
MA15010H: Multi-variable Calculus
(Practice problem set 1: Hint/Model solution)

July - November, 2025

1. If x,y ∈ Rm, then show that |∥x∥ − ∥y∥| ≤ ∥x− y∥.
Solution. We have ∥x∥ = ∥x − y + y∥ ≤ ∥x − y∥ + ∥y∥ and so ∥x∥ − ∥y∥ ≤ ∥x − y∥.
Similarly, ∥y∥ = ∥y−x+x∥ ≤ ∥y−x∥+∥x∥ = ∥x−y∥+∥x∥ and so ∥y∥−∥x∥ ≤ ∥x−y∥.
Therefore |∥x∥ − ∥y∥| ≤ ∥x− y∥. □

2. If x,y ∈ Rm, then show that ∥x+ y∥ ≤ ∥x∥+ ∥y∥.
Solution. For x,y ∈ Rm, we have

∥x+ y∥2 = (x+ y) · (x+ y) = ∥x∥2 + 2(x · y) + ∥y∥2.
By the Cauchy–Schwarz inequality, x · y ≤ ∥x∥ ∥y∥, so

∥x+ y∥2 ≤ (∥x∥+ ∥y∥)2.
Taking square roots gives ∥x+ y∥ ≤ ∥x∥+ ∥y∥. □

3. If x,y ∈ Rm, then show that ∥x∥ ≤ max{∥x+ y∥, ∥x− y∥}.
Solution. Suppose, for the sake of contradiction, that

∥x∥ > max{∥x+ y∥, ∥x− y∥}.
Then ∥x+ y∥ < ∥x∥ and ∥x− y∥ < ∥x∥. Note that

x =
(x+ y) + (x− y)

2
.

Taking norms and using the triangle inequality, we get

∥x∥ =
∥∥∥(x+ y) + (x− y)

2

∥∥∥ ≤ 1

2

(
∥x+ y∥+ ∥x− y∥

)
<

1

2
(2∥x∥) = ∥x∥,

a contradiction. Hence,
∥x∥ ≤ max{∥x+ y∥, ∥x− y∥}.

□

4. Let x,y ∈ Rm. Then show that ∥x+ αy∥ ≥ ∥x∥ for all α ∈ R iff x · y = 0.

Solution. First assume that x · y = 0. If α ∈ R, then we have

∥x+ αy∥2 = ∥x∥2 + 2αx · y + α2∥y∥2 = ∥x∥2 + α2∥y∥2 ≥ ∥x∥2,
and hence ∥x+ αy∥ ≥ ∥x∥.
Conversely, let ∥x + αy∥ ≥ ∥x∥ for all α ∈ R. If possible, let x · y ̸= 0. Then for
α = − x·y

∥y∥2 , we have

∥x+ αy∥2 = ∥x∥2 + 2α(x · y) + α2∥y∥2 = ∥x∥2 − 2
(x · y)2

∥y∥2
+

(x · y)2

∥y∥2

= ∥x∥2 − (x · y)2

∥y∥2
< ∥x∥2,

1
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which is a contradiction. Therefore x · y = 0. □

5. Let x,y ∈ Rm and a > 0. Show that |x · y| ≤ a∥x∥2 + 1
4a
∥y∥2.

Solution. By Cauchy-Schwartz inequality,

|x · y| ≤ ∥x∥∥y∥

= 2
√
a∥x∥ 1

2
√
a
∥y∥

≤
(√

a∥x∥
)2

+

(
1

2
√
a
∥y∥

)2

= a∥x∥2 + 1

4a
∥y∥2.

□

6. Let x,y ∈ Rm. Show that |∥x∥ − ∥y∥| = ∥x− y∥ iff αx = βy for some α, β ≥ 0 with
(α, β) ̸= (0, 0).

Solution. We first assume that |∥x∥ − ∥y∥| = ∥x− y∥. Then |∥x∥ − ∥y∥|2 = ∥x− y∥2,
which gives ∥x∥ ∥y∥ = |x · y|. By Cauchy–Schwarz equality, y = 0 or x = ty for some
t ∈ R. If y = 0 we take (α, β) = (0, 1). If y ̸= 0 and x = ty, then

x · y = t∥y∥2 = ∥x∥ ∥y∥ = |t|∥y∥2,
so t = |t| ≥ 0. Then αx = βy for some α, β ≥ 0 not both zero.

Conversely, suppose αx = βy for some α, β ≥ 0 with (α, β) ̸= (0, 0). If y = 0 (so x = 0
as well) the equality is trivial. Otherwise x = ty for some t ≥ 0. Then

|∥x∥ − ∥y∥| = |t− 1| ∥y∥ and ∥x− y∥ = ∥ty − y∥ = |t− 1| ∥y∥,
so the two sides are equal. □

7. Let x,y ∈ Rm and r > 0 such that y · z = 0 for all z ∈ Br(x). Show that y = 0.

Solution. If possible, let y ̸= 0. Then ∥y∥ ̸= 0. If z = x + r
2∥y∥y, then z ∈ Rm and

since ∥z − x∥ = r
2
< r, z ∈ Br(x). Hence y · z = 0 and so y · x + r

2∥y∥∥y∥
2 = 0. Since

x ∈ Br(x), y · x = 0 and so from above, we get ∥y∥ = 0, which is a contradiction.
Therefore y = 0. □

8. If x0 ∈ Rm and r > 0, then determine sup{∥x− y∥ : x,y ∈ Br(x0)} with justification.

Solution. For all x,y ∈ Br(x0), ∥x− y∥ ≤ ∥x− x0∥+ ∥x0 − y∥ < r + r = 2r and so 2r
is an upper bound of {∥x− y∥ : x,y ∈ Br(x0)}. Let ε > 0 such that ε < r.

Then x0+(r− ε
3
)e1, x0−(r− ε

3
)e1 ∈ Rm and since ∥x0+(r− ε

3
)e1−x0∥ = r− ε

3
< r, we

have x0+(r− ε
3
)e1,x0− (r− ε

3
)e1 ∈ Br(x0). Also, ∥(x0+(r− ε

3
)e1)− (x0− (r− ε

3
)e1)∥ =

2r − 2ε
3
> 2r − ε and hence 2r − ε is not an upper bound of {∥x − y∥ : x,y ∈ Br(x0)}.

Therefore sup{∥x− y∥ : x,y ∈ Br(x0)} = 2r. □

9. Let S ⊆ Rm such that S ⊆ Br[x0] for some x0 ∈ Rm and for some r > 0. Show that S
is a bounded set.
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Solution. If x ∈ S, then x ∈ Br[x0] and hence

∥x∥ = ∥x− x0 + x0∥ ≤ ∥x− x0∥+ ∥x0∥ ≤ r + ∥x0∥.
Therefore S is a bounded set in Rm. □

10. Let α ∈ (0, 1) and let xn = (n3αn, 1
n
⌊nα⌋) for all n ∈ N (For each x ∈ R, ⌊x⌋ denotes

the greatest integer not exceeding x). Examine whether the sequence (xn) converges in R2.
Also, find lim

n→∞
xn if the sequence (xn) converges in R2.

Solution. Let xn = n3αn and yn = 1
n
⌊nα⌋ for all n ∈ N. Using the ratio test, the

sequence (xn) converges in R to 0. Again, since nα < ⌊nα⌋ + 1 for all n ∈ N, we have
nα − 1 < ⌊nα⌋ ≤ nα for all n ∈ N and so it follows that α − 1

n
< yn ≤ α for all n ∈ N.

Hence by the sandwich theorem, the sequence (yn) converges in R to α. Therefore the
sequence (xn) converges in R2 and lim

n→∞
xn = (0, α). □

11. Let (xn) be a sequence in Rm such that the series
∞∑
n=1

2∥xn∥2 is convergent. Show that

the series
∞∑
n=1

∥xn∥ is convergent.

Solution. For all n ∈ N, using the Cauchy–Schwarz inequality, we have
n∑

k=1

∥xk∥ =
n∑

k=1

k · ∥xk∥
k

≤

(
n∑

k=1

k2∥xk∥2
)1/2( n∑

k=1

1

k2

)1/2

≤

(
∞∑
k=1

k2∥xk∥2
)1/2( ∞∑

k=1

1

k2

)1/2

<∞.

This shows that the sequence (
∑n

k=1 ∥xk∥) of partial sums of the series
∑∞

k=1 ∥xk∥ of non-
negative real numbers is bounded above and hence the sequence (

∑n
k=1 ∥xk∥) converges

in R. Consequently the series
∑∞

n=1 ∥xn∥ is convergent in R. □

12. Let (xn) and (yn) be sequences in Rm such that xn → x ∈ Rm and yn → y ∈ Rm.
Show that xn + yn → x+ y and xn · yn → x · y.

Solution. Since xn → x and yn → y, ∥xn − x∥ → 0 and ∥yn − y∥ → 0. Hence

∥(xn + yn)− (x+ y)∥ ≤ ∥xn − x∥+ ∥yn − y∥ → 0.

Therefore ∥(xn + yn)− (x+ y)∥ → 0 and so xn + yn → x+ y.
Again,

|xn · yn − x · y| = |xn · yn − xn · y + xn · y − x · y| = |xn · (yn − y) + (xn − x) · y|

≤ |xn · (yn − y)|+ |(xn − x) · y| ≤ ∥xn∥∥yn − y∥+ ∥xn − x∥∥y∥ for all n ∈ N.
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Since (xn) is a convergent sequence in Rm, (xn) is bounded in Rm. Hence there exists
r > 0 such that ∥xn∥ ≤ r for all n ∈ N. Therefore

|xn · yn − x · y| ≤ ∥xn∥∥yn − y∥+ ∥xn − x∥∥y∥ → 0

and so |xn · yn − x · y| → 0. Hence xn · yn → x · y. □

13. Let x ∈ Rm and let (xn) be a sequence in Rm such that ∥xn∥ → ∥x∥ and xn ·x → x ·x.
Show that (xn) is convergent.

Solution. Since

∥xn − x∥2 = ∥xn∥2 − 2xn · x+ ∥x∥2 → ∥x∥2 − 2x · x+ ∥x∥2 = 2∥x∥2 − 2∥x∥2 = 0,

we have that ∥xn − x∥ → 0 and hence xn → x. Therefore (xn) is convergent in Rm. □

14. State TRUE or FALSE with justification: If x,y ∈ Rm such that x ̸= y and ∥x∥ =
1 = ∥y∥, then it is necessary that ∥x+ y∥ < 2.

Solution. We have

∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2x · y = 2 + 2x · y
and

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2x · y = 2− 2x · y.
Hence

∥x+ y∥2 = 2 + 2− ∥x− y∥2 < 4,

since ∥x− y∥ > 0. So ∥x+ y∥ < 2. Therefore the given statement is TRUE. □

15. State TRUE or FALSE with justification: If (xn) is a sequence in Rm such that for
each x ∈ Rm,

lim
n→∞

xn · x

exists (in R), then
lim
n→∞

∥xn∥2

must exist (in R).

Solution. For each n ∈ N, let xn =
(
x
(n)
1 , . . . , x

(n)
m

)
.

By the given condition,

lim
n→∞

x
(n)
j = lim

n→∞
xn · ej

exists (in R) for j = 1, . . . ,m. Consequently

lim
n→∞

∥xn∥2 = lim
n→∞

(
(x

(n)
1 )2 + · · ·+ (x(n)m )2

)
exists (in R). Therefore the given statement is TRUE. □

16. State TRUE or FALSE with justification: There exists an unbounded sequence (xn)
of distinct real numbers such that the sequence

(
(xn, cosxn)

)
in R2 has a convergent sub-

sequence.
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Solution. The sequence

(xn) =
(
1, 1

2
, 2, 1

3
, 3, 1

4
, . . .

)
in R is unbounded and its subsequence

(x2n) =
(
1
2
, 1
3
, 1
4
, . . .

)
converges in R. By continuity of the cosine function, the sequence cos x2n also converges
in R. Hence the subsequence (

(x2n, cosx2n)
)

of the sequence
(
(xn, cosxn)

)
converges in R2. Therefore the given statement is TRUE.

□

17. Let S = {(x, y) ∈ R2 : x ̸= y} and let f : S → R be defined by f(x, y) = x+y
x−y

for all

(x, y) ∈ S. Show by using the definition of continuity that f is continuous at (1, 2).

Solution. Let ε > 0. For all (x, y) ∈ S, we have |f(x, y)−f(1, 2)| =
∣∣∣x+y
x−y

+ 3
∣∣∣ = 2

∣∣∣2x−y
x−y

∣∣∣.
If (x, y) ∈ S and ∥(x, y) − (1, 2)∥ =

√
(x− 1)2 + (y − 2)2 < 1

4
, then |x − 1| < 1

4
and

|y − 2| < 1
4
, and so |x − y| = |1 − ((2 − y) + (x − 1))| ≥ 1 − |(2 − y) + (x − 1)| ≥

1−(|2−y|+|x−1|) ≥ 1−(|2−y|+|x−1|) ≥ 1−
(
1
4
+ 1

4

)
= 1

2
. Again, if r > 0 and (x, y) ∈ S

such that ∥(x, y)− (1, 2)∥ = ∥(x, y)− (1, 2)∥ =
√

(x− 1)2 + (y − 2)2 < r, then |x−1| < r
and |y−2| < r, and so |2x−y| = |2(x−1)+2−y| ≤ |2(x−1)|+|y−2| < 2r+r = 3r. Hence if
we choose δ = min

{
1
4
, ε
12

}
, then δ > 0 and for all (x, y) ∈ S satisfying ∥(x, y)−(1, 2)∥ < δ,

we have |f(x, y)− f(1, 2)| < 12δ ≤ ε. Therefore f is continuous at (1, 2). □

18. If f : R2 → R is continuous and f(x, y) = x2+y2 for all x ∈ Q and for all y ∈ R\Q,
then determine f(

√
2, 2).

Solution. We know that there exist sequences (xn) in Q and (yn) in R \ Q such that
xn →

√
2 and yn → 2. Hence (xn, yn) → (

√
2, 2). Since f is continuous at (

√
2, 2),

we have f(
√
2, 2) = limn→∞ f(xn, yn) = limn→∞(x2n + y2n) = limn→∞ x2n + limn→∞ y2n =

(
√
2)2 + 22 = 2 + 4 = 6. □

19. Examine the continuity of f : R2 → R at (0, 0), where for all (x, y) ∈ R2,

f(x, y) =

{
xy if xy ≥ 0,

−xy if xy < 0.

Solution. Let (xn, yn)) be any sequence in R2 such that (xn, yn) → (0, 0). Then xn → 0
and yn → 0. We have |f(xn, yn)| = |xnyn| → 0 and hence f(xn, yn) → 0 = f(0, 0).
Therefore f is continuous at (0, 0). □

20. Examine the continuity of f : R2 → R at (0, 0), where for all (x, y) ∈ R2,

f(x, y) =

{
xy3

x2+y4
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).
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Solution. Let ε > 0. Then for all (x, y) ∈ R2 \ {(0, 0)}, we have

|f(x, y)− f(0, 0)| =
∣∣∣∣ xy3

x2 + y4

∣∣∣∣ ≤ |y| ≤ 1

2

√
x2 + y2.

Let δ = 2ε. Then δ > 0 and for all (x, y) ∈ R2 with ∥(x, y)− (0, 0)∥ =
√
x2 + y2 < δ, we

have |f(x, y)− f(0, 0)| < ε. Therefore f is continuous at (0, 0). □

21. Examine the continuity of f : R2 → R at (0, 0), where for all (x, y) ∈ R2,

f(x, y) =

{
1 if x > 0 and 0 < y < x2,

0 otherwise.

Solution. Since ( 1
n
, 1
2n2 ) → (0, 0) but f( 1

n
, 1
2n2 ) = 1 → 1 ̸= 0 = f(0, 0), f is not continuous

at (0, 0). □

22. Determine all the points of R2 where f : R2 → R is continuous, where for all (x, y) ∈
R2,

f(x, y) =

{
xy
x−y

if x ̸= y,

0 if x = y.

Solution. If φ(x, y) = xy and ψ(x, y) = x − y for all (x, y) ∈ R2, then as polynomial
functions, φ, ψ : R2 → R are continuous and ψ(x, y) ̸= 0 for all (x, y) ∈ R2 with x ̸= y.
Hence f is continuous at each (x, y) ∈ R2 with x ̸= y. Let x ∈ R\{0}. Then (x+ 1

n
, x) →

(x, x) but f(x + 1
n
, x) = nx2 + x ̸= 0 = f(x, x). So f is not continuous at (x, x). Again,

( 1
n
+ 1

n2 ,
1
n
) → (0, 0) but f( 1

n
+ 1

n2 ,
1
n
) = 1 + 1

n
→ 1 ̸= 0 = f(0, 0). So f is not continuous

at (0, 0). Therefore the set of points of continuity of f is {(x, y) ∈ R2 : x ̸= y}. □

23. Determine all the points of R2 where f : R2 → R is continuous, where for all (x, y) ∈
R2,

f(x, y) =

{
xy if xy ∈ Q,
−xy if xy ∈ R \Q.

Solution. Let (x, y) ∈ R2 such that xy = 0 and let ((xn, yn)) be any sequence in R2 such
that (xn, yn) → (x, y). Then xn → x and yn → y. We have |f(xn, yn)| = |xnyn| → |xy| = 0
and so f(xn, yn) → 0 = f(x, y). Hence f is continuous at (x, y). Again, let (x, y) ∈ R2

such that xy ̸= 0. We consider the following two possible cases.
Case (i): xy ∈ R \Q.
We can find two sequences (xn) and (yn) in Q such that xn → x and yn → y. Then
((xn, yn)) is a sequence in R2 such that (xn, yn) → (x, y) but f(xn, yn) = xnyn → xy ̸=
−xy = f(x, y). Hence f is not continuous at (x, y).
Case (ii): xy ∈ Q.
Since x ̸= 0, we can find a sequence (xn) in Q\{0} and a sequence (yn) in R\Q such that
xn → x and yn → y. Then ((xn, yn)) is a sequence in R2 such that (xn, yn) → (x, y) but
f(xn, yn) = −xnyn → −xy ̸= xy = f(x, y). Hence f is not continuous at (x, y). Therefore
the set of points of continuity of f is {(x, y) ∈ R2 : xy = 0}. □
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24. Let α, β be positive real numbers and let f : R2 → R be defined by

f(x, y) =


|x|α|y|β

x2 + y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Show that f is continuous iff α+ β > 2.

Solution. Let α + β > 2 and let ((xn, yn)) be any sequence in R2 such that (xn, yn) →
(0, 0). Then xn → 0 and yn → 0. For all n ∈ N for which (xn, yn) ̸= (0, 0), we have

0 ≤ f(xn, yn) ≤
(x2n + y2n)

α/2(x2n + y2n)
β/2

x2n + y2n
=

(x2n + y2n)
(α+β)/2

x2n + y2n
= (x2n + y2n)

(α+β−2)/2

and since f(0, 0) = 0, we have 0 ≤ f(xn, yn) ≤ 2(α+β−2)/2(x2n + y2n)
(α+β−2)/2 for all n ∈ N.

Since 2(α+β−2)/2(x2n + y2n)
(α+β−2)/2 → 0, we get f(xn, yn) → 0 = f(0, 0). This shows

that f is continuous at (0, 0). Also, it is clear (by similar arguments given in other
examples) that f is continuous at each (x, y) ∈ R2 \ {(0, 0)}. Therefore f is continuous.
Conversely, let f be continuous and if possible, let α + β ≤ 2. We have ( 1

n
, 1
n
) → (0, 0)

but f( 1
n
, 1
n
) = 1

2
n2−(α+β) ̸→ 0 = f(0, 0) (because for α + β = 2, f( 1

n
, 1
n
) → 1

2
and for

α+β < 2, the sequence f( 1
n
, 1
n
) is unbounded). Hence f is not continuous at (0, 0), which

is a contradiction. Therefore α+ β > 2. □

25. Let S be a nonempty subset of Rm and let fj : S → R for each j ∈ {1, . . . , k}. If
f(x) = (f1(x), . . . , fk(x)) for all x ∈ S, then show that f : S → Rk is continuous at
x0 ∈ S iff fj is continuous at x0 for each j ∈ {1, . . . , k}.

Solution. We first assume that f is continuous at x0 and let (xn) be any sequence in
S such that xn → x0. Then (f1(xn), . . . , fk(xn)) = f(xn) → f(x0) = (f1(x0), . . . , fk(x0))
and hence fj(xn) → fj(x0) for each j ∈ {1, . . . , k}. Consequently fj is continuous at x0
for each j ∈ {1, . . . , k}. Conversely, let fj be continuous at x0 for each j ∈ {1, . . . , k}
and let (xn) be any sequence in S such that xn → x0. Then fj(xn) → fj(x0) for each
j ∈ {1, . . . , k} and hence

f(xn) = (f1(xn), . . . , fk(xn)) → (f1(x0), . . . , fk(x0)) = f(x0).

Therefore f is continuous at x0. □

26. Examine the continuity of f : R2 → R2 at (0, 0), where for all (x, y) ∈ R2,

f(x, y) =


(

x3

x2 + y2
, sin(x2 + y2)

)
if (x, y) ̸= (0, 0),

(0, 0) if (x, y) = (0, 0).

Solution. For all (x, y) ∈ R2, let φ(x, y) = sin(x2 + y2) and

ψ(x, y) =


x3

x2 + y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).
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Since φ : R2 → R is a composition of a polynomial function and the sine function,
both of which are continuous, φ is continuous at (0, 0). Again, let ε > 0. Then for all
(x, y) ∈ R2 \ {(0, 0)}, we have

|ψ(x, y)− ψ(0, 0)| =
∣∣∣∣ x3

x2 + y2

∣∣∣∣ ≤ |x| ≤
√
x2 + y2.

Since ψ(0, 0) = 0, we get |ψ(x, y) − ψ(0, 0)| ≤
√
x2 + y2 for all (x, y) ∈ R2. Let δ = ε.

Then δ > 0 and for all (x, y) ∈ R2 with ∥(x, y)− (0, 0)∥ =
√
x2 + y2 < δ, we have

|ψ(x, y)− ψ(0, 0)| < ε.

Therefore ψ is continuous at (0, 0). Consequently (by Ex.17 of Practice Problem Set - 1)
f is continuous at (0, 0). □

27. If f, g : S ⊆ Rm → Rk are continuous at x0 ∈ S and if φ(x) = f(x) · g(x) for all
x ∈ S, then show that φ : S → R is continuous at x0.

Solution. Let (xn) be any sequence in S such that xn → x0. Since f and g are continuous
at x0, f(xn) → f(x0) and g(xn) → g(x0). Hence (by Ex. 9 of Practice Problem Set - 1)
f(xn) · g(xn) → f(x0) · g(x0) = φ(x0). Therefore φ is continuous at x0. □

28. Let f : S ⊆ Rm → Rk be continuous at x0 ∈ S0 and let f(x0) ̸= 0. Show that there
exists r > 0 such that f(x) ̸= 0 for all x ∈ Br(x0).

Solution. Since x0 ∈ S0, there exists s > 0 such that Bs(x0) ⊆ S. Again, since f(x0) ̸= 0,
1
2
∥f(x0)∥ > 0. By the continuity of f at x0, there exists δ > 0 such that

∥f(x)− f(x0)∥ <
1

2
∥f(x0)∥

for all x ∈ S satisfying ∥x − x0∥ < δ. Taking r = min{s, δ} > 0, we find that ∥f(x) −
f(x0)∥ < 1

2
∥f(x0)∥ for all x ∈ Br(x0). If possible, let f(x) = 0 for some x ∈ Br(x0). Then

from above, we get ∥f(x0)∥ < 1
2
∥f(x0)∥, which is not true. Therefore f(x) ̸= 0 for all

x ∈ Br(x0). □

29. Let S be an open subset of Rm and let f : S → Rk and g : S → Rk be continuous at
x0 ∈ S. If for each ε > 0, there exist x, y ∈ Bε(x0) such that f(x) = g(y), then show that
f(x0) = g(x0).

Solution. By the given condition, for each n ∈ N, there exist xn, yn ∈ B 1
n
(x0) such

that f(xn) = g(yn). So ∥xn − x0∥ < 1
n
→ 0 and ∥yn − x0∥ < 1

n
→ 0. Hence xn → x0

and yn → x0. Since f and g are continuous at x0, f(xn) → f(x0) and g(yn) → g(x0).
Therefore f(x0) = g(x0). □

30. If S = {(x, y) ∈ R2 : x+ y ≥ 2}, then determine (with justification) S0.

Solution. Let (x0, y0) ∈ S with x0 + y0 > 2. Let r = x0+y0−2√
2

> 0 and let (x, y) ∈
Br((x0, y0)). Then ∥(x, y)− (x0, y0)∥ =

√
(x− x0)2 + (y − y0)2 < r. By Cauchy-Schwarz

inequality, we have x0 − x + y0 − y ≤
√

(x0 − x)2 + (y0 − y)2 ·
√
2 <

√
2r = x0 + y0 − 2.



9

Hence x + y > 2 and so (x, y) ∈ S. Thus Br((x0, y0)) ⊆ S and therefore (x0, y0) ∈ S0.
Now, let (x0, y0) ∈ S such that x0 + y0 = 2 and if possible, let (x0, y0) ∈ S0. Then there
exists r > 0 such that Br((x0, y0)) ⊆ S. Since ∥(x0− r

2
, y0)−(x0, y0)∥ = ∥(− r

2
, 0)∥ = r

2
< r,

(x0 − r
2
, y0) ∈ Br((x0, y0)). However, (x0 − r

2
, y0) /∈ S, since x0 − r

2
+ y0 = x0 + y0 − r

2
=

2− r
2
< 2. Thus we get a contradiction. Hence (x0, y0) /∈ S0.

Therefore S0 = {(x, y) ∈ R2 : x+ y > 2}. □

31. If S = {(x1, . . . , xm) ∈ Rm : xm = 1}, then determine (with justification) S0.

Solution. If possible, let S0 ̸= ∅. Then there exists x = (x1, . . . , xm) ∈ S0 and hence there
exists r > 0 such that Br(x) ⊆ S. If y = (x1, . . . , xm−1, xm + r

2
), then ∥y − x∥ = | r

2
| < r

and so y ∈ Br(x). But y /∈ S, because xm + r
2
= 1 + r

2
̸= 1. Thus we get a contradiction.

Therefore S0 = ∅. □

32. If x ∈ Rm and r > 0, then determine (with justification) all the interior points of
Br[x].

Solution. Let y ∈ Br(x). Then ∥y−x∥ < r. If s = r−∥y−x∥, then s > 0. Let z ∈ Bs(y).
Then ∥z−y∥ < s and so ∥z−x∥ = ∥z−y+y−x∥ ≤ ∥z−y∥+∥y−x∥ < s+∥y−x∥ = r.
Hence z ∈ Br[x] and so Bs(y) ⊆ Br[x]. Therefore y ∈ (Br[x])

0. Again, let y ∈ Br[x]
such that ∥y − x∥ = r. If possible, let y ∈ (Br[x])

0. Then there exists s > 0 such that
Bs(y) ⊆ Br[x]. Now, y +

s
2r
(y − x) ∈ Bs(y), since∥∥∥y + s

2r
(y − x)− y

∥∥∥ =
s

2r
∥y − x∥ =

s

2
.

But y + s
2r
(y − x) /∈ Br[x], because

∥y + s

2r
(y − x)− x∥ = (1 +

s

2r
)∥y − x∥ = r +

s

2
> r.

Thus we get a contradiction. Hence y /∈ (Br[x])
0. Therefore (Br[x])

0 = Br(x). □

33. Examine whether {(x, y) ∈ R2 : 0 < x < y} is an open set in R2.

Solution. Let S = {(x, y) ∈ R2 : 0 < x < y} and let (x0, y0) ∈ S. If r = min
{
x0,

y0−x0√
2

}
,

then r > 0. Let (x, y) ∈ Br((x0, y0)). Then ∥(x, y)−(x0, y0)∥ =
√

(x− x0)2 + (y − y0)2 <
r. Hence x0−x ≤ |x−x0| < r ≤ x0 and so x > 0. Also, using Cauchy-Schwarz inequality,

we have x − x0 + y0 − y ≤
√

(x− x0)2 + (y0 − y)2 ·
√
2 <

√
2r ≤ y0 − x0 and hence

x− y < 0, i.e. x < y. Thus (x, y) ∈ S and so (x0, y0) ∈ S0. Since (x0, y0) ∈ S is arbitrary,
it follows that S is an open set in R2. □


