MA15010H: Multi-variable Calculus

(Practice problem set 1: Hint/Model solution)
July - November, 2025

1. If x,y € R™, then show that |||x|| — ||yl < [lx — ¥l

Solution. We have [[x[| = [[x —y +y|| < [[x —y[| + [ly[| and so [x|[ — [y[| < |x = ]|
Similarly, ||yl = [ly —x+x|| < [ly —x|[+[|x]| = [x=y[[+[[x[| and so [[y[| = [|x]| < [[x=y].
Therefore [||x| — [yl < [lx = yl| [
2. If x,y € R™, then show that ||x +y| < ||x|| + |l¥|l-
Solution. For x,y € R™, we have
I +yl* = (x+y) - (x+v) = x> +2(x-y) + [[y[*
By the Cauchy-Schwarz inequality, x -y < ||x]| [|y]|, so
I+ yI* < (]l + llyl)*.
Taking square roots gives ||x + y|| < ||x]| + ||y]l- O
3. If x,y € R™, then show that ||x|| < max{||x +y|, ||x — ¥|}.
Solution. Suppose, for the sake of contradiction, that
Ix[[ > max{[|x +y|, [Ix =y}

Then ||x +y|| < ||x]| and ||x —y| < ||x]||. Note that
_ (x+y)+(x-y)

5 :
Taking norms and using the triangle inequality, we get

e = L

I < Lyl + - wl) < 5@l = [

a contradiction. Hence,
x| < max{|x +yl|, [[x -y}

4. Let x,y € R™. Then show that |x + ay| > ||x|| for alla € R iff x-y = 0.
Solution. First assume that x-y = 0. If a € R, then we have
I + ay||* = [[x]|* + 20x - y + |y [|* = |x[I* + o*[ly[|* > [|x]*,

and hence ||x + ayl| > |Ix]|.
Conversely, let ||x + ay|| > ||x|| for all &« € R. If possible, let x -y # 0. Then for
o= —ﬁ, we have

(x-y)? | (x-y)?
|x + ayl||* = [|x]|* + 2a(x - y) + 2[ly]]* = ||x]* — 2 2) - : 2)
N4l vl
= e - &)

lyI?

< |,

1
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which is a contradiction. Therefore x -y = 0. U
5. Let x,y € R™ and a > 0. Show that |x - y| < a||x||> + & |y |-
Solution. By Cauchy-Schwartz inequality,

x-y[ < xllyl

= 2v/al|x||

1

ol
< (valxl)? + (5z191)

1
= allxIl* + Iyl

0
6. Let x,y € R™. Show that |||x|| — |ly||| = [|x — ¥ iff ax = By for some o, f > 0 with
(o, B) # (0,0).
Solution. We first assume that |[|x|| — ||y|l| = [x — y||. Then |||x|| = [|y¥[l|* = [x — y|*,

which gives ||x|| [|y|| = |x-y|. By Cauchy-Schwarz equality, y = 0 or x = ty for some
t € R. If y = 0 we take (a, ) = (0,1). If y # 0 and x = ty, then

x -y =tyll* = lIx] lyll = [yl
sot = |t| > 0. Then ax = Sy for some a, f > 0 not both zero.

Conversely, suppose ax = Sy for some a, § > 0 with (a, 8) # (0,0). Ify =0 (sox =10
as well) the equality is trivial. Otherwise x = ty for some ¢t > 0. Then

=l = llylll =t =1yl and [x—y| =ty =yl = [t =1}yl
so the two sides are equal. O

7. Let x,y € R™ and r > 0 such thaty -z =0 for all z € B.(x). Show that 'y = 0.
Solution. If possible, let y # 0. Then |y|| # 0. If z = x + 3y7Y> then z € R™ and

since ||z — x| = § <7, z € B,(x). Hence y -z =0 and so y - x + 5[[y[|* = 0. Since
x € B,(x), y-x = 0 and so from above, we get ||y| = 0, which is a contradiction.
Therefore y = 0. U

8. If xo € R™ and r > 0, then determine sup{||x —y|| : X,y € B.(x0)} with justification.

Solution. For all x,y € B,(xq), ||[x —y|| < ||[x — %o|| + [|x0 — y|| <7+ 7 = 2r and so 2r
is an upper bound of {||x —y|| : X,y € B.(X¢)}. Let € > 0 such that ¢ < r.

Then xo+(r—5)er, Xo— (r—5)e; € R™ and since [|xo+ (r—$)e1 —xo|| =r—35 <7, we
have X+ (r — §)er, xo — (1 — 5)e1 € B(Xo). Also, [[(xo+ (r—3)e1) — (%o — (r—5)e1)|| =
2r — % > 2r — ¢ and hence 2r — ¢ is not an upper bound of {|lx —y|| : x,y € B,(x0)}.

Therefore sup{||x —y|| : X,y € B.(x0)} = 2r. O

9. Let S C R™ such that S C B,[xo] for some xg € R™ and for some r > 0. Show that S
1 a bounded set.



Solution. If x € S, then x € B,[x¢] and hence

1]l = [l = x0 + %o < [|x = %o + [[x0]| <7+ [x0-
Therefore S is a bounded set in R™. O
10. Let a € (0,1) and let x, = (n*a™, 2 |nal) for alln € N (For each x € R, |z] denotes

the greatest integer not exceeding x). Examine whether the sequence (x,) converges in R2.
Also, find lim x,, if the sequence (x,) converges in R?.
n—oo

Solution. Let z, = n*a™ and y, = 1|na] for all n € N. Using the ratio test, the
sequence (x,) converges in R to 0. Again, since na < |na] + 1 for all n € N, we have
na —1 < [na) < na for all n € N and so it follows that o — + < y, < o for all n € N.
Hence by the sandwich theorem, the sequence (y,) converges in R to a. Therefore the
sequence (x,) converges in R? and nh_}rgo x, = (0, a). O

11. Let (x,) be a sequence in R™ such that the series Y 2||x,||* is convergent. Show that

n=1

o
the series > ||x,|| is convergent.
n=1

Solution. For all n € N, using the Cauchy—Schwarz inequality, we have

e Dl
S Il = > k-
k=1 k=1
n /2 /. . 1/2
(Semr) " (352)
k=1 1

k=
o 12 ;o ) 1/2
g(Zzﬁuka?) (Z,;) < 0.
k=1 k=1

This shows that the sequence (}_,_, ||xx]|) of partial sums of the series >, ||xx]|| of non-
negative real numbers is bounded above and hence the sequence (D7 _, |[|xx||) converges
in R. Consequently the series " | ||x, || is convergent in R. O

12. Let (x,) and (y,) be sequences in R™ such that x, — x € R™ andy, —y € R™.
Show that x, +y, > xX+y and X, -y, = X-y.

Solution. Since x,, — x and y,, =y, ||x, —x|| = 0 and ||y, — y|| — 0. Hence
1% +yn) = (x +¥)| < llxn = x|[ + [lyn =yl = 0.

Therefore ||(x, +¥y,) — (x+¥)|| = 0 and so x, +y, > x+Yy.
Again,

|Xn'Yn_X'Y|:|Xn'Yn_Xn'y+Xn'y_X'Y|:|Xn'(Yn_Y>+(Xn_X)'Y|
<% (o =Y+ (X = %) - y] < xallllyn = ¥l + lIxe — x|ll[y[] forall n € N.



Since (x,) is a convergent sequence in R™, (x,,) is bounded in R™. Hence there exists
r > 0 such that ||x,| <r for all n € N. Therefore

%0 Yo =Xy < Xallllyn =yl + I = x[llyll = 0
and so |x, -y, —x-y| = 0. Hence x,, -y, = x-y. O

13. Let x € R™ and let (x,,) be a sequence in R™ such that ||x,|| — ||x|| and x,-x — x-x.
Show that (x,,) is convergent.

Solution. Since
e — X1 = [1xal* = 2%0 - x + [|x1* = [Ix]]* — 2x - x + [[x]|* = 2[)x]|* - 2[)x]* = 0,
we have that ||x,, — x|| — 0 and hence x,, — x. Therefore (x,) is convergent in R™. [

14. State TRUE or FALSE with justification: If x,y € R™ such that x # y and ||x|| =
1 = ||y, then it is necessary that ||x +y|| < 2.

Solution. We have
Ix+yl?= x>+ |yl>+2x-y=2+2x-y
and
I =yl = lxI* + Iyl = 2x -y =2 — 2x - y.
Hence
Ix+yl*=2+2—[x—yl* <4,
since ||x —y|| > 0. So ||[x + y|| < 2. Therefore the given statement is TRUE. O

15. State TRUE or FALSE with justification: If (x,) is a sequence in R™ such that for
each x € R™,

lim x, - x
n—oo
exists (in R), then
lim [|x,|?
n— o0
must exist (in R).
Solution. For each n € N, let x,, = (x§">, . ,xg,?)).
By the given condition,
lim xgn) = lim x, - e;

exists (in R) for j = 1,...,m. Consequently
. > (N2 L ()2
lim %, * = lm ((277)% + - + (237))7)

n—oo

exists (in R). Therefore the given statement is TRUE. O

16. State TRUE or FALSE with justification: There exists an unbounded sequence (z,)
of distinct real numbers such that the sequence ((xn, coS xn)) in R? has a convergent sub-
sequence.



Solution. The sequence
(za) = (1,3.2,%,3,1,...)
in R is unbounded and its subsequence
(x2n>:: (%7%7&7"')

converges in R. By continuity of the cosine function, the sequence cos x5, also converges
in R. Hence the subsequence

(w2, cOS T2,,))

of the sequence ((:L‘n, cos xn)) converges in R?. Therefore the given statement is TRUE.

U

17. Let S = {(z,y) e R? : x # y} and let f : S — R be defined by f(z,y) = i—fz for all
(x,y) € S. Show by using the definition of continuity that f is continuous at (1,2).

2z—y
rz—y |’

Solution. Let ¢ > 0. For all (z,y) € S, we have |f(z,y) — f(1,2)| = ”y + 3‘ =2
< i then |x— 1] < % and

If (v,y) € S and [[(z,y) — (1,2)| = V/(z = 1)+ (y — 2)? i
ly—2l < j andsofz—y[ =[1—(2-y) + (- 1) > 1—|(2—y)+(l’—1)| >
—(12—y|+|z—1]) > 1—(|2—y|+]|z—1]) > 1— (2 + 1) = L. Again,ifr > 0 and (v,y) € S
such that ||(z,y) — (1,2)|| = [[(z,y) — (1,2)|| = \/(z — 1)2+ (y — 2)®> < r, then [z — 1| < r
and |[y—2| < r, and so |[2z—y| = |2(z—1)+2—y| < |2(z—1)|+|y—2| < 2r+r = 3r. Hence if
we choose § = min {1, £}, then § > 0 and for all (z,y) € S satisfying ||(z,y)—(1,2)|| <6,
we have |f(x,y) — f(1,2)] < 12§ < e. Therefore f is continuous at (1,2). O

18. If f : R? = R is continuous and f(z,y) = x*>+y* for all x € Q and for ally € R\ Q,
then determine f(v/2,2).

Solution. We know that there exist sequences (z,) in Q and (y,) in R\ Q such that
r, — /2 and y, — 2. Hence (z,,y,) — (v/2,2). Since f is continuous at (v/2,2),
we have f(v/2,2) = iMoo f(@0, Yp) = limy oo (22 + 22) = limy,_yeo 22 + lim, o0 y2 =
(V22 +22=2+4+4=6. 0

19. Examine the continuity of f : R?* — R at (0,0), where for all (z,y) € R?,

vy ifwy =0,
flz,y) = ‘
—xy if zy < 0.

-~

Solution. Let (z,,y,)) be any sequence in R? such that (z,,y,) — (0,0). Then x, — 0
and y, — 0. We have |f(zn,yn)| = |2nyn| — 0 and hence f(z,,y,) — 0 = f(0,0).
Therefore f is continuous at (0, 0). O

20. Ezamine the continuity of f : R* — R at (0,0), where for all (z,y) € R?,
X 3 N
fog) = {+ if (x,y) # (0,0),

0 if (x,y) = (0,0).
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Solution. Let € > 0. Then for all (z,y) € R?\ {(0,0)}, we have
3
1
[f(z,y) = f(0,0)] = <yl < v+

LY
x? + yt

Let § = 2e. Then § > 0 and for all (x,y) € R* with ||(z,y) — (0,0)|| = /22 + y% < §, we

have |f(x,y) — f(0,0)] < e. Therefore f is continuous at (0,0). O

21. Ezamine the continuity of f: R?* — R at (0,0), where for all (x,y) € R?,
1 ifz>0and0<y<a?
f@w)Z{

0 otherwise.

Solution. Since (1, 555) — (0,0) but f(£,55) =1 — 1 0= f(0,0), f is not continuous

n’ 2n2

at (0,0). O

22. Determine all the points of R? where f : R? — R is continuous, where for all (z,y) €

R2?,
) r#y,

Solution. If ¢(z,y) = xy and ¢ (z,y) = v — y for all (z,y) € R?, then as polynomial
functions, ¢,7 : R? — R are continuous and 9 (x,y) # 0 for all (z,y) € R? with = # y.
Hence f is continuous at each (z,y) € R? with z # y. Let z € R\ {0}. Then (z+ 1, 2) —
(z,2) but f(z+ +,x) =na*+ 2 #0 = f(z,z). So f is not continuous at (z,z). Again,
(£ +5,%) = (0,0) but f(++ 5, 4)=1+1 = 1%£0= f(0,0). So f is not continuous

at (0,0). Therefore the set of points of continuity of f is {(x,y) € R? : x # y}. O

23. Determine all the points of R? where f : R? — R is continuous, where for all (z,y) €

R?2,
_Jry ifry €Q,
fley) = {—azy if zy € R\ Q.

Solution. Let (x,y) € R? such that zy = 0 and let ((z,,y,)) be any sequence in R? such
that (z,,y,) — (z,y). Then z,, — x and y,, — y. We have |f(zn, yn)| = |2nyn| — |zy| =0
and so f(z,,y,) — 0 = f(z,y). Hence f is continuous at (z,y). Again, let (z,y) € R?
such that xy # 0. We consider the following two possible cases.

Case (i): zy € R\ Q.

We can find two sequences (z,) and (y,) in Q such that z, — = and y, — y. Then
((zn,yn)) is a sequence in R? such that (z,,vy,) — (z,y) but f(Tn,Yn) = Tpyn — TY #
—zy = f(x,y). Hence f is not continuous at (x,y).

Case (ii): zy € Q.

Since x # 0, we can find a sequence (x,,) in Q\ {0} and a sequence (y,,) in R\ Q such that
T, — z and y, — y. Then ((z,,y,)) is a sequence in R? such that (z,,y,) — (x,y) but
f(xn,yn) = —xnyn — —xy # xy = f(z,y). Hence f is not continuous at (x,y). Therefore
the set of points of continuity of f is {(z,y) € R? : zy = 0}. O



24. Let o, B be positive real numbers and let f : R? — R be defined by

W 4 ey £ (0,0)
flz,y) = q 2 +y? ’ T
0 if (z,y) = (0,0).

Show that f is continuous iff a« + [ > 2.

Solution. Let a + 8 > 2 and let ((z,,,9,)) be any sequence in R? such that (z,,y,) —
(0,0). Then z,, — 0 and y,, — 0. For all n € N for which (z,,y,) # (0,0), we have
0 S f(mrm yn) S (xi i yi)o;/Q(x%—i_ yg)ﬂ/z = (xi +2y721)(a2+6)/2 = (xi + yi)(a+ﬁ_2)/2

and since f(0,0) = 0, we have 0 < f(zp, yn) < 200H872/2(32 4 2)(@+B-2)/2 for all n € N.
Since 2(0+8=2/2(g2 4 y2)(@+B-2/2 5 0 we get f(zn,yn) — 0 = f(0,0). This shows
that f is continuous at (0,0). Also, it is clear (by similar arguments given in other
examples) that f is continuous at each (z,y) € R?\ {(0,0)}. Therefore f is continuous.
Conversely, let f be continuous and if possible, let a + 5 < 2. We have (%, %) — (0,0)
but f(1,1) = In2=(+9) 4 0 = £(0,0) (because for a + 8 = 2, f(1,1) — 1 and for
a+ [ < 2, the sequence f (%, %) is unbounded). Hence f is not continuous at (0, 0), which
is a contradiction. Therefore o + 3 > 2. O

25. Let S be a nonempty subset of R™ and let f; : S — R for each j € {1,... k}. If
f(@) = (fix),..., fx(x)) for all z € S, then show that f : S — R* is continuous at
xo € S iff f; is continuous at xy for each j € {1,...,k}.

Solution. We first assume that f is continuous at zy and let (x,) be any sequence in
S such that x, — xo. Then (fi(xn),..., fr(zn)) = f(zn) = f(xo) = (fi(zo), ..., fx(z0))
and hence f;(z,) — f;(zo) for each j € {1,...,k}. Consequently f; is continuous at x
for each j € {1,...,k}. Conversely, let f; be continuous at z, for each j € {1,...,k}
and let (z,) be any sequence in S such that z,, — x¢. Then f;(z,) = f;(zo) for each
j€{1,...,k} and hence

f@an) = (filn), - fulzn)) = (fil@o), -, fu(20)) = [ (o).

Therefore f is continuous at x. O

26. Ezamine the continuity of f : R* — R? at (0,0), where for all (z,y) € R?,
3
X L2 2 ) ~

, SIn(x + Y\, 070 )

v - (e ) i@ £ 00)

(0,0) i (2,3) = (0,0).

Solution. For all (z,y) € R?, let p(x,y) = sin(2? + y?) and
3
if (z,y) # (0,0),

v
U(z,y) = 2+
0 if (z,y) = (0,0).
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Since ¢ : R? — R is a composition of a polynomial function and the sine function,
both of which are continuous, ¢ is continuous at (0,0). Again, let £ > 0. Then for all
(z,y) € R*\ {(0,0)}, we have

SL’S

[¥(@,y) = (0,0)] = | — ) <o < Va2 + g2
Since (0,0) = 0, we get [4(z, ) — $(0,0)] < v/ZZT 52 for all (1,9) € B”. Let 5 = c.
Then § > 0 and for all (z,y) € R? with ||(z,y) — (0,0)]| = v/22 + 32 < §, we have

[v(x,y) —(0,0)] <e.

Therefore ¢ is continuous at (0,0). Consequently (by Ex.17 of Practice Problem Set - 1)
f is continuous at (0, 0). O

27. If f,g : S C R™ — RF are continuous at o € S and if p(x) = f(x) - g(x) for all
x €5, then show that p : S — R is continuous at xy.

Solution. Let (z,) be any sequence in S such that x,, — xo. Since f and g are continuous
at zo, f(x,) — f(xo) and g(x,) — g(zo). Hence (by Ex. 9 of Practice Problem Set - 1)
f(zn) - g(zn) = f(xo) - g(xo) = @(x0). Therefore ¢ is continuous at x. O

28. Let f: S CR™ — R* be continuous at xg € S° and let f(xy) # 0. Show that there
exists 1 > 0 such that f(x) # 0 for all x € B,(zo).

Solution. Since zy € S°, there exists s > 0 such that B,(zo) C S. Again, since f(xq) # 0,
11/ (zo)|| > 0. By the continuity of f at o, there exists § > 0 such that

1f(z) = flzo)ll < %I\f(wo)H

for all z € S satisfying ||z — 29| < 0. Taking » = min{s,d} > 0, we find that || f(z) —
f(@o)|| < 31|f (zo)|| for all 2 € B, (o). If possible, let f(z) = 0 for some = € B,(x). Then
from above, we get ||f(zo)|| < %[/ f(zo)||, which is not true. Therefore f(z) # 0 for all
x € B.(xg). O

29. Let S be an open subset of R™ and let f : S — R¥ and g : S — R¥ be continuous at
xo € S. If for each € > 0, there exist x,y € B.(xo) such that f(x) = g(y), then show that

f(@o) = g(@o).
Solution. By the given condition, for each n € N, there exist z,,y, € Bi(xg) such

that f(z,) = g(yn). So [|&, — zol| < £ — 0 and |y, — ol < L — 0. Hence Ty, — T
and vy, — xo. Since f and g are continuous at xq, f(z,) — f(zo) and g(y,) — g(xo).
Therefore f(zg) = g(xo). O

30. If S = {(x,y) € R? : & +y > 2}, then determine (with justification) S°.
Solution. Let (zg,y9) € S with zo +yo > 2. Let r = Ly;_Q > 0 and let (z,y) €

v
B,((wo,90)). Then ||(x,y) — (z0,%0)| = v/(x — 20)% + (y — y0)? < r. By Cauchy-Schwarz

inequality, we have o —z +yo —y < \/(zo — )2 + (yo — y)?- V2 < \V2r =z +yy— 2.




9

Hence = +y > 2 and so (z,y) € S. Thus B,((zo, %)) € S and therefore (zg,yo) € S°.
Now, let (xg, %) € S such that xg + yo = 2 and if possible, let (zg,0) € S°. Then there
exists 7 > 0 such that B, ((xo,0)) € S. Since ||(zo—1%, yo) — (2o, yo)|| = [[(=5,0)|| = § <7,
(o — 5,%0) € By((w0,v0)). However, (zo — 5,%0) € S, since mg — 5§ +yo = 1o + %0 — 5 =
2 — % < 2. Thus we get a contradiction. Hence (z¢,yo) ¢ S°.

Therefore S° = {(z,y) € R* : . +y > 2}. O

31. If S = {(x1,...,2,) € R™ : x,, = 1}, then determine (with justification) S°.

Solution. If possible, let S° # (). Then there exists z = (1, ..., 2,,) € S° and hence there
exists 7 > 0 such that B,(z) C S. If y = (z1,...,Zm-1,Tm + ), then |ly —z| = [5] <r
and so y € B,(x). But y ¢ S, because x,, + § = 1+ § # 1. Thus we get a contradiction.
Therefore S° = (). O

32. If x € R™ and r > 0, then determine (with justification) all the interior points of
B, [z].

Solution. Let y € B.(z). Then |ly—z| <r. If s = r—||ly—x||, then s > 0. Let z € B(y).
Then ||z —yl| <sandso[|z—zf| = |z —y+y—z < [z =yl + [y -z <s+[y—=z] =r.
Hence 2z € B,[z] and so Bs(y) C B,[z]. Therefore y € (B,[z])°. Again, let y € B,[z]
such that ||y — z|| = r. If possible, let y € (B,[z])°. Then there exists s > 0 such that
B,(y) € B,[z]. Now, y + 5-(y — x) € B,(y), since
s s s
Hy+ o — ) —yH =gy —all =5
But y + 5-(y — =) ¢ B,[z], because
ly+ 5 =) =l = 1+ Dy —all =7+ 5 >r.
Thus we get a contradiction. Hence y ¢ (B,[z])°. Therefore (B,[z])° = B,.(z). O

33. Ezamine whether {(z,y) € R? : 0 < x < y} is an open set in R2.

Solution. Let S = {(z,y) € R?: 0 < x < y} and let (zg,%9) € S. If r = min {xo, %},
then 7 > 0. Let (x,y) € B.((x0,v0)). Then ||(z,y) — (2o, v0)|| = v/ (* — 20)% + (y — y0)? <
r. Hence g — 2 < |x —x¢| < r < xy and so > 0. Also, using Cauchy-Schwarz inequality,
we have © — 2o + yo — y < /(x — 20)2+ (Yo — y)? - V2 < V2r < yy — x and hence
r—y <0, ie x<y. Thus (z,y) € S and so (xg,y) € S°. Since (zo,yo) € S is arbitrary,
it follows that S is an open set in R2. O




