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1. A revision of Riemann integral of one variable

Let f : [a, b] → R be bounded function and P = {xo, x1, . . . , xn} is a partition of [a, b],
where {a = xo < x1 < · · · < xn = b}. Let ∆xi = xi − xi−1. Define mi = inf{f(x) : xi−1 ≤
x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi} Write

L(P, f) =
n∑

i=1

mi∆xi and U(P, f) =
n∑

i=1

Mi∆xi.

Since f is bounded, there exist m,M ≥ 0 such that m ≤ f(x) ≤ M for all x ∈ [a, b].
Hence

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤ M(b− a).
It is easy to see that if P1 ⊆ P2, then U(P1, f) ≥ U(P2, f) and L(P1, f) ≤ L(P2, f). It is
clear that L(P, f) is an increasing function over the set of all finer partitions while U(P, f)
is a decreasing function of P.

Definition 1.1. The function f is said to be Riemann integrable (or f ∈ R[a, b]) if
inf
P

U(P, f) = sup
P

L(P, f).

Let ω(P, f) = U(P, f)− L(P, f). From the definition, it follows that
(1.1) inf

P
ω(P, f) = inf

P
{U(P, f)− L(P, f)} = 0,

where ω(P, f) is known as oscillatory sum of f over the partition P. Hence, if f ∈ R[a, b],
then for each ϵ > 0, there exists a partition P such that ω(P, f) < ϵ. On the other hand, for
ϵ = 1

n
, n ∈ N, there exists a partition Pn such that ω(Pn, f) <

1
n
. Thus, lim

n→∞
ω(Pn, f) = 0.

Theorem 1.2. Let f : [a, b] → R be bounded. Then f ∈ R[a, b] if and only if there exists
a sequence {Pn} of partitions of [a, b] such that lim

n→∞
ω(Pn, f) = 0.

Proof. We have already seen the forward implication. For the other one, if lim
n→∞

ω(Pn, f) =

0, then for each ϵ > 0, there exists no ∈ N such that ω(Pn, f) < ϵ, whenever n ≥ no.
But, then inf

P
ω(P, f) ≤ ω(Pno , f) < ϵ for all ϵ > 0. Since f is bounded, both inf

P
U(P, f)

and sup
P

L(P, f) exist, and from (1.1) it follows that inf
P

U(P, f) = sup
P

L(P, f). Hence

f ∈ R[a, b]. □

Example 1.3. Let f : [0, 1] → R is given by

f(x) =

{
1 if x = 1

2
,

0 otherwise.

Then f is bounded and for Pn = { i
n
: i = 0, 1, . . . , n}, we have

ω(Pn, f) =
n∑

i=1

(Mi −mi)∆xi ≤ 2.
1

n
→ 0,

since 1
2
can belong to two consecutive subintervals. Hence f ∈ R[0, 1].
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Recall that if P1 ⊆ P2, then U(P1, f) ≥ U(P2, f) and L(P1, f) ≤ L(P2, f). Hence
ω(P1, f) ≥ ω(P2, f). Using this fact, it is enough to workout lim

n→∞
ω(Pn, f) = 0, while

{Pn} is an increasing sequence of partitions.

Theorem 1.4. Let f : [a, b] → R be bounded. Then f ∈ R[a, b] if and only if there exists
an increasing sequence of partitions {Pn} of [a, b] such that lim

n→∞
ω(Pn, f) = 0.

Proof. Since f ∈ R[a, b], by Theorem 1.2, there exists a sequence of partition {Pn} such
that lim

n→∞
ω(Pn, f) = 0. Let Q1 = P1 and Qn = P1 ∪ P2 ∪ · · · ∪ Pn. Then ω(Qn, f) ≤

ω(Pn, f) → 0. The converse part is obvious from Theorem 1.2. □

Remark 1.5. From Theorem 1.4 it follows that lim
n→∞

U(Pn, f) = lim
n→∞

L(Pn, f) =
∫ b

a
f(x)dx.

Theorem 1.6. If f : [a, b] → R is continuous, then f ∈ R[a, b].

Proof. Since f is continuous on the closed interval [a, b], f is bounded and uniformly
continuous. For each ϵ > 0, there exists δ > 0 such that |x−y| < δ implies |f(x)−f(y)| <

ϵ
2(b−a)

. Choose a partition P of [a, b] such that ∆xi < δ. Since f attains its infimum and

supremum on each subinterval, we get Mi −mi ≤ ϵ
2(b−a)

. Hence

ω(P, f) =
n∑

i=1

(Mi −mi)∆xi ≤
n∑

i=1

ϵ

2(b− a)
∆xi < ϵ.

□

Example 1.7. Every monotone function f on [a, b] is Riemann integrable. Assume f is

monotone increasing. Let Pn =
{
xi = a+ (b−a)i

n
: i = 0, 1, . . . , n

}
. Then the oscillatory

sum

ω(Pn, f) =
n∑

i=1

(Mi −mi)∆xi =
n∑

i=1

{f(xi)− f(xi−1)}
b− a

n
= {f(b)− f(a)} b− a

n
→ 0.

Hence by Theorem 1.4 we conclude that f ∈ R[a, b].

Continuity like condition for Riemann integrability on [a, b].

We know that the oscillatory sum ω(P, f) decreases over the set of finer partitions.
And f is Riemann integrable if and only if there is a sequence of partitions {Pn} such
that ω(Pn, f) → 0. Using this fact, we derive a continuity like condition for Riemann
integrability of bounded function on [a, b]. For a given partition P = {xo, x1, . . . , xn} of
[a, b], we define |P | = max

1≤i≤n
∆xi, where ∆xi = xi − xi−1.

Theorem 1.8. Let f : [a, b] → R be a bounded function. Then f ∈ R([a, b]) if and only
if for each ϵ > 0, there exists δ > 0 such that for each partition P with |P | < δ implies
ω(P, f) < ϵ.

Proof. Since f is Riemann integrable, for each ϵ > 0 there exists a partition P of [a, b]
such that ω(P, f) < ϵ. Let δ > 0 be small enough and P ′ be a refinement of P such that
|P ′| < δ. As P ⊆ P ′, it follows that ω(P ′, f) ≤ ω(P, f) < ϵ. The other implication is
obvious by definition of R([a, b]). □
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Corollary 1.9. Let f : [a, b] → R be a bounded function. Then f ∈ R([a, b]) if and only
if for each sequence of partitions {Pn} with |Pn| → 0 implies ω(Pn, f) → 0.

Question*. Think about, how far can be a Riemann integrable function from continuous
function.

Double integrals

We know that the Riemann integral of a non-negative function of one variable on a
finite interval is the area of the region under the graph of the function. In a similar way,
the double integral of a non-negative function f(x, y) defined on a region in the plane is
the volume of the region under the graph of f(x, y).

First, we discuss double integral on the rectangular region, and later we consider more
general region with curvilinear boundary.

Let D = [a, b] × [c, d] and f : D → R be bounded. Let P1 = {x0, x1, . . . , xn} be a
partition of [a, b] and P2 = {y0, y1, . . . , ym} be a partition of [c, d]. Note that the partition
P = P1 × P2 decomposes D into mn sub-rectangles (or cells). Let Dij = [xi−1, xi] ×
[yj−1, yj]. Let mij = inf{f(x, y) : (x, y) ∈ Dij}. Define

L(P, f) =
n∑

i=1

m∑
j=1

mij∆xi∆yj.

Similarly, we can define

U(P, f) =
n∑

i=1

m∑
j=1

Mij∆xi∆yj,

where Mij = sup{f(x, y) : (x, y) ∈ Dij}. The lower integral of f is defined by sup
P

L(P, f).

The upper integral of f is defined by inf
P

U(P, f). Note that both the integrals exist because

f is bounded. We say that f is integrable on D (or f ∈ R(D)) if both lower and upper
integrals of f are equal. If the function f is integrable on D, then the double integral
is denoted by ∫∫

D

f(x, y)dxdy or

∫∫
D

f(x, y)dA.

Example 1.10. Let f : D = [0, 1]× [0, 1] → R is given by

f(x, y) =

{
1 if x, y ∈ Q ∩ [0, 1],

0 otherwise.

Then f is not integrable on D, because for any partition P of D defined as above, we get
U(P, f) = 1 ̸= 0 = L(P, f).

Theorem 1.11. Let f : D = [a, b]× [c, d] → R be bounded. Then f ∈ R(D) if and only if
for each ϵ > 0 there exists a partition P of D such that ω(P, f) = U(P, f)− L(P, f) < ϵ.

Theorem 1.12. Let f : D = [a, b]× [c, d] → R be bounded. Then f ∈ R(D) if and only
if there exists an increasing sequence of partitions {Pn} of D such that lim

n→∞
ω(Pn, f) = 0.
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Since the proof of Theorem 1.12 is similar to Theorem 1.4, we omit here.

Example 1.13. Let f : D = [0, 1]× [0, 1] → R is given by

f(x, y) =

{
0 if x ̸= y

1 if x = y.

Then
∫∫
D

f(x, y)dxdy = 0. Let Pn = { i
n
: i = 0, 1, . . . , n} × { i

n
: i = 0, 1, . . . , n}. In this

case, ∆xi = ∆yj =
1
n
. The oscillatory sum of the function f on D satisfies

ω(Pn, f) =
n∑

i=1

n∑
j=1

(Mij −mij)∆xi∆yj =
n∑

i=1

n∑
j=1

(Mij − 0)
1

n2
=

n∑
i=j, j=1

1.
1

n2
=

1

n
→ 0.

Theorem 1.14. Let D = [a, b] × [c, d]. If f : D → R is continuous, then f is integrable
on D.

Proof. Since f is continuous on the closed rectangle D, it follows that f is bounded
and uniformly continuous on D. Hence for given ϵ > 0 there exists δ > such that for
(x, y), (x′, y′) ∈ D with

√
(x− x′)2 + (y − y′)2 < δ implies |f(x, y)−f(x′, y′)| < ϵ

2A
, where

A is the area of the rectangle D. Let P = {Dij : i = 1, 2, . . . , n and j = 1, 2, . . . ,m},
where Dij = [xi−1, xi] × [yj−1, yj]. Write d(Dij) =

√
(xi − xi−1)2 + (yi − yj−1)2. Now,

suppose P satisfies d(Dij) < δ for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Since f attains
its infimum and supremum on each closed cell Dij, we get Mij −mij ≤ ϵ

2A
. Hence

ω(P, f) =
n∑

i=1

m∑
i=1

(Mij −mij)∆xi∆yi ≤
n∑

i=1

m∑
i=1

ϵ

2A
∆xi∆yj < ϵ.

Hence by Theorem 1.12, we conclude that f ∈ R(D). □

Continuity like condition for Riemann integrability
Let P = {Dij : i = 1, 2, . . . , n and j = 1, 2, . . . ,m} be a partition of D = [a, b] × [c, d],

where Dij = [xi−1, xi] × [yj−1, yj]. Write d(Dij) =
√
(xi − xi−1)2 + (yj − yj−1)2. Define

|P | = max{d(Dij) : i = 1, 2, . . . , n and j = 1, 2, . . . ,m}.

Theorem 1.15. Let f : D = [a, b] × [c, d] → R be a bounded function. Then f ∈ R(D)
if and only if for each ϵ > 0 there exists δ > 0 such that for each partition P of D with
|P | < δ implies ω(P, f) < ϵ.

Since the proof of Theorem 1.15 is similar to Theorem 1.8, we omit here.

Corollary 1.16. Let f : D = [a, b]× [c, d] → R be a bounded function. Then f ∈ R(D) if
and only if for each sequence of partitions {Pn} of D with |Pn| → 0 implies ω(Pn, f) → 0.

Note that in order to show f ̸∈ R(D), it is enough to show that there exists a sequence
of partitions {Pn} with |Pn| → 0 but ω(Pn, f) ̸→ 0.
Geometric Interpretation
If f : D = [a, b]× [c, d] → [0,∞) is integrable. Then

∫∫
D

f(x, y)dxdy is the volume of the

region bounded by planes x = a, x = b, y = c, y = d and the surface z = f(x, y).
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Repeated Integrals. The next result illustrates that the evaluation of the double inte-
gral can be reduced to the repeated integrals. This result is known as Fubini’s Theorem.
Before we come to the main result let us have a look at the following examples.

Example 1.17. Consider f : D = [0, 1]× [0, 1] → R, defined by

f(x, y) =

{
1, if x ∈ Q ∩ [0, 1]

2y, if x ∈ Qc ∩ [0, 1]
.

Then
∫ 1

0

(∫ 1

0
f(x, y)dy

)
dx = 1. However f is not integrable on D. (Hint: Use Corollary

1.16 to deduce that f ̸∈ R(D).)

Example 1.18. Consider f : D = [0, 1]× [0, 1] → R, defined by

f(x, y) =


0 if x ̸= 1

2

1 if x = 1
2
, y ∈ Q ∩ [0, 1]

−1 if x = 1
2
, y ∈ Qc ∩ [0, 1].

Note that for x = 1
2
,
∫ 1

0
f(x, y)dy does not exists. However,

∫∫
D

f(x, y)dxdy exists.

Theorem 1.19. (Fubini’s Theorem) Let f : D = [a, b] × [c, d] → R be integrable. If
for each y ∈ [c, d], the function f(·, y) ∈ R[a, b], then the function F defined by F (y) =
b∫
a

f(x, y)dx is integrable on [c, d] and∫∫
D

f(x, y)dxdy =

∫ d

c

(∫ b

a

f(x, y)dx

)
dy.

Proof. Since f ∈ R(D), for each ϵ > 0 there exists a partition
P = P1 × P2 = {Dij : i = 1, 2, . . . , n and j = 1, 2, . . . ,m}

of D such that U(P, f) − L(P, f) < ϵ. Recall that mij = inf{f(x, y) : (x, y) ∈ Dij} and
Mij = sup{f(x, y) : (x, y) ∈ Dij}. Let us define kj = inf{F (y) : yj−1 ≤ y ≤ yj} and
Kj = sup{F (y) : yj−1 ≤ y ≤ yj}. Since mij ≤ f(x, y) ≤ Mij for each (x, y) ∈ Dij, it
follows that

(1.2)
n∑

i=1

mij∆xi ≤ L(P1, f(·, y)) ≤
∫ b

a

f(x, y)dx = F (y) ≤
n∑

i=1

Mij∆xi

for each y ∈ [yj−1, yj]. Note the first inequality in (1.2) follows due to the fact that
infimum mij of f on Dij is smaller than the infimum of f over [xi−1, xi]× {y}.

From the above it follows that

L(P, f) =
n∑

i=1

m∑
j=1

mij∆xi∆yj ≤
n∑

j=1

kj∆yj = L(P2, F ) ≤ U(P2, F )

and

U(P2, F ) =
n∑

j=1

Kj∆yj ≤
n∑

i=1

m∑
j=1

Mij∆xi∆yj = U(P, f).

Hence
(1.3) L(P, f) ≤ L(P2, F ) ≤ U(P2, F ) ≤ U(P, f).
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Since U(P, f) − L(P, f) < ϵ, from (1.3) we get U(P2, F ) − L(P2, F ) < ϵ. That is, F ∈
R[c, d], and hence once again from (1.3) we infer that

L(P, f) ≤
∫ d

c

F (y)dy ≤ U(P, f) and L(P, f) ≤
∫∫
D

f(x, y)dxdy ≤ U(P, f).

Thus,

−ϵ <

∫∫
D

f(x, y)dxdy −
∫ d

c

F (y)dy ≤ ϵ

for each ϵ > 0. Hence ∫∫
D

f(x, y)dxdy =

∫ d

c

F (y)dy.

This completes the proof. □

Note that if we define G(x) =
d∫
c

f(x, y)dy, then the similar result holds.

Corollary 1.20. (Fubini’s Theorem) Let f : D = [a, b] × [c, d] → R be a continuous
function. Then∫∫

D

f(x, y)dxdy =

∫ d

c

(∫ b

a

f(x, y)dx

)
dy =

∫ b

a

(∫ d

c

f(x, y)dy

)
dx.

Example 1.21. Let f(x, y) = xexy for (x, y) ∈ D = [0, 2] × [0, 1]. Then f is continuous
and hence by Fubini’s theorem∫∫

D

f(x, y)dxdy =

∫ 2

0

(∫ 1

0

xexydy

)
dx =

∫ 2

0

[exy]10 dx =

∫ 2

0

(ex − 1)dx = e2 − 3.

Bounded functions with discontinuities. We know from Theorem 1.14 that if f is
continuous on D then f is integrable. In this section, we discuss that the integral of a
function f also exists if the set of discontinuities of f is not too large. In order to measure
discontinuities, we introduce the following concept.

Definition 1.22. Let A be a bounded subset of R2. Then A is said to be of content zero

if for each ϵ > 0 there exist finitely many rectangles {Ri}ni=1 such that A ⊆
n⋃

i=1

Ri and

Area

(
n⋃

i=1

Ri

)
< ϵ.

Example 1.23. (i) Any finite set of points in R2 has content zero.
(ii) Every subset of a set of content zero has content zero.
(iii) The union of finite numbers of bounded sets of content zero is also of content zero.
(iv) Every line segment has content zero.

Exercise 1.24. Any bounded subset of R2 having non-empty interior cannot have content
zero.

Theorem 1.25. Let f : D = [a, b] × [c, d] → R be a bounded function. If the set of
discontinuities of f in D is a set of content zero, then f is integrable.
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Proof. Let M > 0 be such that |f(x, y)| ≤ M for all (x, y) ∈ D. Suppose E is set of
discontinuities of f inD. In order to prove this result, we need to reorganize some symbols.
Let P = {Di : Di subrectangles in D} be a partition of D. Let mi = inf

Di

(f), Mi = sup
Di

(f)

and A(Di) = Area(Di). Now, choose a partition P of D such that

E ⊂
m⋃
i=1

Di and
m∑
i=1

A(Di) <
ϵ

4M
.

Note that f is uniformly continuous on each closed subrectangle Di : i = m + 1, . . . , n.
Hence f attains its infimum and supremum on each Di. Thus, as similar argument used in
the proof of Theorem 1.14, we can have selected the partition P such thatMi−mi ≤ ϵ

2A(D)

for i = m+ 1, . . . , n. Hence

ω(P, f) =
n∑

i=1

(Mi −mi)A(Di)

=
m∑
i=1

(Mi −mi)A(Di) +
n∑

i=m+1

(Mi −mi)A(Di)

≤
m∑
i=1

2MA(Di) +
n∑

i=m+1

ϵ

2A(D)
A(Di)

< 2M
ϵ

4M
+

ϵ

2

A(D)

A(D)
= ϵ.

Thus, for each ϵ > 0 we have constructed a partition P of D such that ω(P, f) < ϵ. This
implies f ∈ R(D). □

Double integral over general bounded regions. Let D be a bounded region in R2

and f : D → R be a bounded function defined on D. Let Q be a rectangle such that
D ⊆ Q. Extend f on Q as f̃ : Q → R, where

f̃(x, y) =

{
f(x, y) if (x, y) ∈ D

0 if (x, y) ∈ Q \D.

If f̃ is integrable over Q, then we say that f is integrable over D and define∫∫
D

f(x, y)dxdy =

∫∫
Q

f̃(x, y)dxdy.

Theorem 1.26. (Fubini’s Theorem) Let f be a bounded continuous function over a
bounded region D in R2.

(i) If D = {(x, y) : a ≤ x ≤ b and f1(x) ≤ y ≤ f2(x)} for some continuous functions
f1, f2 : [a, b] → R, then∫∫

D

f(x, y)dxdy =

∫ b

a

(∫ f2(x)

f1(x)

f(x, y)dy

)
dx.
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(ii) If D = {(x, y) : c ≤ y ≤ d and g1(y) ≤ x ≤ g2(y)} for some continuous functions
g1, g2 : [c, d] → R, then∫∫

D

f(x, y)dxdy =

∫ d

c

(∫ g2(y)

g1(y)

f(x, y)dx

)
dy.

For a proof of Theorem 1.26, we refer to Chapter 11, Calculus Vol. II, by Apostol.

Example 1.27. (i) LetD be the region bounded by the lines joining the points (0, 0), (0, 1)
and (2, 2). Evaluate the integral

∫∫
D

(x+ y)2dxdy.

(ii) Evaluate the integral
2∫
0

(
1∫
y
2

ex
2
dx

)
dy.

Riemann integrable functions on D satisfy the following algebraic relations.

Theorem 1.28. Let f and g be Riemann integrable functions on the region D in the
plane and c ∈ R. Then
(i) cf + g∈R(D),

∫∫
D

{cf(x, y) + g(x, y)}dxdy = c
∫∫
D

f(x, y)dxdy +
∫∫
D

g(x, y)dxdy.

(ii) If f(x, y) ≤ g(x, y) for all (x, y) ∈ D, then
∫∫
D

f(x, y)dxdy ≤
∫∫
D

g(x, y)dxdy.

(iii) |f | ∈ R(D) and

∣∣∣∣∫∫
D

f(x, y)dxdy

∣∣∣∣ ≤ ∫∫
D

|f(x, y)|dxdy.
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