ R2 with ∥u∥ = 1, then

Duf(0, 0) =

{
u2
1

u2
if u2 ̸= 0,

0 if u2 = 0.

So all the directional derivatives of f at (0, 0) exist but we know that f is not
continuous at (0, 0). Thus the existence of all the directional derivatives of a
function f : S ⊆ Rm → R at a point x0 ∈ S0 does not guarantee the continuity of
f at x0.

Higher order partial derivatives: Let the first order partial derivative fx of f :
S ⊆ R2 → R exist at every point of S0. Then the partial derivatives of the function
fx : S0 → R with respect to x and y at (x0, y0) ∈ S0 are denoted respectively by

fxx(x0, y0) or
∂2f
∂x2 (x0, y0) and fxy(x0, y0) or

∂2f
∂y∂x

(x0, y0), provided these exist (in R).
Similarly, we define fyy(x0, y0) or

∂2f
∂y2

(x0, y0) and fyx(x0, y0) or
∂2f
∂x∂y

(x0, y0).

In general, the mixed partial derivatives fxy(x0, y0) and fyx(x0, y0) need not be equal.
Further, the second and higher order partial derivatives can be defined in an analogous
way for a general function f : S ⊆ Rm → R.

Example 0.2. Let f : R2 → R be defined by

f(x, y) =

{
xy y2−x2

x2+y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Then fxy(0, 0) = −1 ̸= 1 = fyx(0, 0).

Equality of mixed partial derivatives: Let f : S ⊆ R2 → R and let (x0, y0) ∈ S0.
Let fxy, fyx exist on Bδ((x0, y0)) ⊆ S for some δ > 0 and let fxy, fyx be continuous at
(x0, y0). Then

fxy(x0, y0) = fyx(x0, y0).

Proof. Let (h, k) ∈ Bδ((0, 0)) so that (x0 + h, y0 + k) ∈ Bδ((x0, y0)) and let

∆ = f(x0 + h, y0 + k)− f(x0 + h, y0)− f(x0, y0 + k) + f(x0, y0).

Also, let φ(x) = f(x, y0 + k)− f(x, y0) for all x ∈ [x0, x0 + h] and ψ(y) = f(x0 + h, y)−
f(x0, y) for all y ∈ [y0, y0 + k]. Then

∆ = φ(x0 + h)− φ(x0) = hφ′(x0 + θ1h)

for some θ1 ∈ (0, 1) by Lagrange’s MVT of one real variable. Hence

∆ = h [fy(x0 + θ1h, y0 + k)− fy(x0 + θ1h, y0)] = hkfxy(x0 + θ1h, y0 + θ2k)

for some θ2 ∈ (0, 1) by Lagrange’s MVT of one real variable. Again,

∆ = ψ(y0 + k)− ψ(y0) = kψ′(y0 + η2k) for some η2 ∈ (0, 1)

by Lagrange’s MVT of one real variable. Hence

∆ = k[fy(x0+h, y0+η2k)−fy(x0, y0+η2k)] = khfyx(x0+η1h, y0+η2k) for some η1 ∈ (0, 1)
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by Lagrange’s MVT of one real variable. Thus

fxy(x0 + θ1h, y0 + θ2k) = fyx(x0 + η1h, y0 + η2k) =
∆

hk

for all (h, k) ∈ Bδ((0, 0)) with h ̸= 0, k ̸= 0. Since fxy and fyx are continuous at (x0, y0),
taking limits as (h, k) → (0, 0), we obtain

fxy(x0, y0) = fyx(x0, y0).

□

Motivation for the definition of differentiability: If g : A ⊆ R → R, then we know
that g is called differentiable at x0 ∈ A0 if there exists α ∈ R such that

lim
x→x0

g(x)− g(x0)− α(x− x0)

x− x0
= 0.

Now, let f : S ⊆ R2 → R and let (x0, y0) ∈ S0. A similar definition of differentiability

of f at (x0, y0) is not meaningful as f(x,y)−f(x0,y0)
(x,y)−(x0,y0)

, where (x, y) ∈ S \ {(x0, y0)}, is not

defined. However, we can rewrite the above definition of differentiability of g at x0 in the
following equivalent way:

The function g is differentiable at x0 if there exists an α ∈ R such that

lim
x→x0

|g(x)− g(x0)− α(x− x0)|
|x− x0|

= 0.

We may interpret this geometrically as follows:
For each α ∈ R, if Lα : R2 → R is defined by Lα(x) = g(x0) + α(x− x0) for all x ∈ R,

then y = Lα(x) represents a straight line in R2 passing through the point (x0, g(x0)). If
g is assumed to be only continuous at x0, then every such line approximates the curve
y = g(x) around x0 in the sense that

lim
x→x0

(g(x)− Lα(x)) = 0

for each α ∈ R.
The differentiability of g at x0 is equivalent to the existence of an α ∈ R (i.e., the

existence of a straight line y = Lα(x)) such that among all the straight lines in R2 passing
through (x0, g(x0)), the straight line y = Lα(x) approximates the curve y = g(x) around
x0 in the ‘best’ possible way in the sense that

lim
x→x0

|g(x)− Lα(x)|
|x− x0|

= 0.

Also, such an α and hence such a straight line, when it exists, is unique.

Differentiability and derivative: A function f : S ⊆ R2 → R is said to be differentiable at

(x0, y0) ∈ S0 if there exist α, β ∈ R such that

lim
(x,y)→(x0,y0)

|f(x, y)− f(x0, y0)− α(x− x0)− β(y − y0)|√
(x− x0)2 + (y − y0)2

= 0,
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or equivalently,

lim
(h,k)→(0,0)

|f(x0 + h, y0 + k)− f(x0, y0)− αh− βk|√
h2 + k2

= 0.

Geometrically speaking, among all the planes in R3 passing through the point (x0, y0, f(x0, y0)),
there exists a plane

z = f(x0, y0) + α(x− x0) + β(y − y0)

which approximates the surface z = f(x, y) around (x0, y0) in the ‘best’ possible way in
the sense given above.

Although this geometrical interpretation may no longer be possible while defining dif-
ferentiability in a similar manner for a function like f : S ⊆ R5 → R, the above definition
has another equivalent interpretation in terms of linearization (given at the end of these
notes), which is valid and useful for functions f : S ⊆ Rm → R.
Thus more generally, f : S ⊆ Rm → R is said to be differentiable at x0 ∈ S0 if there

exists α ∈ Rm such that

lim
h→0

|f(x0 + h)− f(x0)− α · h|
∥h∥

= 0.

Such an α = (α1, . . . , αm) ∈ Rm, when exists, is unique and in that case we define the
(total) derivative of f at x0 to be f ′(x0) = Df(x0) = [α1 α2 · · · αm], which is a
1×m matrix.

If S is a nonempty open subset of Rm, then f : S → R is said to be differentiable on
(S) if f is differentiable at each x0 ∈ S.

Example 0.3. If f(x, y) = 2x2 + y3 for all (x, y) ∈ R2, then f : R2 → R is differentiable
at (1, 1) and

f ′(1, 1) = [4 3].

Two questions: Let f : S ⊆ Rm → R and let x0 ∈ S0.

(a) How do we examine the differentiability of f at x0?
(b) Given that f is differentiable at x0, how do we find f ′(x0)?

Although the definitions of differentiability and derivative can be used to answer these
questions directly (as we have seen in the example given above), they are difficult to apply
in most cases. Hence we provide alternative answers below.
Answer to question (b): If f : S ⊆ Rm → R is differentiable at x0 ∈ S0, then for each
j ∈ {1, . . . ,m}, ∂f

∂xj

∣∣
x0

exists (in R) and

f ′(x0) =

[
∂f

∂x1

∣∣∣∣
x0

· · · ∂f

∂xm

∣∣∣∣
x0

]
.

Proof. Since f is differentiable at x0, there exists α = (α1, . . . , αm) ∈ Rm such that

lim
h→0

|f(x0 + h)− f(x0)− α · h|
∥h∥

= 0.
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If j ∈ {1, . . . ,m}, then from above, we get

lim
t→0

|f(x0 + tej)− f(x0)− αjt|
|t|

= 0,

which gives

lim
t→0

f(x0 + tej)− f(x0)

t
− αj = 0.

Hence,
∂f

∂xj

∣∣∣∣
x0

= lim
t→0

f(x0 + tej)− f(x0)

t
= αj,

and consequently

f ′(x0) =

[
∂f

∂x1

∣∣∣∣
x0

· · · ∂f

∂xm

∣∣∣∣
x0

]
.

□

Answer to question (a):
The answer to question (b) given above provides a partial answer to question (a) as

well because it says that if at least one of the partial derivatives of f : S ⊆ Rm → R at
x0 ∈ S0 does not exist (in R), then f is not differentiable at x0.

For example, if f(x, y) = |x|+ |y| for all (x, y) ∈ R2, then fx(0, 0) does not exist (in R)
and hence f is not differentiable at (0, 0).

However, as we shall see below, f need not be differentiable at x0 even if all the partial
derivatives of f at x0 exist (in R).

The next four theorems contain further results which serve to answer question (a).

Theorem 0.4. If f : S ⊆ Rm → R is differentiable at x0 ∈ S0, then f is continuous at
x0.

Proof. Since f is differentiable at x0, there exists α ∈ Rm such that

lim
h→0

|f(x0 + h)− f(x0)− α · h|
∥h∥

= 0.

Hence

lim
h→0

|f(x0+h)−f(x0)| = lim
h→0

|f(x0+h)−f(x0)−α·h+α·h| ≤ lim
h→0

|f(x0+h)−f(x0)−α·h|+|α·h|.

Since |α · h| ≤ ∥α∥∥h∥ → 0 as h→ 0, it follows that limh→0 f(x0 + h) = f(x0). Therefore
f is continuous at x0. □

Example 0.5. The function f : R2 → R, defined by

f(x, y) =

{
xy

x2+y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0),

is not continuous at (0, 0) and hence it is not differentiable at (0, 0). However, we note
that both the partial derivatives fx(0, 0) and fy(0, 0) exist (in R)
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Remark 0.6. The converse of the above theorem is not true, in general. For example,
if f(x, y) = |x| + |y| for all (x, y) ∈ R2, then f : R2 → R is continuous at (0, 0) but not
differentiable at (0, 0).

We need the following definition for the next theorem.
Gradient: If f : S ⊆ Rm → R and x0 ∈ S0, then the gradient (vector) of f at x0 is
defined as

∇f(x0) = grad f(x0) =

(
∂f

∂x1

∣∣∣∣
x0

, . . . ,
∂f

∂xm

∣∣∣∣
x0

)
,

provided ∂f
∂xj

∣∣∣
x0

exists (in R) for each j ∈ {1, . . . ,m}. For example, if f(x, y, z) = x3y +

4xyz + 3 for all (x, y, z) ∈ R3, then

∇f(1, 1, 0) = (3, 1, 4).

Theorem 0.7. If f : S ⊆ Rm → R is differentiable at x0 ∈ S0, then for each u ∈ Rm

with ∥u∥ = 1,
Duf(x0) exists (in R) and Duf(x0) = ∇f(x0) · u.

Proof. This proof is exactly similar to the proof of the existence of partial derivatives,
which is proved above. Here we need to consider h = tu, where u ∈ Rm with ∥u∥ = 1. □

Remark 0.8. (a) The above theorem implies that if at least one of the directional
derivatives of f : S ⊆ Rm → R at x0 ∈ S0 does not exist (in R), then f cannot be
differentiable at x0. However, the existence (in R) of all the directional derivatives
of f at x0 does not ensure the differentiability of f at x0.
For example, consider the function f : R2 → R, defined by

f(x, y) =

{
xy

x2+y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

We have seen earlier that all the directional derivatives of f at (0, 0) exist (in
R) but since f is not continuous at (0, 0), f is not differentiable at (0, 0).

(b) If f : S ⊆ Rm → R is differentiable at x0 ∈ S0, then the above theorem provides a
way to calculate the directional derivative of f at x0 if all the partial derivatives
of f at x0 are known.
For example, if

f(x, y, z) = 4x2z + 3y3z + 7y2

for all (x, y, z) ∈ R3 and

u =

(
1√
3
,
1√
3
,
1√
3

)
,

then using the fact that f is differentiable at x0 = (1, 1, 1) (which will follow from
the next theorem), we find that

Duf(x0) = (fx(x0), fy(x0), fz(x0)) · u = (4, 23, 5) · u =
32√
3
.
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(c) The above formula for calculating Duf(x0) is not correct, in general, if f : S ⊆
Rm → R is not differentiable at x0 ∈ S0 even if ∇f(x0) is defined, i.e., even if all
the partial derivatives of f at x0 exist (in R).

For example, consider the function f : R2 → R, defined by

f(x, y) =

{
xy

x2+y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

We have seen earlier that fx(0, 0) = 0 = fy(0, 0) and if

u =

(
1√
2
,
1√
2

)
,

then

Duf(0, 0) =
1√
2
̸= 0 = ∇f(0, 0) · u.

Theorem 0.9. Let f : S ⊆ Rm → R and let x0 ∈ S0. If there exists δ > 0 such that
for each j ∈ {1, . . . ,m}, ∂f

∂xj
exists on Bδ(x0) ⊆ S and is continuous at x0, then f is

differentiable at x0.

Proof. We prove this result for m = 2. The general case can be proved similarly.
Let x0 = (x0, y0). For all (h, k) ∈ Bδ((0, 0)), we have

f(x0 + h, y0 + k)− f(x0, y0) = f(x0 + h, y0 + k)− f(x0, y0 + k) + f(x0, y0 + k)− f(x0, y0).

Now, by the Lagrange’s MVT of one real variable, there exist θ1, θ2 ∈ (0, 1) such that

f(x0+h, y0+k)−f(x0, y0+k) = hfx(x0+θ1h, y0+k) and f(x0, y0+k)−f(x0, y0) = kfy(x0, y0+θ2k).

Hence for all (h, k) ∈ Bδ((0, 0)) \ {(0, 0)}, we have

|f(x0 + h, y0 + k)− f(x0, y0)− hfx(x0, y0)− kfy(x0, y0)|√
h2 + k2

≤ |h|√
h2 + k2

|fx(x0 + θ1h, y0 + k)− fx(x0, y0)|+
|k|√
h2 + k2

|fy(x0, y0 + θ2k)− fy(x0, y0)|.

Since fx and fy are continuous at (x0, y0),

lim
(h,k)→(0,0)

(|fx(x0 + θ1h, y0 + k)− fx(x0, y0)|+ |fy(x0, y0 + θ2k)− fy(x0, y0)|) = 0

and consequently

lim
(h,k)→(0,0)

f(x0 + h, y0 + k)− f(x0, y0)− hfx(x0, y0)− kfy(x0, y0)√
h2 + k2

= 0.

Therefore f is differentiable at (x0, y0). □

Example 0.10. If f(x, y) = exy + x2 sin y + 4x for all (x, y) ∈ R2, then

fx(x, y) = yexy + 2x sin y + 4

and
fy(x, y) = xexy + x2 cos y
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for all (x, y) ∈ R2. Since fx, fy : R2 → R are continuous at (0, 0), f : R2 → R is
differentiable at (0, 0) and f ′(0, 0) = [4 0].

Remark 0.11. (a) f : S ⊂ Rm → R can be differentiable at x0 ∈ S0 even though none
of the partial derivatives continuous at x0.

For example, the function f : R2 → R, defined by

f(x, y) =


(x2 + y2) sin

(
1

x2+y2

)
x2 + y2

if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0),

is differentiable at (0, 0) (using the next theorem) although neither fx : R2 → R nor
fy : R2 → R is continuous at (0, 0).

(b) If S is a nonempty open subset of Rm, then a function f : S ⊂ Rm → R is said to
be continuously differentiable (on S) if all the partial derivatives of f are continuous on
S.
Similarly, f is called twice continuously differentiable (on S) if all the second order partial
derivatives of f are continuous on S.

Theorem 0.12. Let f : S ⊂ Rm → R and let x0 ∈ S0. Also, let ∂f
∂xj

∣∣∣
x0

exist for each

j ∈ {1, . . . ,m}. Then f is differentiable at x0 iff

lim
h→0

|f(x0 + h)− f(x0)− α · h|
∥h∥

= 0,

where α =

(
∂f
∂x1

∣∣∣
x0

, . . . , ∂f
∂xm

∣∣∣
x0

)
.

Proof. If

lim
h→0

|f(x0 + h)− f(x0)− α · h|
∥h∥

= 0,

then by definition, f is differentiable at x0. Conversely, let f be differentiable at x0. Then
there exists β = (β1, . . . , βm) ∈ Rm such that

lim
h→0

|f(x0 + h)− f(x0)− β · h|
∥h∥

= 0.

We have seen earlier that in this case βj =
∂f
∂xj

∣∣∣
x0

for all j ∈ {1, . . . ,m} and hence β = α.

Therefore

lim
h→0

|f(x0 + h)− f(x0)− α · h|
∥h∥

= 0.

□

Example 0.13. (a) The function f : R2 → R, defined by f(x, y) =

{
xy y2−y2

x2+y2
, if (x, y) ̸= (0, 0),

0, if (x, y) = (0, 0),

is differentiable at (0, 0) and f ′(0, 0) = [0 0].
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(b) The function f : R2 → R, defined by f(x, y) =

{
xy√
x2+y2

, if (x, y) ̸= (0, 0),

0, if (x, y) = (0, 0),
is not

differentiable at (0, 0).

Maximum and minimum values of Duf(x0): Let f : S ⊂ Rm → R be differentiable
at x0 ∈ S0 and let ∇f(x0) ̸= 0. If u ∈ Rm such that ∥u∥ = 1, then Duf(x0) = ∇f(x0) · u
and since |∇f(x0) · u| ≤ ∥∇f(x0)∥∥u∥ = ∥∇f(x0)∥, we have −∥∇f(x0)∥ ≤ Duf(x0) ≤
∥∇f(x0)∥. Also, by the equality condition of Cauchy–Schwarz inequality, the function
u 7→ Duf(x0) attains its maximum value ∥∇f(x0)∥ for u = 1

∥∇f(x0)∥∇f(x0) and the

minimum value −∥∇f(x0)∥ for u = − 1
∥∇f(x0)∥∇f(x0).

Example 0.14. Let f(x, y) = 4x − x2 − y2 for all (x, y) ∈ R2. Then f : R2 → R is
differentiable and ∇f(1, 1) = (−2,−2). Hence the maximum value of Duf(1, 1) is 2

√
2

which occurs for u =
(
− 1√

2
,− 1√

2

)
and the minimum value of Duf(1, 1) is −2

√
2 which

occurs for u =
(

1√
2
, 1√

2

)
.

Equivalent conditions of differentiability (Increment theorem): A function f :
S ⊂ Rm → R is differentiable at x0 ∈ S0 if either of the following two conditions holds.

(a) There exist δ > 0 and a function e : Bδ(0) → R such that limh→0 e(h) = 0 and

f(x0 + h) = f(x0) +∇f(x0) · h+ ∥h∥e(h) for all h ∈ Bδ(0).

(b) There exist δ > 0 and functions εj : Bδ(0) → R for j = 1, . . . ,m such that
limh→0 εj(h) = 0 for each j ∈ {1, . . . ,m} and

f(x0 + h) = f(x0) +∇f(x0) · h+ h1ε1(h) + · · ·+ hmεm(h) for all h ∈ Bδ(0).

Proof. Let us first assume that f is differentiable at x0. Since x0 ∈ S0, there exists δ > 0
such that Bδ(x0) ⊂ S. Let ε : Bδ(0) → R be defined by

e(h) =

{
f(x0+h)−f(x0)−∇f(x0)·h

∥h∥ if h ̸= 0,

0 if h = 0.

Since f is differentiable at x0, limh→0 e(h) = 0. Also, the equation in (a) is satisfied for
all h ∈ Bδ(0). Again, let j ∈ {1, . . . ,m} and let εj : Bδ(0) → R be defined by

εj(h) =

{
|hj |
∥h∥e(h) if h = (h1, . . . , hm) ̸= 0,

0 if h = 0.

Since
|hj |
∥h∥ ≤ 1 for all h ∈ (h1, . . . , hm) ∈ Bδ(0) \ {0} and since limh→0 e(h) = 0, we get

limh→0 εj(h) = 0. Also, since h1ε1(h) + · · · + hmεm(h) =
∑m

j=1 hjεj(h) = ∥h∥e(h) for all
h = (h1, . . . , hm) ∈ Bδ(0), the equation in (b) is satisfied for all h ∈ Bδ(0) as we have
already shown that the equation in (a) is satisfied for all h ∈ Bδ(0).
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Conversely, let the condition in (a) be satisfied. Then

lim
h→0

f(x0 + h)− f(x0)−∇f(x0) · h
∥h∥

= lim
h→0

e(h) = 0

and so f is differentiable at x0. Again, let the condition in (b) be satisfied. Then

lim
h→0

f(x0 + h)− f(x0)−∇f(x0) · h
∥h∥

= lim
h→0

h1ε1(h) + · · ·+ hmεm(h)

∥h∥

= lim
h→0

∥h∥(ε1(h) h1

∥h∥ + · · ·+ εm(h)
hm

∥h∥)

∥h∥

= lim
h→0

(ε1(h)
h1
∥h∥

+ · · ·+ εm(h)
hm
∥h∥

).

But since
|hj |
∥h∥ ≤ 1 and εj(h) → 0 as h → 0, this limit is 0, and so f is differentiable at

x0. □

Linearization: Let f : S ⊂ Rm → R be differentiable at x0 ∈ S0. The function
L : Rm → R, defined by L(x) = f(x0) + ∇f(x0) · (x − x0) for all x ∈ Rm, is called the
linearization of f at x0. We note that L is the unique polynomial function of degree one
satisfying L(x0) = f(x0) and

lim
x→x0

|f(x)− L(x)|
∥x− x0∥

= 0.

Example 0.15. If f(x, y, z) = x3 + y2 + zx for all (x, y, z) ∈ R3, then f : R3 → R is
differentiable at

(1, 1, 1) and ∇f(1, 1, 1) = (4, 2, 3).

Hence the linearization L : R3 → R of f at (1, 1, 1) is defined by

L(x, y, z) = 3 + (4, 2, 3) · (x− 1, y − 1, z − 1) = 4x+ 2y + 3z − 6 for all (x, y, z) ∈ R3.


