MA15010H: Multi-variable Calculus

(Practice problem set 1: Hint/Model solution) July - November, 2025

1. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, then show that $|\|\mathbf{x}\| - \|\mathbf{y}\|| \le \|\mathbf{x} - \mathbf{y}\|$.

Solution. We have $\|\mathbf{x}\| = \|\mathbf{x} - \mathbf{y} + \mathbf{y}\| \le \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y}\|$ and so $\|\mathbf{x}\| - \|\mathbf{y}\| \le \|\mathbf{x} - \mathbf{y}\|$. Similarly, $\|\mathbf{y}\| = \|\mathbf{y} - \mathbf{x} + \mathbf{x}\| \le \|\mathbf{y} - \mathbf{x}\| + \|\mathbf{x}\| = \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{x}\|$ and so $\|\mathbf{y}\| - \|\mathbf{x}\| \le \|\mathbf{x} - \mathbf{y}\|$. Therefore $\|\mathbf{x}\| - \|\mathbf{y}\| \le \|\mathbf{x} - \mathbf{y}\|$.

2. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, then show that $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

Solution. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, we have

$$\|\mathbf{x} + \mathbf{y}\|^2 = (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y}) = \|\mathbf{x}\|^2 + 2(\mathbf{x} \cdot \mathbf{y}) + \|\mathbf{y}\|^2$$

By the Cauchy–Schwarz inequality, $\mathbf{x} \cdot \mathbf{y} \leq ||\mathbf{x}|| \, ||\mathbf{y}||$, so

$$\|\mathbf{x} + \mathbf{y}\|^2 \le (\|\mathbf{x}\| + \|\mathbf{y}\|)^2.$$

Taking square roots gives $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

3. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, then show that $\|\mathbf{x}\| \leq \max\{\|\mathbf{x} + \mathbf{y}\|, \|\mathbf{x} - \mathbf{y}\|\}$.

Solution. Suppose, for the sake of contradiction, that

$$\|\mathbf{x}\| > \max\{\|\mathbf{x} + \mathbf{y}\|, \|\mathbf{x} - \mathbf{y}\|\}.$$

Then $\|\mathbf{x} + \mathbf{y}\| < \|\mathbf{x}\|$ and $\|\mathbf{x} - \mathbf{y}\| < \|\mathbf{x}\|$. Note that

$$\mathbf{x} = \frac{(\mathbf{x} + \mathbf{y}) + (\mathbf{x} - \mathbf{y})}{2}.$$

Taking norms and using the triangle inequality, we get

$$\|\mathbf{x}\| = \left\| \frac{(\mathbf{x} + \mathbf{y}) + (\mathbf{x} - \mathbf{y})}{2} \right\| \le \frac{1}{2} (\|\mathbf{x} + \mathbf{y}\| + \|\mathbf{x} - \mathbf{y}\|) < \frac{1}{2} (2\|\mathbf{x}\|) = \|\mathbf{x}\|,$$

a contradiction. Hence,

$$\|\mathbf{x}\| \le \max\{\|\mathbf{x} + \mathbf{y}\|, \|\mathbf{x} - \mathbf{y}\|\}.$$

4. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$. Then show that $\|\mathbf{x} + \alpha \mathbf{y}\| \ge \|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$ iff $\mathbf{x} \cdot \mathbf{y} = 0$.

Solution. First assume that $\mathbf{x} \cdot \mathbf{y} = 0$. If $\alpha \in \mathbb{R}$, then we have

$$\|\mathbf{x} + \alpha \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + 2\alpha \mathbf{x} \cdot \mathbf{y} + \alpha^2 \|\mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \alpha^2 \|\mathbf{y}\|^2 \ge \|\mathbf{x}\|^2$$

and hence $\|\mathbf{x} + \alpha \mathbf{y}\| \ge \|\mathbf{x}\|$.

Conversely, let $\|\mathbf{x} + \alpha \mathbf{y}\| \ge \|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$. If possible, let $\mathbf{x} \cdot \mathbf{y} \ne 0$. Then for $\alpha = -\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^2}$, we have

$$\|\mathbf{x} + \alpha \mathbf{y}\|^{2} = \|\mathbf{x}\|^{2} + 2\alpha(\mathbf{x} \cdot \mathbf{y}) + \alpha^{2} \|\mathbf{y}\|^{2} = \|\mathbf{x}\|^{2} - 2\frac{(\mathbf{x} \cdot \mathbf{y})^{2}}{\|\mathbf{y}\|^{2}} + \frac{(\mathbf{x} \cdot \mathbf{y})^{2}}{\|\mathbf{y}\|^{2}}$$
$$= \|\mathbf{x}\|^{2} - \frac{(\mathbf{x} \cdot \mathbf{y})^{2}}{\|\mathbf{y}\|^{2}} < \|\mathbf{x}\|^{2},$$

which is a contradiction. Therefore $\mathbf{x} \cdot \mathbf{y} = 0$.

5. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ and a > 0. Show that $|\mathbf{x} \cdot \mathbf{y}| \le a ||\mathbf{x}||^2 + \frac{1}{4a} ||\mathbf{y}||^2$.

Solution. By Cauchy-Schwartz inequality,

$$|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$$

$$= 2\sqrt{a} ||\mathbf{x}|| \frac{1}{2\sqrt{a}} ||\mathbf{y}||$$

$$\le (\sqrt{a} ||\mathbf{x}||)^2 + \left(\frac{1}{2\sqrt{a}} ||\mathbf{y}||\right)^2$$

$$= a ||\mathbf{x}||^2 + \frac{1}{4a} ||\mathbf{y}||^2.$$

6. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$. Show that $|\|\mathbf{x}\| - \|\mathbf{y}\|| = \|\mathbf{x} - \mathbf{y}\|$ iff $\alpha \mathbf{x} = \beta \mathbf{y}$ for some $\alpha, \beta \geq 0$ with $(\alpha, \beta) \neq (0, 0)$.

Solution. We first assume that $||\mathbf{x}|| - ||\mathbf{y}|| = ||\mathbf{x} - \mathbf{y}||$. Then $||\mathbf{x}|| - ||\mathbf{y}|||^2 = ||\mathbf{x} - \mathbf{y}||^2$, which gives $||\mathbf{x}|| \, ||\mathbf{y}|| = |\mathbf{x} \cdot \mathbf{y}|$. By Cauchy–Schwarz equality, $\mathbf{y} = 0$ or $\mathbf{x} = t\mathbf{y}$ for some $t \in \mathbb{R}$. If $\mathbf{y} = 0$ we take $(\alpha, \beta) = (0, 1)$. If $\mathbf{y} \neq 0$ and $\mathbf{x} = t\mathbf{y}$, then

$$\mathbf{x} \cdot \mathbf{y} = t \|\mathbf{y}\|^2 = \|\mathbf{x}\| \|\mathbf{y}\| = |t| \|\mathbf{y}\|^2,$$

so $t = |t| \ge 0$. Then $\alpha \mathbf{x} = \beta \mathbf{y}$ for some $\alpha, \beta \ge 0$ not both zero.

Conversely, suppose $\alpha \mathbf{x} = \beta \mathbf{y}$ for some $\alpha, \beta \ge 0$ with $(\alpha, \beta) \ne (0, 0)$. If $\mathbf{y} = 0$ (so $\mathbf{x} = 0$ as well) the equality is trivial. Otherwise $\mathbf{x} = t\mathbf{y}$ for some t > 0. Then

$$|\|\mathbf{x}\| - \|\mathbf{y}\|| = |t - 1| \|\mathbf{y}\|$$
 and $\|\mathbf{x} - \mathbf{y}\| = |t\mathbf{y} - \mathbf{y}\| = |t - 1| \|\mathbf{y}\|$,

so the two sides are equal.

7. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ and r > 0 such that $\mathbf{y} \cdot \mathbf{z} = 0$ for all $\mathbf{z} \in B_r(\mathbf{x})$. Show that $\mathbf{y} = \mathbf{0}$.

Solution. If possible, let $\mathbf{y} \neq 0$. Then $\|\mathbf{y}\| \neq 0$. If $\mathbf{z} = \mathbf{x} + \frac{r}{2\|\mathbf{y}\|}\mathbf{y}$, then $\mathbf{z} \in \mathbb{R}^m$ and since $\|\mathbf{z} - \mathbf{x}\| = \frac{r}{2} < r$, $\mathbf{z} \in B_r(\mathbf{x})$. Hence $\mathbf{y} \cdot \mathbf{z} = 0$ and so $\mathbf{y} \cdot \mathbf{x} + \frac{r}{2\|\mathbf{y}\|}\|\mathbf{y}\|^2 = 0$. Since $\mathbf{x} \in B_r(\mathbf{x})$, $\mathbf{y} \cdot \mathbf{x} = 0$ and so from above, we get $\|\mathbf{y}\| = 0$, which is a contradiction. Therefore $\mathbf{y} = 0$.

8. If $\mathbf{x}_0 \in \mathbb{R}^m$ and r > 0, then determine $\sup\{\|\mathbf{x} - \mathbf{y}\| : \mathbf{x}, \mathbf{y} \in B_r(\mathbf{x}_0)\}$ with justification.

Solution. For all $\mathbf{x}, \mathbf{y} \in B_r(\mathbf{x}_0)$, $\|\mathbf{x} - \mathbf{y}\| \le \|\mathbf{x} - \mathbf{x}_0\| + \|\mathbf{x}_0 - \mathbf{y}\| < r + r = 2r$ and so 2r is an upper bound of $\{\|\mathbf{x} - \mathbf{y}\| : \mathbf{x}, \mathbf{y} \in B_r(\mathbf{x}_0)\}$. Let $\varepsilon > 0$ such that $\varepsilon < r$.

Then $\mathbf{x}_0 + (r - \frac{\varepsilon}{3})\mathbf{e}_1$, $\mathbf{x}_0 - (r - \frac{\varepsilon}{3})\mathbf{e}_1 \in \mathbb{R}^m$ and since $\|\mathbf{x}_0 + (r - \frac{\varepsilon}{3})\mathbf{e}_1 - \mathbf{x}_0\| = r - \frac{\varepsilon}{3} < r$, we have $\mathbf{x}_0 + (r - \frac{\varepsilon}{3})\mathbf{e}_1$, $\mathbf{x}_0 - (r - \frac{\varepsilon}{3})\mathbf{e}_1 \in B_r(\mathbf{x}_0)$. Also, $\|(\mathbf{x}_0 + (r - \frac{\varepsilon}{3})\mathbf{e}_1) - (\mathbf{x}_0 - (r - \frac{\varepsilon}{3})\mathbf{e}_1)\| = 2r - \frac{2\varepsilon}{3} > 2r - \varepsilon$ and hence $2r - \varepsilon$ is not an upper bound of $\{\|\mathbf{x} - \mathbf{y}\| : \mathbf{x}, \mathbf{y} \in B_r(\mathbf{x}_0)\}$. Therefore $\sup\{\|\mathbf{x} - \mathbf{y}\| : \mathbf{x}, \mathbf{y} \in B_r(\mathbf{x}_0)\} = 2r$.

9. Let $S \subseteq \mathbb{R}^m$ such that $S \subseteq B_r[\mathbf{x}_0]$ for some $\mathbf{x}_0 \in \mathbb{R}^m$ and for some r > 0. Show that S is a bounded set.

Solution. If $\mathbf{x} \in S$, then $\mathbf{x} \in B_r[\mathbf{x}_0]$ and hence

$$\|\mathbf{x}\| = \|\mathbf{x} - \mathbf{x}_0 + \mathbf{x}_0\| \le \|\mathbf{x} - \mathbf{x}_0\| + \|\mathbf{x}_0\| \le r + \|\mathbf{x}_0\|.$$

Therefore S is a bounded set in \mathbb{R}^m .

10. Let $\alpha \in (0,1)$ and let $\mathbf{x}_n = (n^3 \alpha^n, \frac{1}{n} \lfloor n\alpha \rfloor)$ for all $n \in \mathbb{N}$ (For each $x \in \mathbb{R}$, $\lfloor x \rfloor$ denotes the greatest integer not exceeding x). Examine whether the sequence (\mathbf{x}_n) converges in \mathbb{R}^2 . Also, find $\lim_{n \to \infty} \mathbf{x}_n$ if the sequence (\mathbf{x}_n) converges in \mathbb{R}^2 .

Solution. Let $x_n = n^3 \alpha^n$ and $y_n = \frac{1}{n} \lfloor n\alpha \rfloor$ for all $n \in \mathbb{N}$. Using the ratio test, the sequence (x_n) converges in \mathbb{R} to 0. Again, since $n\alpha < \lfloor n\alpha \rfloor + 1$ for all $n \in \mathbb{N}$, we have $n\alpha - 1 < \lfloor n\alpha \rfloor \le n\alpha$ for all $n \in \mathbb{N}$ and so it follows that $\alpha - \frac{1}{n} < y_n \le \alpha$ for all $n \in \mathbb{N}$. Hence by the sandwich theorem, the sequence (y_n) converges in \mathbb{R} to α . Therefore the sequence (\mathbf{x}_n) converges in \mathbb{R}^2 and $\lim_{n \to \infty} \mathbf{x}_n = (0, \alpha)$.

11. Let (\mathbf{x}_n) be a sequence in \mathbb{R}^m such that the series $\sum_{n=1}^{\infty} 2\|\mathbf{x}_n\|^2$ is convergent. Show that the series $\sum_{n=1}^{\infty} \|\mathbf{x}_n\|$ is convergent.

Solution. For all $n \in \mathbb{N}$, using the Cauchy–Schwarz inequality, we have

$$\sum_{k=1}^{n} \|\mathbf{x}_{k}\| = \sum_{k=1}^{n} k \cdot \frac{\|\mathbf{x}_{k}\|}{k}$$

$$\leq \left(\sum_{k=1}^{n} k^{2} \|\mathbf{x}_{k}\|^{2}\right)^{1/2} \left(\sum_{k=1}^{n} \frac{1}{k^{2}}\right)^{1/2}$$

$$\leq \left(\sum_{k=1}^{\infty} k^{2} \|\mathbf{x}_{k}\|^{2}\right)^{1/2} \left(\sum_{k=1}^{\infty} \frac{1}{k^{2}}\right)^{1/2} < \infty.$$

This shows that the sequence $(\sum_{k=1}^{n} \|\mathbf{x}_{k}\|)$ of partial sums of the series $\sum_{k=1}^{\infty} \|\mathbf{x}_{k}\|$ of nonnegative real numbers is bounded above and hence the sequence $(\sum_{k=1}^{n} \|\mathbf{x}_{k}\|)$ converges in \mathbb{R} . Consequently the series $\sum_{n=1}^{\infty} \|\mathbf{x}_{n}\|$ is convergent in \mathbb{R} .

12. Let (\mathbf{x}_n) and (\mathbf{y}_n) be sequences in \mathbb{R}^m such that $\mathbf{x}_n \to \mathbf{x} \in \mathbb{R}^m$ and $\mathbf{y}_n \to \mathbf{y} \in \mathbb{R}^m$. Show that $\mathbf{x}_n + \mathbf{y}_n \to \mathbf{x} + \mathbf{y}$ and $\mathbf{x}_n \cdot \mathbf{y}_n \to \mathbf{x} \cdot \mathbf{y}$.

Solution. Since $\mathbf{x}_n \to \mathbf{x}$ and $\mathbf{y}_n \to \mathbf{y}$, $\|\mathbf{x}_n - \mathbf{x}\| \to 0$ and $\|\mathbf{y}_n - \mathbf{y}\| \to 0$. Hence

$$\|(\mathbf{x}_n + \mathbf{y}_n) - (\mathbf{x} + \mathbf{y})\| \le \|\mathbf{x}_n - \mathbf{x}\| + \|\mathbf{y}_n - \mathbf{y}\| \to 0.$$

Therefore $\|(\mathbf{x}_n + \mathbf{y}_n) - (\mathbf{x} + \mathbf{y})\| \to 0$ and so $\mathbf{x}_n + \mathbf{y}_n \to \mathbf{x} + \mathbf{y}$. Again,

$$|\mathbf{x}_n \cdot \mathbf{y}_n - \mathbf{x} \cdot \mathbf{y}| = |\mathbf{x}_n \cdot \mathbf{y}_n - \mathbf{x}_n \cdot \mathbf{y} + \mathbf{x}_n \cdot \mathbf{y} - \mathbf{x} \cdot \mathbf{y}| = |\mathbf{x}_n \cdot (\mathbf{y}_n - \mathbf{y}) + (\mathbf{x}_n - \mathbf{x}) \cdot \mathbf{y}|$$

$$\leq |\mathbf{x}_n \cdot (\mathbf{y}_n - \mathbf{y})| + |(\mathbf{x}_n - \mathbf{x}) \cdot \mathbf{y}| \leq ||\mathbf{x}_n|| ||\mathbf{y}_n - \mathbf{y}|| + ||\mathbf{x}_n - \mathbf{x}|| ||\mathbf{y}|| \quad \text{for all } n \in \mathbb{N}.$$

Since (\mathbf{x}_n) is a convergent sequence in \mathbb{R}^m , (\mathbf{x}_n) is bounded in \mathbb{R}^m . Hence there exists r > 0 such that $||\mathbf{x}_n|| \le r$ for all $n \in \mathbb{N}$. Therefore

$$|\mathbf{x}_n \cdot \mathbf{y}_n - \mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}_n|| ||\mathbf{y}_n - \mathbf{y}|| + ||\mathbf{x}_n - \mathbf{x}|| ||\mathbf{y}|| \to 0$$

and so $|\mathbf{x}_n \cdot \mathbf{y}_n - \mathbf{x} \cdot \mathbf{y}| \to 0$. Hence $\mathbf{x}_n \cdot \mathbf{y}_n \to \mathbf{x} \cdot \mathbf{y}$.

13. Let $\mathbf{x} \in \mathbb{R}^m$ and let (\mathbf{x}_n) be a sequence in \mathbb{R}^m such that $\|\mathbf{x}_n\| \to \|\mathbf{x}\|$ and $\mathbf{x}_n \cdot \mathbf{x} \to \mathbf{x} \cdot \mathbf{x}$. Show that (\mathbf{x}_n) is convergent.

Solution. Since

$$\|\mathbf{x}_n - \mathbf{x}\|^2 = \|\mathbf{x}_n\|^2 - 2\mathbf{x}_n \cdot \mathbf{x} + \|\mathbf{x}\|^2 \to \|\mathbf{x}\|^2 - 2\mathbf{x} \cdot \mathbf{x} + \|\mathbf{x}\|^2 = 2\|\mathbf{x}\|^2 - 2\|\mathbf{x}\|^2 = 0,$$

we have that $\|\mathbf{x}_n - \mathbf{x}\| \to 0$ and hence $\mathbf{x}_n \to \mathbf{x}$. Therefore (\mathbf{x}_n) is convergent in \mathbb{R}^m . \square

14. State TRUE or FALSE with justification: If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{x} \neq \mathbf{y}$ and $\|\mathbf{x}\| = 1 = \|\mathbf{y}\|$, then it is necessary that $\|\mathbf{x} + \mathbf{y}\| < 2$.

Solution. We have

$$\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 + 2\mathbf{x} \cdot \mathbf{y} = 2 + 2\mathbf{x} \cdot \mathbf{y}$$

and

$$\|\mathbf{x} - \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\mathbf{x} \cdot \mathbf{y} = 2 - 2\mathbf{x} \cdot \mathbf{y}.$$

Hence

$$\|\mathbf{x} + \mathbf{y}\|^2 = 2 + 2 - \|\mathbf{x} - \mathbf{y}\|^2 < 4,$$

since $\|\mathbf{x} - \mathbf{y}\| > 0$. So $\|\mathbf{x} + \mathbf{y}\| < 2$. Therefore the given statement is TRUE.

15. State TRUE or FALSE with justification: If (\mathbf{x}_n) is a sequence in \mathbb{R}^m such that for each $\mathbf{x} \in \mathbb{R}^m$,

$$\lim_{n\to\infty}\mathbf{x}_n\cdot\mathbf{x}$$

exists (in \mathbb{R}), then

$$\lim_{n\to\infty} \|\mathbf{x}_n\|^2$$

must exist (in \mathbb{R}).

Solution. For each $n \in \mathbb{N}$, let $\mathbf{x}_n = (x_1^{(n)}, \dots, x_m^{(n)})$.

By the given condition,

$$\lim_{n\to\infty} x_j^{(n)} = \lim_{n\to\infty} \mathbf{x}_n \cdot \mathbf{e}_j$$

exists (in \mathbb{R}) for j = 1, ..., m. Consequently

$$\lim_{n \to \infty} \|\mathbf{x}_n\|^2 = \lim_{n \to \infty} \left((x_1^{(n)})^2 + \dots + (x_m^{(n)})^2 \right)$$

exists (in \mathbb{R}). Therefore the given statement is TRUE.

16. State TRUE or FALSE with justification: There exists an unbounded sequence (x_n) of distinct real numbers such that the sequence $((x_n, \cos x_n))$ in \mathbb{R}^2 has a convergent subsequence.

Solution. The sequence

$$(x_n) = (1, \frac{1}{2}, 2, \frac{1}{3}, 3, \frac{1}{4}, \dots)$$

in \mathbb{R} is unbounded and its subsequence

$$(x_{2n}) = (\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots)$$

converges in \mathbb{R} . By continuity of the cosine function, the sequence $\cos x_{2n}$ also converges in \mathbb{R} . Hence the subsequence

$$((x_{2n},\cos x_{2n}))$$

of the sequence $((x_n, \cos x_n))$ converges in \mathbb{R}^2 . Therefore the given statement is TRUE.

17. Let $S = \{(x,y) \in \mathbb{R}^2 : x \neq y\}$ and let $f: S \to \mathbb{R}$ be defined by $f(x,y) = \frac{x+y}{x-y}$ for all $(x,y) \in S$. Show by using the definition of continuity that f is continuous at (1,2).

Solution. Let $\varepsilon > 0$. For all $(x,y) \in S$, we have $|f(x,y) - f(1,2)| = \left|\frac{x+y}{x-y} + 3\right| = 2\left|\frac{2x-y}{x-y}\right|$. If $(x,y) \in S$ and $||(x,y) - (1,2)|| = \sqrt{(x-1)^2 + (y-2)^2} < \frac{1}{4}$, then $|x-1| < \frac{1}{4}$ and $|y-2| < \frac{1}{4}$, and so $|x-y| = |1 - ((2-y) + (x-1))| \ge 1 - |(2-y) + (x-1)| \ge 1 - (|2-y| + |x-1|) \ge 1 - (\frac{1}{4} + \frac{1}{4}) = \frac{1}{2}$. Again, if r > 0 and $(x,y) \in S$ such that $||(x,y) - (1,2)|| = ||(x,y) - (1,2)|| = \sqrt{(x-1)^2 + (y-2)^2} < r$, then |x-1| < r and |y-2| < r, and so $|2x-y| = |2(x-1) + 2 - y| \le |2(x-1)| + |y-2| < 2r + r = 3r$. Hence if we choose $\delta = \min\left\{\frac{1}{4}, \frac{\varepsilon}{12}\right\}$, then $\delta > 0$ and for all $(x,y) \in S$ satisfying $||(x,y) - (1,2)|| < \delta$, we have $|f(x,y) - f(1,2)| < 12\delta \le \varepsilon$. Therefore f is continuous at (1,2).

18. If $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous and $f(x,y) = x^2 + y^2$ for all $x \in \mathbb{Q}$ and for all $y \in \mathbb{R} \setminus \mathbb{Q}$, then determine $f(\sqrt{2},2)$.

Solution. We know that there exist sequences (x_n) in \mathbb{Q} and (y_n) in $\mathbb{R} \setminus \mathbb{Q}$ such that $x_n \to \sqrt{2}$ and $y_n \to 2$. Hence $(x_n, y_n) \to (\sqrt{2}, 2)$. Since f is continuous at $(\sqrt{2}, 2)$, we have $f(\sqrt{2}, 2) = \lim_{n \to \infty} f(x_n, y_n) = \lim_{n \to \infty} (x_n^2 + y_n^2) = \lim_{n \to \infty} x_n^2 + \lim_{n \to \infty} y_n^2 = (\sqrt{2})^2 + 2^2 = 2 + 4 = 6$.

19. Examine the continuity of $f: \mathbb{R}^2 \to \mathbb{R}$ at (0,0), where for all $(x,y) \in \mathbb{R}^2$,

$$f(x,y) = \begin{cases} xy & \text{if } xy \ge 0, \\ -xy & \text{if } xy < 0. \end{cases}$$

Solution. Let (x_n, y_n) be any sequence in \mathbb{R}^2 such that $(x_n, y_n) \to (0, 0)$. Then $x_n \to 0$ and $y_n \to 0$. We have $|f(x_n, y_n)| = |x_n y_n| \to 0$ and hence $f(x_n, y_n) \to 0 = f(0, 0)$. Therefore f is continuous at (0, 0).

20. Examine the continuity of $f: \mathbb{R}^2 \to \mathbb{R}$ at (0,0), where for all $(x,y) \in \mathbb{R}^2$,

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^4} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Solution. Let $\varepsilon > 0$. Then for all $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, we have

$$|f(x,y) - f(0,0)| = \left| \frac{xy^3}{x^2 + y^4} \right| \le |y| \le \frac{1}{2} \sqrt{x^2 + y^2}.$$

Let $\delta = 2\varepsilon$. Then $\delta > 0$ and for all $(x, y) \in \mathbb{R}^2$ with $||(x, y) - (0, 0)|| = \sqrt{x^2 + y^2} < \delta$, we have $|f(x, y) - f(0, 0)| < \varepsilon$. Therefore f is continuous at (0, 0).

21. Examine the continuity of $f: \mathbb{R}^2 \to \mathbb{R}$ at (0,0), where for all $(x,y) \in \mathbb{R}^2$,

$$f(x,y) = \begin{cases} 1 & \text{if } x > 0 \text{ and } 0 < y < x^2, \\ 0 & \text{otherwise.} \end{cases}$$

Solution. Since $(\frac{1}{n}, \frac{1}{2n^2}) \to (0, 0)$ but $f(\frac{1}{n}, \frac{1}{2n^2}) = 1 \to 1 \neq 0 = f(0, 0)$, f is not continuous at (0, 0).

22. Determine all the points of \mathbb{R}^2 where $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous, where for all $(x, y) \in \mathbb{R}^2$.

$$f(x,y) = \begin{cases} \frac{xy}{x-y} & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$

Solution. If $\varphi(x,y)=xy$ and $\psi(x,y)=x-y$ for all $(x,y)\in\mathbb{R}^2$, then as polynomial functions, $\varphi,\psi:\mathbb{R}^2\to\mathbb{R}$ are continuous and $\psi(x,y)\neq 0$ for all $(x,y)\in\mathbb{R}^2$ with $x\neq y$. Hence f is continuous at each $(x,y)\in\mathbb{R}^2$ with $x\neq y$. Let $x\in\mathbb{R}\setminus\{0\}$. Then $(x+\frac{1}{n},x)\to(x,x)$ but $f(x+\frac{1}{n},x)=nx^2+x\neq 0=f(x,x)$. So f is not continuous at (x,x). Again, $(\frac{1}{n}+\frac{1}{n^2},\frac{1}{n})\to(0,0)$ but $f(\frac{1}{n}+\frac{1}{n^2},\frac{1}{n})=1+\frac{1}{n}\to1\neq 0=f(0,0)$. So f is not continuous at (0,0). Therefore the set of points of continuity of f is $\{(x,y)\in\mathbb{R}^2:x\neq y\}$.

23. Determine all the points of \mathbb{R}^2 where $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous, where for all $(x,y) \in \mathbb{R}^2$,

$$f(x,y) = \begin{cases} xy & \text{if } xy \in \mathbb{Q}, \\ -xy & \text{if } xy \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Solution. Let $(x, y) \in \mathbb{R}^2$ such that xy = 0 and let $((x_n, y_n))$ be any sequence in \mathbb{R}^2 such that $(x_n, y_n) \to (x, y)$. Then $x_n \to x$ and $y_n \to y$. We have $|f(x_n, y_n)| = |x_n y_n| \to |xy| = 0$ and so $f(x_n, y_n) \to 0 = f(x, y)$. Hence f is continuous at (x, y). Again, let $(x, y) \in \mathbb{R}^2$ such that $xy \neq 0$. We consider the following two possible cases. Case (i): $xy \in \mathbb{R} \setminus \mathbb{Q}$.

We can find two sequences (x_n) and (y_n) in \mathbb{Q} such that $x_n \to x$ and $y_n \to y$. Then $((x_n, y_n))$ is a sequence in \mathbb{R}^2 such that $(x_n, y_n) \to (x, y)$ but $f(x_n, y_n) = x_n y_n \to xy \neq -xy = f(x, y)$. Hence f is not continuous at (x, y). Case (ii): $xy \in \mathbb{Q}$.

Since $x \neq 0$, we can find a sequence (x_n) in $\mathbb{Q} \setminus \{0\}$ and a sequence (y_n) in $\mathbb{R} \setminus \mathbb{Q}$ such that $x_n \to x$ and $y_n \to y$. Then $((x_n, y_n))$ is a sequence in \mathbb{R}^2 such that $(x_n, y_n) \to (x, y)$ but $f(x_n, y_n) = -x_n y_n \to -xy \neq xy = f(x, y)$. Hence f is not continuous at (x, y). Therefore the set of points of continuity of f is $\{(x, y) \in \mathbb{R}^2 : xy = 0\}$.

24. Let α, β be positive real numbers and let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{|x|^{\alpha}|y|^{\beta}}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Show that f is continuous iff $\alpha + \beta > 2$.

Solution. Let $\alpha + \beta > 2$ and let $((x_n, y_n))$ be any sequence in \mathbb{R}^2 such that $(x_n, y_n) \to (0, 0)$. Then $x_n \to 0$ and $y_n \to 0$. For all $n \in \mathbb{N}$ for which $(x_n, y_n) \neq (0, 0)$, we have

$$0 \le f(x_n, y_n) \le \frac{(x_n^2 + y_n^2)^{\alpha/2} (x_n^2 + y_n^2)^{\beta/2}}{x_n^2 + y_n^2} = \frac{(x_n^2 + y_n^2)^{(\alpha + \beta)/2}}{x_n^2 + y_n^2} = (x_n^2 + y_n^2)^{(\alpha + \beta - 2)/2}$$

and since f(0,0)=0, we have $0 \leq f(x_n,y_n) \leq 2^{(\alpha+\beta-2)/2}(x_n^2+y_n^2)^{(\alpha+\beta-2)/2}$ for all $n \in \mathbb{N}$. Since $2^{(\alpha+\beta-2)/2}(x_n^2+y_n^2)^{(\alpha+\beta-2)/2} \to 0$, we get $f(x_n,y_n) \to 0 = f(0,0)$. This shows that f is continuous at (0,0). Also, it is clear (by similar arguments given in other examples) that f is continuous at each $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Therefore f is continuous. Conversely, let f be continuous and if possible, let $\alpha+\beta\leq 2$. We have $(\frac{1}{n},\frac{1}{n})\to (0,0)$ but $f(\frac{1}{n},\frac{1}{n})=\frac{1}{2}n^{2-(\alpha+\beta)} \not\to 0=f(0,0)$ (because for $\alpha+\beta=2$, $f(\frac{1}{n},\frac{1}{n})\to \frac{1}{2}$ and for $\alpha+\beta<2$, the sequence $f(\frac{1}{n},\frac{1}{n})$ is unbounded). Hence f is not continuous at (0,0), which is a contradiction. Therefore $\alpha+\beta>2$.

25. Let S be a nonempty subset of \mathbb{R}^m and let $f_j: S \to \mathbb{R}$ for each $j \in \{1, ..., k\}$. If $f(x) = (f_1(x), ..., f_k(x))$ for all $x \in S$, then show that $f: S \to \mathbb{R}^k$ is continuous at $x_0 \in S$ iff f_j is continuous at x_0 for each $j \in \{1, ..., k\}$.

Solution. We first assume that f is continuous at x_0 and let (x_n) be any sequence in S such that $x_n \to x_0$. Then $(f_1(x_n), \ldots, f_k(x_n)) = f(x_n) \to f(x_0) = (f_1(x_0), \ldots, f_k(x_0))$ and hence $f_j(x_n) \to f_j(x_0)$ for each $j \in \{1, \ldots, k\}$. Consequently f_j is continuous at x_0 for each $j \in \{1, \ldots, k\}$. Conversely, let f_j be continuous at x_0 for each $j \in \{1, \ldots, k\}$ and let (x_n) be any sequence in S such that $x_n \to x_0$. Then $f_j(x_n) \to f_j(x_0)$ for each $j \in \{1, \ldots, k\}$ and hence

$$f(x_n) = (f_1(x_n), \dots, f_k(x_n)) \to (f_1(x_0), \dots, f_k(x_0)) = f(x_0).$$

Therefore f is continuous at x_0 .

26. Examine the continuity of $f: \mathbb{R}^2 \to \mathbb{R}^2$ at (0,0), where for all $(x,y) \in \mathbb{R}^2$,

$$f(x,y) = \begin{cases} \left(\frac{x^3}{x^2 + y^2}, \sin(x^2 + y^2)\right) & \text{if } (x,y) \neq (0,0), \\ (0,0) & \text{if } (x,y) = (0,0). \end{cases}$$

Solution. For all $(x,y) \in \mathbb{R}^2$, let $\varphi(x,y) = \sin(x^2 + y^2)$ and

$$\psi(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Since $\varphi : \mathbb{R}^2 \to \mathbb{R}$ is a composition of a polynomial function and the sine function, both of which are continuous, φ is continuous at (0,0). Again, let $\varepsilon > 0$. Then for all $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, we have

$$|\psi(x,y) - \psi(0,0)| = \left| \frac{x^3}{x^2 + y^2} \right| \le |x| \le \sqrt{x^2 + y^2}.$$

Since $\psi(0,0) = 0$, we get $|\psi(x,y) - \psi(0,0)| \le \sqrt{x^2 + y^2}$ for all $(x,y) \in \mathbb{R}^2$. Let $\delta = \varepsilon$. Then $\delta > 0$ and for all $(x,y) \in \mathbb{R}^2$ with $||(x,y) - (0,0)|| = \sqrt{x^2 + y^2} < \delta$, we have

$$|\psi(x,y) - \psi(0,0)| < \varepsilon.$$

Therefore ψ is continuous at (0,0). Consequently (by Ex.17 of Practice Problem Set - 1) f is continuous at (0,0).

27. If $f, g: S \subseteq \mathbb{R}^m \to \mathbb{R}^k$ are continuous at $x_0 \in S$ and if $\varphi(x) = f(x) \cdot g(x)$ for all $x \in S$, then show that $\varphi: S \to \mathbb{R}$ is continuous at x_0 .

Solution. Let (x_n) be any sequence in S such that $x_n \to x_0$. Since f and g are continuous at x_0 , $f(x_n) \to f(x_0)$ and $g(x_n) \to g(x_0)$. Hence (by Ex. 9 of Practice Problem Set - 1) $f(x_n) \cdot g(x_n) \to f(x_0) \cdot g(x_0) = \varphi(x_0)$. Therefore φ is continuous at x_0 .

28. Let $f: S \subseteq \mathbb{R}^m \to \mathbb{R}^k$ be continuous at $x_0 \in S^0$ and let $f(x_0) \neq 0$. Show that there exists r > 0 such that $f(x) \neq 0$ for all $x \in B_r(x_0)$.

Solution. Since $x_0 \in S^0$, there exists s > 0 such that $B_s(x_0) \subseteq S$. Again, since $f(x_0) \neq 0$, $\frac{1}{2} ||f(x_0)|| > 0$. By the continuity of f at x_0 , there exists $\delta > 0$ such that

$$||f(x) - f(x_0)|| < \frac{1}{2} ||f(x_0)||$$

for all $x \in S$ satisfying $||x - x_0|| < \delta$. Taking $r = \min\{s, \delta\} > 0$, we find that $||f(x) - f(x_0)|| < \frac{1}{2} ||f(x_0)||$ for all $x \in B_r(x_0)$. If possible, let f(x) = 0 for some $x \in B_r(x_0)$. Then from above, we get $||f(x_0)|| < \frac{1}{2} ||f(x_0)||$, which is not true. Therefore $f(x) \neq 0$ for all $x \in B_r(x_0)$.

29. Let S be an open subset of \mathbb{R}^m and let $f: S \to \mathbb{R}^k$ and $g: S \to \mathbb{R}^k$ be continuous at $x_0 \in S$. If for each $\varepsilon > 0$, there exist $x, y \in B_{\varepsilon}(x_0)$ such that f(x) = g(y), then show that $f(x_0) = g(x_0)$.

Solution. By the given condition, for each $n \in \mathbb{N}$, there exist $x_n, y_n \in B_{\frac{1}{n}}(x_0)$ such that $f(x_n) = g(y_n)$. So $||x_n - x_0|| < \frac{1}{n} \to 0$ and $||y_n - x_0|| < \frac{1}{n} \to 0$. Hence $x_n \to x_0$ and $y_n \to x_0$. Since f and g are continuous at x_0 , $f(x_n) \to f(x_0)$ and $g(y_n) \to g(x_0)$. Therefore $f(x_0) = g(x_0)$.

30. If $S = \{(x, y) \in \mathbb{R}^2 : x + y \ge 2\}$, then determine (with justification) S^0 .

Solution. Let $(x_0, y_0) \in S$ with $x_0 + y_0 > 2$. Let $r = \frac{x_0 + y_0 - 2}{\sqrt{2}} > 0$ and let $(x, y) \in B_r((x_0, y_0))$. Then $||(x, y) - (x_0, y_0)|| = \sqrt{(x - x_0)^2 + (y - y_0)^2} < r$. By Cauchy-Schwarz inequality, we have $x_0 - x + y_0 - y \le \sqrt{(x_0 - x)^2 + (y_0 - y)^2} \cdot \sqrt{2} < \sqrt{2}r = x_0 + y_0 - 2$.

Hence x + y > 2 and so $(x, y) \in S$. Thus $B_r((x_0, y_0)) \subseteq S$ and therefore $(x_0, y_0) \in S^0$. Now, let $(x_0, y_0) \in S$ such that $x_0 + y_0 = 2$ and if possible, let $(x_0, y_0) \in S^0$. Then there exists r > 0 such that $B_r((x_0, y_0)) \subseteq S$. Since $\|(x_0 - \frac{r}{2}, y_0) - (x_0, y_0)\| = \|(-\frac{r}{2}, 0)\| = \frac{r}{2} < r$, $(x_0 - \frac{r}{2}, y_0) \in B_r((x_0, y_0))$. However, $(x_0 - \frac{r}{2}, y_0) \notin S$, since $x_0 - \frac{r}{2} + y_0 = x_0 + y_0 - \frac{r}{2} = 2 - \frac{r}{2} < 2$. Thus we get a contradiction. Hence $(x_0, y_0) \notin S^0$.

Therefore $S^0 = \{(x, y) \in \mathbb{R}^2 : x + y > 2\}.$

31. If $S = \{(x_1, \dots, x_m) \in \mathbb{R}^m : x_m = 1\}$, then determine (with justification) S^0 .

Solution. If possible, let $S^0 \neq \emptyset$. Then there exists $x = (x_1, \dots, x_m) \in S^0$ and hence there exists r > 0 such that $B_r(x) \subseteq S$. If $y = (x_1, \dots, x_{m-1}, x_m + \frac{r}{2})$, then $||y - x|| = |\frac{r}{2}| < r$ and so $y \in B_r(x)$. But $y \notin S$, because $x_m + \frac{r}{2} = 1 + \frac{r}{2} \neq 1$. Thus we get a contradiction. Therefore $S^0 = \emptyset$.

32. If $x \in \mathbb{R}^m$ and r > 0, then determine (with justification) all the interior points of $B_r[x]$.

Solution. Let $y \in B_r(x)$. Then ||y-x|| < r. If s = r - ||y-x||, then s > 0. Let $z \in B_s(y)$. Then ||z-y|| < s and so $||z-x|| = ||z-y+y-x|| \le ||z-y|| + ||y-x|| < s + ||y-x|| = r$. Hence $z \in B_r[x]$ and so $B_s(y) \subseteq B_r[x]$. Therefore $y \in (B_r[x])^0$. Again, let $y \in B_r[x]$ such that ||y-x|| = r. If possible, let $y \in (B_r[x])^0$. Then there exists s > 0 such that $B_s(y) \subseteq B_r[x]$. Now, $y + \frac{s}{2r}(y-x) \in B_s(y)$, since

$$\left\| y + \frac{s}{2r}(y - x) - y \right\| = \frac{s}{2r} \|y - x\| = \frac{s}{2}.$$

But $y + \frac{s}{2r}(y - x) \notin B_r[x]$, because

$$||y + \frac{s}{2r}(y - x) - x|| = (1 + \frac{s}{2r})||y - x|| = r + \frac{s}{2} > r.$$

Thus we get a contradiction. Hence $y \notin (B_r[x])^0$. Therefore $(B_r[x])^0 = B_r(x)$.

33. Examine whether $\{(x,y) \in \mathbb{R}^2 : 0 < x < y\}$ is an open set in \mathbb{R}^2 .

Solution. Let $S = \{(x,y) \in \mathbb{R}^2 : 0 < x < y\}$ and let $(x_0,y_0) \in S$. If $r = \min\left\{x_0, \frac{y_0 - x_0}{\sqrt{2}}\right\}$, then r > 0. Let $(x,y) \in B_r((x_0,y_0))$. Then $\|(x,y) - (x_0,y_0)\| = \sqrt{(x-x_0)^2 + (y-y_0)^2} < r$. Hence $x_0 - x \le |x - x_0| < r \le x_0$ and so x > 0. Also, using Cauchy-Schwarz inequality, we have $x - x_0 + y_0 - y \le \sqrt{(x-x_0)^2 + (y_0-y)^2} \cdot \sqrt{2} < \sqrt{2}r \le y_0 - x_0$ and hence x - y < 0, i.e. x < y. Thus $(x,y) \in S$ and so $(x_0,y_0) \in S^0$. Since $(x_0,y_0) \in S$ is arbitrary, it follows that S is an open set in \mathbb{R}^2 .