MA15010H: Multi-variable Calculus

(Lecturenote 3: Directional derivatives and differentiability)
July - November, 2025

Directional derivative: Let f : S C R™ — R and let xo € S° If u € R™ with
|ul| = 1, then the directional derivative of f in the direction of u at xq is defined as

Daf(x0) = fi(xg) = timg 0 = JO0)

provided this limit exists (in R). Thus if r > 0 is such that B,(xo) C S and if p(t) =
f(xo +tu) for all t € (—r,r), then

Duf(x0) = ¢'(0).
We note that D_,, f(x¢) = —Duf(x0) and if u = e; for some j € {1,...,m}, then
Duf(x0) = fa;(X0)-
Example 0.1.  (a) Let f(z,y) = 2* + 2y + 2y for all (z,y) € R?. Then
fo(@o,yo) = 2z9 +yo and  fy(z0, yo) = 2o + 2
for all (zg,yo) € R?. If (z0,y0) € R? and u = (uy,uz) € R* with ||u|| = 1, then
Dy f(wo,y0) = (2x0 + yo)ur + (zo + 2)uz.

(b) Let f(z,y) = /22 +y? for all (z,y) € R% Let (xq,y0) € R*\ {(0,0)} and let
u = (uy, up) € R? with ||ul| = 1. Then

o Yo ToU1 + YoUs

fm“(IO?yO) = T fy(x(]ayo) = .
VT + Y5 Vg + g Vg +ys

However, f,(0,0) and f,(0,0) do not exist (in R). In fact, D, f(0,0) does not exist
(in R). We note that f is continuous at (0,0). Thus the continuity of a function
f:S CR™— R at a point xo € S° does not guarantee the existence of the partial

derivatives or the directional derivatives of f at xq.
(c) Let f:R* — R be defined by

Fany) = {O if xy =0,

and Duf('rOJ yO) -

1 if xy # 0.

Then f,(0,0) = £,(0,0) = 0, but if u = (uy,uz) € R? with |Jul]| =1 and ujus # 0,
then D, f(0,0) does not exist. Thus the existence of all the partial derivatives of
a function f:S C R™ — R at a point xg € S° does not guarantee the existence

of the other directional derivatives of f at xq.
(d) Let f:R? — R be defined by

flog) = {mﬁ;ﬁ if (2,y) # (8,0>j




If u = (uy,u) € R? with ||u|| = 1, then

ﬁ .
Duf(0,0) = dw 270,
0 ifuy=0.

So all the directional derivatives of f at (0,0) exist but we know that f is not
continuous at (0,0). Thus the existence of all the directional derivatives of a
function f : S C R™ — R at a point xg € S° does not guarantee the continuity of
f at Xq-

Higher order partial derivatives: Let the first order partial derivative f, of f :
S C R? — R exist at every point of S°. Then the partial derivatives of the function

fe : S® — R with respect to x and y at (zo,y0) € S° are denoted respectively by
fuz(T0,yo) Or %(wo, Yo) and fuy (o, yo) or %(wmyg), provided these exist (in R).

Similarly, we define f,(xo,yo) or %ﬁc(mo,yo) and fy. (2o, yo) or %(wo, Yo)-

In general, the mixed partial derivatives f,,(zo, yo) and fy.(zo, yo) need not be equal.
Further, the second and higher order partial derivatives can be defined in an analogous
way for a general function f: S C R™ — R.

Example 0.2. Let f : R? — R be defined by

_ Jayts i () #(0,0),
few = {0 " i () = (0,0)
Then f,,(0,0) = —-1# 1= f,.(0,0).

Equality of mixed partial derivatives: Let f : S C R? — R and let (zg,30) € S°.
Let fuy, fyo exist on Bs((zo,y0)) C S for some § > 0 and let f,,, f,» be continuous at
(20,%0). Then

fay(®o, y0) = fya (20, o)
Proof. Let (h, k) € Bs((0,0)) so that (zg + h,yo + k) € Bs((xo,y0)) and let
A= f(xo+h,yo+ k) — f(zo+ h,yo) — fzo, 90 + k) + f(20, Yo)-

Also, let () = f(z,y0 + k) — f(2, o) for all z € [xo, 79 + h] and Y(y) = f(zo + h,y) —
f(zo,y) for all y € [yo, yo + k|. Then

A = p(xg+h) — @(xg) = hy'(xg + 61h)
for some 6, € (0,1) by Lagrange’s MVT of one real variable. Hence
A = h|fy(zo+ O01h,yo + k) — f,(xo + 01k, yo)] = hk fuy(zo + O1h, yo + O2k)
for some 6, € (0, 1) by Lagrange’s MVT of one real variable. Again,
A =(yo + k) —Y(yo) = k' (yo + m2k) for some 1 € (0,1)
by Lagrange’s MV'T of one real variable. Hence
A = k[f,(zo+h, yo+n2k)— f,(x0, Yo+ m2k)] = khfy(xo+mh, yo+n2k) for some n; € (0,1)



by Lagrange’s MVT of one real variable. Thus
A
fay(xo + 01h, yo + 02k) = fya(To + mh, yo + mek) = Wk

for all (h, k) € B;((0,0)) with h # 0,k # 0. Since f,, and f,, are continuous at (xo, ¥o),
taking limits as (h, k) — (0,0), we obtain

fzy(xm yO) = fya:(x()a yO)
0

Motivation for the definition of differentiability: If g : A C R — R, then we know
that g is called differentiable at zq € A" if there exists o € R such that

g(e) — glwn) — ale — x0)
T—T0 T — X
Now, let f: S C R? — R and let (zg,y0) € S°. A similar definition of differentiability
%a where (I7y) €S \ {(x()ay())}a is not
defined. However, we can rewrite the above definition of differentiability of g at xy in the
following equivalent way:
The function g is differentiable at xq if there exists an a € R such that

lim \9(93) — g(x0) — a(a: - 3?0)’
T—x0 |[L’ — l’ol

=0.

of f at (xg,yo) is not meaningful as

=0.

We may interpret this geometrically as follows:

For each o € R, if L, : R? — R is defined by L(x) = g(zo) + a(x — ) for all z € R,
then y = L,(x) represents a straight line in R? passing through the point (zo, g(z¢)). If
g is assumed to be only continuous at x(, then every such line approximates the curve
y = g(x) around x, in the sense that

lim (g(z) — La(2)) = 0
T—xo
for each o € R.

The differentiability of g at xy is equivalent to the existence of an @ € R (i.e., the
existence of a straight line y = L,(x)) such that among all the straight lines in R? passing
through (xg, g(z0)), the straight line y = L,(z) approximates the curve y = g(x) around
Zo in the ‘best’ possible way in the sense that

o) — Lu(e)
zozo  |x— x|

= 0.

Also, such an « and hence such a straight line, when it exists, is unique.
Differentiability and derivative: A function f : S C R? — R is said to be differentiable at
(wo,70) € SY if there exist a, 8 € R such that

(z,y)—=(%0,90) \/(q; — xO)Q + (y _ y0)2

=0,
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or equivalently,

lim |f(zo +h,yo + k) — f(20, 40) — ah — BE]| _
(h,k)—(0,0) Vh? + k2

Geometrically speaking, among all the planes in R? passing through the point (zo, yo, f (2o, ¥0)),
there exists a plane

0.

z = f(xo,y0) + a(z — z0) + By — Yo)
which approximates the surface z = f(z,y) around (xg,%o) in the ‘best’ possible way in
the sense given above.

Although this geometrical interpretation may no longer be possible while defining dif-
ferentiability in a similar manner for a function like f : S C R> — R, the above definition
has another equivalent interpretation in terms of linearization (given at the end of these
notes), which is valid and useful for functions f: S C R™ — R.

Thus more generally, f : S C R™ — R is said to be differentiable at z, € S° if there
exists a € R™ such that

|f(zo +h) — f(wo) —a-h|

li =0.

= o ’
Such an o = (a,...,q,) € R™ when exists, is unique and in that case we define the
(total) derivative of f at x¢ to be f'(z9) = Df(xg) = [a1 @2 --- ), which is a

1 X m matrix.
If S is a nonempty open subset of R”, then f : S — R is said to be differentiable on
(S) if f is differentiable at each zq € S.

Example 0.3. If f(z,y) = 222 + 33 for all (z,y) € R? then f: R? — R is differentiable
at (1,1) and
(1,1 =114 3.
Two questions: Let f: S CR™ — R and let 2, € S°.

(a) How do we examine the differentiability of f at x¢?
(b) Given that f is differentiable at zy, how do we find f’(x¢)?

Although the definitions of differentiability and derivative can be used to answer these
questions directly (as we have seen in the example given above), they are difficult to apply
in most cases. Hence we provide alternative answers below.

Answer to question (b): If f: .S C R™ — R is differentiable at zo € S, then for each
je{l,...,m}, 2L| exists (in R) and
|

6xj {mo
of
Proof. Since f is differentiable at xg, there exists a = (ay, ..., a,,) € R™ such that

al'l
1 fr B~ () —ach]
h—0 | Al

of

0%

zo

f(wo) = [

0.




If 7 € {1,...,m}, then from above, we get
o ot teg) = ) — gl

0,
t—0 |t|
which gives
lim f(zo +tey) — f(xo) )
t—0 t
Hence,
O |y Hlrotte) — ) _
Ox; e 0 t

and consequently

ﬂwﬁ{éﬁ

zo

O

Answer to question (a):

The answer to question (b) given above provides a partial answer to question (a) as
well because it says that if at least one of the partial derivatives of f : S C R™ — R at
zo € S° does not exist (in R), then f is not differentiable at z.

For example, if f(z,y) = |z| + |y| for all (z,y) € R?, then f,(0,0) does not exist (in R)
and hence f is not differentiable at (0, 0).

However, as we shall see below, f need not be differentiable at x( even if all the partial
derivatives of f at xy exist (in R).

The next four theorems contain further results which serve to answer question (a).

Theorem 0.4. If f : S C R™ — R is differentiable at xy € S°, then f is continuous at
Zg-.

Proof. Since f is differentiable at z(, there exists & € R™ such that
| f(zo+h) — f(wo) —a-h| _

s Tl =0

Hence

lim | f(zo+h)—f(zo)| = lim | f(zo+h)—f(x0)—a-hta-h| < lim [f(zo+h)—f(z0)—a-h|+|a-h].
h—0 h—0 h—0

Since |a - h| < Jla||||h|| = 0 as b — 0, it follows that lim,_o f(zo + h) = f(zo). Therefore

f is continuous at xg. O
Example 0.5. The function f : R? — R, defined by

it (ny) # (0,0),
flay) = {0 if (z,9) = (0,0),

is not continuous at (0,0) and hence it is not differentiable at (0,0). However, we note
that both the partial derivatives f,(0,0) and f,(0,0) exist (in R)
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Remark 0.6. The converse of the above theorem is not true, in general. For example,
if f(x,y) = |z|+|y| for all (z,y) € R?, then f: R* — R is continuous at (0,0) but not
differentiable at (0, 0).

We need the following definition for the next theorem.
Gradient: If f : S C R™ — R and zg € S, then the gradient (vector) of f at zg is
defined as
:1:())

provided 5% . exists (in R) for each j € {1,...,m}. For example, if f(x,y,2) = 2%y +

of
(91’1

of

,...,axm

zo

V f(x0) = grad f(zo) = (

4xyz + 3 for all (z,y,2) € R3, then
VF(1,1,0) = (3,1,4).

Theorem 0.7. If f : S C R™ — R is differentiable at xy € S°, then for each u € R™
with ||u|| =1,
D, f(xo) exists (in R) and D, f(xo) = V f(zo) - u.

Proof. This proof is exactly similar to the proof of the existence of partial derivatives,
which is proved above. Here we need to consider h = tu, where v € R™ with |ul| =1. O

Remark 0.8. (a) The above theorem implies that if at least one of the directional
derivatives of f: S C R™ — R at zy € S° does not exist (in R), then f cannot be
differentiable at xy. However, the existence (in R) of all the directional derivatives
of f at xy does not ensure the differentiability of f at xy.

For example, consider the function f :R? — R, defined by

Tz i (z,y) #(0,0),

flz,y) = {8 +y if (x,y) = (0,0).

We have seen earlier that all the directional derivatives of f at (0,0) exist (in
R) but since f is not continuous at (0,0), f is not differentiable at (0,0).

(b) If f: S C R™ — R is differentiable at zy € S, then the above theorem provides a
way to calculate the directional derivative of f at z if all the partial derivatives
of f at zy are known.

For example, if
f(z,y, 2) = 4222 + 32 + Ty
for all (z,y,2) € R and

( 1 1 1 )

u = T =y T =y = |

V3 V33

then using the fact that f is differentiable at zo = (1,1,1) (which will follow from
the next theorem), we find that

Dy f(xo) = (fo(20); fy(0), f2(x0)) - u = (4,23,5) -u =

w
W)l N
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(c) The above formula for calculating D, f(x) is not correct, in general, if f : S C
R™ — R is not differentiable at z € S° even if V f(zg) is defined, i.e., even if all
the partial derivatives of f at zg exist (in R).

For example, consider the function f : R? — R, defined by

2553/ 2 f ) 07 O )
fley) = 4o H 0700

0 if (z,y) = (0,0).
We have seen earlier that f,(0,0) =0 = f,(0,0) and if

11
)
then .
D,f(0,0) = 7 #0=V£(0,0)-u.
Theorem 0.9. Let f : S C R™ — R and let xy € S°. If there exists § > 0 such that
for each j € {1,...,m}, ngj exists on Bs(xo) € S and is continuous at xq, then f is

differentiable at x.

Proof. We prove this result for m = 2. The general case can be proved similarly.
Let o = (x0, o). For all (h, k) € Bs((0,0)), we have

f(@o+h,yo+ k) — f(20,90) = f(xo+ hyyo + k) — f (2o, yo + k) + f (0, Yo + k) — [ (20, v0)-

Now, by the Lagrange’s MVT of one real variable, there exist ;1,02 € (0,1) such that
f(x(]—i_h?yo—i_k)_f(IOJ y0+k) - hfx(x0+61h7 y0+k) and f(x()a y0+k>_f(x07 yO) = kfy(x(b y0+62k)
Hence for all (h, k) € Bs((0,0)) \ {(0,0)}, we have

|f(xo+ h,yo + k) — f(x0,90) — hfe(Zo,v0) — kfy(20,Y0)]
JETTE

h k
< o+ 0o+ ) — o)+~ o+ 0ok) = fy o)

Since f, and f, are continuous at (zo, yo),

" kl)ig%o 0 (| fo(zo + 01k, yo + k) — fa(zo, y0)| + | fy(z0, Yo + O2k) — £, (20, %0)]) = 0

and consequently

f(l'o + hayO + k) — f(x()ayO) - hfz(xm yO) - kfy(x()ayO)

lim =0.
(hk)—(0,0) Vh? + k?
Therefore f is differentiable at (xg, yo). O

Example 0.10. If f(z,y) = e®™ + 2?siny + 4x for all (x,y) € R?, then
folz,y) = ye™ + 2xsiny + 4

and
fy(,y) = ze™ + 2% cos y
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for all (z,y) € R% Since f,, f, : R* — R are continuous at (0,0), f : R? — R is
differentiable at (0,0) and f'(0,0) =[4 0].

Remark 0.11. (a) f: S C R™ — R can be differentiable at x5 € S° even though none
of the partial derivatives continuous at x.
For example, the function f : R? — R, defined by

f(l" y) e .fC2 _|_ y2 lf (x7y) 7£ <O7 O)?
0 if (z,y) = (0,0),
is differentiable at (0,0) (using the next theorem) although neither f, : R*> — R nor
fy : R* = R is continuous at (0,0).

(b) If S is a nonempty open subset of R™, then a function f : S C R™ — R is said to
be continuously differentiable (on S) if all the partial derivatives of f are continuous on

S.

Similarly, f is called twice continuously differentiable (on S) if all the second order partial

derivatives of f are continuous on S.

Theorem 0.12. Let f : S C R™ — R and let xp € S°. Also, let % exist for each
il

je{l,...,m}. Then f is differentiable at xq iff

lim |f(zo +h) — f(wo) —a-h|

=0
h—0 |12l ’
where o = (% e 8‘2—’; )
o o
Proof. 1f
o M@0+ W) = fa0) —a bl _

h—0 Al
then by definition, f is differentiable at zy. Conversely, let f be differentiable at xy. Then
there exists 5 = (f1, ..., Bm) € R™ such that

| f(zo+h) = f(x0) — BNl _

= @ "
We have seen earlier that in this case 8; = 8‘97’; for all j € {1,...,m} and hence 8 = a.
Therefore ’

lim |f(xo +h) — f(xo) — - h —0

h—0 |12l

2 2

2
Example 0.13. (a) The function f : R? — R, defined by f(z,y) = {xyl’hryz’

0, if (z,y) = (0,0

is differentiable at (0,0) and f’(0,0) = [0 0].

if (z,y) # (0,0

9

Y

)

)



o=

= ) if l’, y 07 0 Y
(b) The function f : R? — R, defined by f(z,y) = ¢ V&*+v* (.y) # (0,0 is not
: if (z,y) = (0,0),

differentiable at (0, 0).

Maximum and minimum values of D, f(z¢): Let f: S C R™ — R be differentiable
at zg € S® and let V f(xq) # 0. If u € R™ such that ||u|| = 1, then D, f(zo) = V f(xq) - u

and since [V f(xo) - ul < [ Vf(xo)|[ul] = [V (2o)ll, we have — |V f(xo)| < Dyf(o) <
|V f(zo)]]. Also, by the equality condition of Cauchy—Schwarz inequality, the function

u +— D, f(xo) attains its maximum value ||V f(z¢)| for u = AT IO)”Vf(xO) and the

minimum value — ||V f(zo)|| for u = — =5 :CO)HVf(xO)

Example 0.14. Let f(z,y) = 42 — 2% — y? for all (z,y) € R% Then f : R? — R is
differentiable and V f(1, 1) = (—2,—2). Hence the maximum value of D, f(1,1) is 2v/2
which occurs for u = (—\%, —\%) and the minimum value of D, f(1,1) is —2v/2 which

occurs for u = (\/Lﬁ, \%)

Equivalent conditions of differentiability (Increment theorem): A function f :
S C R™ — R is differentiable at 2o € S if either of the following two conditions holds.

(a) There exist 6 > 0 and a function e : Bs(0) — R such that limj_,oe(h) = 0 and
f(xo+h) = f(xo) + Vf(xo) - h+||hlle(h) forall h € Bs(0).

(b) There exist § > 0 and functions ¢; : Bs(0) — R for j = 1,...,m such that
limy,_,oe;(h) = 0 for each j € {1,...,m} and

flxo+h) = f(xo) + Vf(xo) - h+ hier(h) + -+ + hmen(h)  for all h € Bs(0).

Proof. Let us first assume that f is differentiable at xy. Since zy € S°, there exists § > 0
such that Bs(xg) C S. Let € : B5(0) — R be defined by

{f(l“o+h)f(fro)vf(zo)'h if h 0,

[[Al

h:
‘=9, i h=0.

Since f is differentiable at xg, limy,_,oe(h) = 0. Also, the equation in (a) is satisfied for
all h € B;(0). Again, let j € {1,...,m} and let ¢; : B5(0) — R be defined by

() {Me(h) it h = (ha,... ) #0,
0 if h =0.

Since |”th < 1forall h € (hi,...,hmn) € Bs(0) \ {0} and since lim,_,ge(h) = 0, we get

limy, o £5(h) = 0. Also, since hiei(h) + -+ + hpnem(h) = 3270, hjei(h) = ||hlle(h) for all

h = (h1,...,hn) € Bs(0), the equation in (b) is satisfied for all h € Bs(0) as we have

already shown that the equation in (a) is satisfied for all h € B;(0).
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Conversely, let the condition in (a) be satisfied. Then
h) — - -h
lim f@o+h) — fwo) = Vf(zo) - h _ lim e(h) = 0
h—0 ||h|| h—0
and so f is differentiable at xo. Again, let the condition in (b) be satisfied. Then

) ] s il
. Rl (e (R) g + - + em(h) i)
h—0 |2l
hy P,
= lim(e1(h)— + -+ + en(h)r).
h—0 7] 7]
But since % < 1 and ¢;(h) — 0 as h — 0, this limit is 0, and so f is differentiable at
Zg. ]

Linearization: Let f : S € R™ — R be differentiable at zo € S° The function
L :R™ — R, defined by L(z) = f(xo) + Vf(zo) - (x — x) for all x € R™, is called the
linearization of f at xo. We note that L is the unique polynomial function of degree one
satisfying L(zo) = f(zo) and

@) = L)

wowo ||z — o]

= 0.

Example 0.15. If f(z,y,2) = 23 + y* + 2z for all (x,9,2) € R3, then f : R® — R is
differentiable at

(1,1,1) and Vf(1,1,1) = (4,2,3).
Hence the linearization L : R* — R of f at (1,1,1) is defined by

L(z,y,2) =3+ (4,2,3)- (x — 1,y — 1,z — 1) =4dx + 2y + 32 — 6 for all (x,y,2) € R®.



