
MA15010H: Multi-variable Calculus
(Practice problem set 2: Hint/Model solution)

July - November, 2025

1. Examine whether the set {(x, y) ∈ R2 : 0 < x < y} is (a) open (b) closed in R2.
Solution: We have already shown in Ex.25 of Practice Problem Set - 1 that S =

{(x, y) ∈ R2 : 0 < x < y} is an open set in R2.
Again, since

(
1
2n
, 1
n

)
∈ S for all n ∈ N and

(
1
2n
, 1
n

)
→ (0, 0) /∈ S, S is not a closed set

in R2.

2. Examine whether the set {(x, x) : x ∈ R} is (a) open (b) closed in R2.
Solution: We have (0, 0) ∈ S = {(x, x) : x ∈ R}. If possible, let (0, 0) ∈ S0. Then

there exists r > 0 such that Br((0, 0)) ⊂ S. Since
(
r
2
, 0
)
∈ Br((0, 0)) but

(
r
2
, 0
)
/∈ S,

we get a contradiction. Hence (0, 0) /∈ S0. Therefore S is not an open set in R2.
Again, let ((xn, xn)) be any sequence in S such that (xn, xn) → (x, y) in R2. Then

xn → x and xn → y. Hence x = y and so (x, y) ∈ S. Therefore S is a closed set in R2.

3. Examine whether the set {(x, y) ∈ R2 : y ∈ Z} is (a) open (b) closed in R2.
Solution: We have (0, 0) ∈ S = {(x, y) : y ∈ Z}. If possible, let (0, 0) ∈ S0. Then

there exists r > 0 such that Br((0, 0)) ⊂ S. If s = min{1
2
, r
2
}, then (0, s) ∈ Br((0, 0))

but (0, s) /∈ S. Thus we get a contradiction. Hence (0, 0) /∈ S0 and therefore S is not
an open set in R2.

Again, let ((xn, yn)) be any sequence in S such that (xn, yn) → (x, y) in R2. Then
yn → y. There exists N ∈ N such that |yn − y| < 1

2
for all n ≥ N and hence

|yn − y0| ≤ |yn − y| + |y − y0| < 1 for all n ≥ n0. Since yn ∈ Z for all n ∈ N, we get
yn = y0 for all n ≥ n0 and so yn → y0. Consequently y = y0 ∈ Z and so (x, y) ∈ S.
Therefore S is a closed set in R2.

4. Examine whether the set (0, 1)× {0} is (a) open (b) closed in R2.
Solution: We have

(
1
2
, 0
)
∈ (0, 1)×{0}. If possible, let

(
1
2
, 0
)
∈ ((0, 1)×{0})0. Then

there exists r > 0 such that Br

((
1
2
, 0
))

⊂ (0, 1) × {0}. Since
(
1
2
, r
2

)
∈ Br

((
1
2
, 0
))

but(
1
2
, r
2

)
/∈ (0, 1)× {0}, we get a contradiction. Hence

(
1
2
, 0
)
/∈ ((0, 1)× {0})0. Therefore

(0, 1)× {0} is not an open set in R2.
Again, since

(
1

n+1
, 0
)
∈ (0, 1)×{0} for all n ∈ N and

(
1

n+1
, 0
)
→ (0, 0) /∈ (0, 1)×{0},

(0, 1)× {0} is not a closed set in R2.

5. If f : Rm → R is continuous, then show that {x ∈ Rm : f(x) > 0} is an open set in
Rm.

Solution: Let (xn) be any sequence in Rm \S, where S = {x ∈ Rm : f(x) > 0} and
let xn → x ∈ Rm. Since f is continuous at x, f(xn) → f(x). Also, since xn ∈ Rm \ S
for all n ∈ N, f(xn) ≤ 0 for all n ∈ N and hence it follows that f(x) ≤ 0. Thus
x ∈ Rm \ S and therefore Rm \ S is a closed set in Rm. Consequently S is an open set
in Rm.

6. If f : Rm → R is continuous, then show that {x ∈ Rm : f(x) ≥ 0} and {x ∈ Rm :
f(x) = 0} are closed sets in Rm.
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Solution: Let (xn) be any sequence in S1 = {x ∈ Rm : f(x) ≥ 0} and let xn →
x ∈ Rm. Since f is continuous at x, f(xn) → f(x). Also, since xn ∈ S1 for all n ∈ N,
f(xn) ≥ 0 for all n ∈ N and hence it follows that f(x) ≥ 0. Thus x ∈ S1 and therefore
S1 is a closed set in Rm.

Again, let (xn) be any sequence in S2 = {x ∈ Rm : f(x) = 0} and let xn → x ∈ Rm.
Since f is continuous at x, f(xn) → f(x). Also, since xn ∈ S2 for all n ∈ N, f(xn) = 0
for all n ∈ N and hence it follows that f(x) = 0. Thus x ∈ S2 and therefore S2 is a
closed set in Rm.

7. Using Ex.2 in the Practice Problem Set - 2, show that {(x, y, z) ∈ R3 : x2 + 2z < 3|y|}
is an open set in R3 and {(x, y, z) ∈ R3 : sin(xyz) = |xy|} is a closed set in R3.

Solution: If f(x, y, z) = 3|y| − x2 − 2z and g(x, y, z) = sin(xyz) − |xy| for all
(x, y, z) ∈ R3, then we know that both f : R3 → R and g : R3 → R are continuous.
Hence by Ex.2(a) of Practice Problem Set - 2, {(x, y, z) ∈ R3 : x2 + 2z < 3|y|} =
{(x, y, z) ∈ R3 : f(x, y, z) > 0} is an open set in R3 and by Ex.2(b) of Practice
Problem Set - 2, {(x, y, z) ∈ R3 : sin(xyz) = |xy|} = {(x, y, z) ∈ R3 : g(x, y, z) = 0} is
a closed set in R3.

8. Let f : R2 → R be defined by

f(x, y) =

{
sin(xy)

xy
if xy ̸= 0,

1 if xy = 0.

Show that f is continuous.
Solution: If φ(x, y) = xy and ψ(x, y) = sin(xy) for all (x, y) ∈ R2, then we know

that φ, ψ : R2 → R are continuous and φ(x, y) ̸= 0 for all (x, y) ∈ R2. Hence it follows
that f is continuous at each point (x, y) ∈ R2 for which xy ̸= 0.

Let (x, y) ∈ R2 such that xy = 0 and let ((xn, yn)) be any sequence in R2 such that
(xn, yn) → (x, y). Then xn → x, yn → y and so xnyn → xy = 0. Now f(xn, yn) =
sin(xnyn)

xnyn
if xnyn ̸= 0 and f(xn, yn) = 1 if xnyn = 0. Since limt→0

sin t
t

= 1, it follows

that f(xn, yn) → 1 = f(x, y) and consequently f is continuous at (x, y). Therefore f
is continuous.

9. Let f : R2 → R be such that f(x, y) = e−
x2−2xy+y2

|x−y| for all (x, y) ∈ R2 with x ̸= y. If
x ∈ R, then find f(x, x) such that f is continuous on R2.

Solution: Since x2−2xy+y2 = |x−y|2 for all x, y ∈ R, we find that f(x, y) = e−|x−y|

for all (x, y) ∈ R2 with x ̸= y. If x ∈ R, then (x + 1
n
, x) → (x, x) and for f to be

continuous at (x, x), we must have f(x, x) = limn→∞ f(x + 1
n
, x) = limn→∞ e−

1
n = 1.

So, let f(x, x) = 1 for all x ∈ R.
If g(x, y) = −|x − y| for all (x, y) ∈ R2 and φ(t) = et for all t ∈ R, then f(x, y) =

φ(g(x, y)) for all (x, y) ∈ R2. Since we know that g : R2 → R and φ : R → R are
continuous, hence f = φ ◦ g is also continuous.
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10. Let f : S ⊂ Rm → Rk be continuous and let g : Rm → Rk be such that g(x) = f(x)
for all x ∈ S.
(a) Show that g need not be continuous on S.

(b) If S is an open set in Rm, then show that g is continuous on S.
Solution:

(a) Let f(x, y) = 1 for all (x, y) ∈ S = {(x, y) ∈ R2 : x2 + y2 ≤ 1} and

g(x, y) =

{
1 if (x, y) ∈ S,

2 if (x, y) ∈ R2\S.

Then f : S → R is continuous (as a constant function) and f(x, y) = g(x, y) for
all (x, y) ∈ S. However, g is not continuous at (1, 0) ∈ S, since (1 + 1

n
, 0) → (1, 0)

but

g(1 +
1

n
, 0) = 2 → 2 ̸= 1 = g(1, 0).

(b) Let x0 ∈ S and ε > 0. Since S is an open set in Rm, there exists r > 0 such
that Br(x0) ⊂ S. Since f is continuous at x0, there exists s > 0 such that
∥f(x) − f(x0)∥ < ε for all x ∈ S ∩ Bs(x0). If δ = min{r, s} > 0, then Bδ(x0) ⊂
Br(x0) ⊂ S and Bδ(x0) ⊂ Bs(x0). Hence for all x ∈ Bδ(x0), we have g(x) = f(x)
and ∥g(x)−g(x0)∥ < ε. Therefore g is continuous at x0. Since x0 ∈ S is arbitrary,
g is continuous on S.

11. Let S1 = {(x, y) ∈ R2 : (x− 1)2 + y2 < 4} and S2 = {(x, y) ∈ R2 : x2 + (y − 1)2 < 9}.
Does there exist a continuous function from S1 onto S2? Justify.
Solution: Let u = (1, 0), v = (0, 1) and let f(x) = v + 3

2
(x − u) =

(
3x
2
− 3

2
, 1 + 3y

2

)
for all x = (x, y) ∈ S1. If x ∈ S1, then ∥f(x) − v∥ = 3

2
∥x − u∥ < 3 and so f(x) ∈ S2.

Thus f maps S1 to S2 and clearly f is continuous (since both the component functions
of f are continuous).

Again, if y ∈ S2, then x = u+ 2
3
(y−v) ∈ R2 and ∥x−u∥ = 2

3
∥y−v∥ < 2, i.e. x ∈ S1,

and also f(x) = y. Thus f : S1 → S2 is onto. Therefore there exists a continuous
function from S1 onto S2.

12. If S = {x ∈ Rm : ∥x∥ < 1}, then does there exist a non-constant continuous function
f : Rm → R such that f(x) = 5 for all x ∈ S? Justify.

Solution: There exists such a function as is shown by the following example. Let

f(x) =

{
5 if x ∈ S,

5∥x∥ if x ∈ Rm \ S.

If (xn) is any sequence in Rm such that xn → x ∈ Rm, then using Ex.1(a) of Practice
Problem Set - 1, we get |∥xn∥−∥x∥| ≤ ∥xn−x∥ → 0 and hence ∥xn∥ → ∥x∥. It follows
that f : Rm → R is continuous. Clearly f is a non-constant function and f(x) = 5 for
all x ∈ S.

13. Let x,y ∈ Rm such that x ̸= y. Find a continuous function f : Rm → R such that
f(x) = 1, f(y) = 0 and 0 ≤ f(z) ≤ 1 for all z ∈ Rm.
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Solution: Let f(z) = ∥z−y∥
∥z−x∥+∥z−y∥ for all z ∈ Rm. If (zn) is any sequence in Rm

such that zn → z ∈ Rm, then using Ex.1(a) of Practice Problem Set - 1, we find
that ∥zn − x∥ → ∥z − x∥, ∥zn − y∥ → ∥z − y∥. Also, ∥v − x∥ + ∥v − y∥ ̸= 0 for
all v ∈ Rm. Hence it follows that f(zn) → f(z) and consequently f : Rm → R is
continuous. Clearly f(x) = 1, f(y) = 0 and 0 ≤ f(z) ≤ 1 for all z ∈ Rm.

14. Let f : Rm → R be continuous such that lim∥x∥→∞ f(x) = 1. Show that f is bounded
on Rm.

Solution: Since lim∥x∥→∞ f(x) = 1, there exists r > 0 such that |f(x)− 1| < 1 for
all x ∈ Rm with ∥x∥ > r. Hence |f(x)| = |f(x) − 1 + 1| ≤ |f(x) − 1| + 1 < 2 for all
x ∈ Rm with ∥x∥ > r. Again, since S = {x ∈ Rm : ∥x∥ ≤ r} is a closed and bounded
subset of Rm and since f : Rm → R is continuous, f(S) is a bounded subset of R.
Hence there exists K > 0 such that |f(x)| ≤ K for all x ∈ S. If M = max{2, K}, then
M > 0 and |f(x)| ≤M for all x ∈ Rm. Consequently f is bounded on Rm.

15. State TRUE or FALSE with justification: There exists r > 0 such that sin(xy) <
cos(xy) for all x, y ∈ [−r, r].
Solution: If f(x, y) = sin(xy) − cos(xy) for all (x, y) ∈ R2, then we know that
f : R2 → R is continuous at (0, 0) and f(0, 0) = −1 < 0. Hence there exists δ > 0 such
that f(x, y) < 0, i.e. sin(xy) < cos(xy) for all (x, y) ∈ Bδ((0, 0)). If r = δ

2
> 0, then

[−r, r]× [−r, r] ⊆ Bδ((0, 0)) and hence for all x, y ∈ [−r, r], we have (x, y) ∈ Bδ((0, 0))
and consequently sin(xy) < cos(xy). Therefore the given statement is TRUE.

16. State TRUE or FALSE with justification: There exists a continuous function f : R →
R2 such that f(cosn) =

(
n, 1

n

)
for all n ∈ N.

Solution: Since (cosn) is a bounded sequence in R, by Bolzano-Weierstrass theorem in
R, there exists a strictly increasing sequence (nk) in N and α ∈ R such that cosnk → α.

If f : R → R2 is continuous, then
(
nk,

1
nk

)
= f(cosnk) → f(α) in R2 and consequently

the sequence
(
nk,

1
nk

)
converges in R2, which is not true, since (nk) is unbounded.

Hence it follows that no continuous function f : R → R2 can exist satisfying f(cosn) =(
n, 1

n

)
for all n ∈ N. Therefore the given statement is FALSE.

17. State TRUE or FALSE with justification: There exists a continuous function from
{(x, y) ∈ R2 : x2 + y2 ≤ 1} onto R2.
Solution: We know that {(x, y) ∈ R2 : x2 + y2 ≤ 1} = B1[(0, 0)] is a closed and
bounded set in R2 and R2 is not bounded. Hence there cannot exist any continuous
function from B1[(0, 0)] onto R2.

18. State TRUE or FALSE with justification: There exists a one-one continuous function
from {(x, y) ∈ R2 : x2 + y2 < 1} onto R2.

Solution: Let S = {(x, y) ∈ R2 : x2+y2 < 1} and let f(x) = 1
1−∥x∥x =

(
x

1−
√

x2+y2
, y

1−
√

x2+y2

)
for all x = (x, y) ∈ S. If x ∈ S and (xn) is any sequence in S such that xn → x, then
using Ex.1(a) of Practice Problem Set - 1, we get ∥xn∥ − ∥x∥ ≤ ∥xn − x∥ → 0 and so
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∥xn∥ → ∥x∥. Hence 1− ∥xn∥ → 1− ∥x∥ and since 1− ∥x∥ ̸= 0 and 1− ∥xn∥ ̸= 0 for
all n ∈ N, it follows that f(xn) → f(x). Therefore f : S → R2 is continuous at x and
since x ∈ S is arbitrary, f is continuous.

Let x1,x2 ∈ S such that f(x1) = f(x2). Then ∥f(x1)∥ = ∥f(x2)∥, i.e. ∥x1∥
1−∥x1∥ =

∥x2∥
1−∥x2∥ , which gives ∥x1∥ = ∥x2∥. Consequently from 1

1−∥x1∥x1 = 1
1−∥x2∥x2, we get

x1 = x2. Hence f is one-one.
Again, if y ∈ R2, then taking x = 1

1+|y|y, we find that ∥x∥ < 1, i.e. x ∈ S and

f(x) = y. Hence f is onto.
Thus f : S → R2 is the required function and therefore the given statement is TRUE.

19. If f : R2 → R2 is continuous, then does there exist a sequence ((xn, yn)) in R2 such
that x2n + y2n = 1

2
and f(xn, yn) =

(
n, 1

n

)
for all n ∈ N? Justify.

Solution: If possible, let there exist a sequence ((xn, yn)) in R2 such that x2n+y
2
n = 1

2

and f(xn, yn) =
(
n, 1

n

)
for all n ∈ N. Then ∥(xn, yn)∥ =

√
x2n + y2n = 1√

2
for all n ∈ N

and so ((xn, yn)) is a bounded sequence in R2. Hence by the Bolzano-Weierstrass
theorem in R2, there exist (x, y) ∈ R2 and a convergent subsequence ((xnk

, ynk
)) of

((xn, yn)) such that (xnk
, ynk

) → (x, y). Since f is continuous at (x, y),
(
nk,

1
nk

)
=

f(xnk
, ynk

) → f(x, y) ∈ R2. Consequently, the sequence (nk) converges in R, which is
not true, since (nk) is unbounded. Hence it follows that there cannot exist any sequence
((xn, yn)) in R2 such that x2n + y2n = 1

2
and f(xn, yn) =

(
n, 1

n

)
for all n ∈ N.

20. Examine whether

lim
(x,y)→(0,0)

x3y

x4 + y2

exists (in R) and find its value if it exists (in R).
Solution: Let ((xn, yn)) be any sequence in R2 \{(0, 0)} such that (xn, yn) → (0, 0).

Then xn → 0 and yn → 0. Since∣∣∣∣ x3nyn
x4n + y2n

∣∣∣∣ ≤ |xn|3|yn|
x4n

≤ |xn|+ |yn| → 0,

it follows that x3
nyn

x4
n+y2n

→ 0. Therefore

lim
(x,y)→(0,0)

x3y

x4 + y2
= 0.

21. Examine whether

lim
(x,y)→(0,0)

x3 − y3

x2 + y2

exists (in R) and find its value if it exists (in R).
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Solution: Let ((xn, yn)) be any sequence in R2 \{(0, 0)} such that (xn, yn) → (0, 0).
Then xn → 0, yn → 0, and hence

x3n − y3n
x2n + y2n

=
x3n

x2n + y2n
− y3n
x2n + y2n

≤ |xn|+ |yn| → 0.

Consequently x3
n−y3n

x2
n+y2n

→ 0, and therefore

lim
(x,y)→(0,0)

x3 − y3

x2 + y2
= 0.

22. Examine whether

lim
(x,y)→(0,0)

|x|e−|x|/y2

exists (in R) and find its value if it exists (in R).
Solution: Let f(x, y) = |x|e−|x|/y2 for all (x, y) ∈ R2 with y ̸= 0. We have (0, 1

n
) →

(0, 0) and ( 1
n2 ,

1
n
) → (0, 0). Also, f(0, 1

n
) → 0 and f( 1

n2 ,
1
n
) → 1

e
. Since lim

n→∞
f(0, 1

n
) ̸=

lim
n→∞

f( 1
n2 ,

1
n
), lim

(x,y)→(0,0)
f(x, y) does not exist (in R).

23. Examine whether

lim
(x,y)→(0,0)

x3 + y2 − 1

x2 + y3

exists (in R) and find its value if it exists (in R).
Solution: Let f(x, y) = x3+y2−1

x2+y3
for all (x, y) ∈ R2 with x2 + y3 ̸= 0. We have

( 1
n
, 0) → (0, 0) and ( 1

n
, 1
n
) → (0, 0). Also, f( 1

n
, 0) = 1/n3−1

1/n2 = 1
n
− n2 → −∞ and

f( 1
n
, 1
n
) = 1/n3+1/n2−1

1/n2+1/n3 = 1 + 1/n−1
1+1/n

→ 1. Since f( 1
n
, 0) ̸= f( 1

n
, 1
n
), lim

(x,y)→(0,0)
f(x, y) does

not exist (in R).

24. Examine whether

lim
(x,y)→(0,0)

x2y2 + x2 − 1

x2 + y3

exists (in R) and find its value if it exists (in R).
Solution: Let ((xn, yn)) be any sequence in R2 \{(0, 0)} such that (xn, yn) → (0, 0).

Then xn → 0 and yn → 0. Since 0 ≤
√

x2
ny

4
n+1−1

x2
n+y3n

≤ x2
ny

4
n

x2
n+y3n

≤ x2n if y2n → 0, it follows

that √
x2ny

4
n + 1− 1

x2n + y3n
→ 0.

Therefore

lim
(x,y)→(0,0)

√
x2y4 + 1− 1

x2 + y3
= 0.
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25. Examine whether

lim
(x,y)→(0,0)

x2y2 + x2 − 1

x2 + y3

exists (in R) and find its value if it exists (in R).
Solution: Let f(x, y) = x2y2+x2−1

x2+y3
for all (x, y) ∈ R2 \ {(0, 0)}. We have ( 1√

n
, 1
n
) →

(0, 0) and ( 1
n
, 0) → (0, 0). Also, f( 1

n
, 0) → −1 and f( 1√

n
, 1
n
) → 1

2
. Since

lim
n→∞

f

(
1

n
, 0

)
̸= lim

n→∞
f

(
1√
n
,
1

n

)
,

lim(x,y)→(0,0) f(x, y) does not exist (in R).

26. Examine whether

lim
(x,y,z)→(0,0,0)

(x+ y + z)2

x2 + y2 + z2

exists (in R) and find its value if it exists (in R).
Solution: Let f(x, y, z) = (x+y+z)2

x2+y2+z2
for all (x, y, z) ∈ R3 \ {(0, 0, 0)}. We have

( 1
n
, 0, 0) → (0, 0, 0) and ( 1

n
, 1
n
, 0) → (0, 0, 0). Also, f( 1

n
, 0, 0) = 1 and f( 1

n
, 1
n
, 0) = 2 →

2. Since limn→∞ f
(
1
n
, 0, 0

)
̸= limn→∞ f

(
1
n
, 1
n
, 0
)
,

lim
(x,y,z)→(0,0,0)

f(x, y, z)

does not exist (in R).

27. Let f : R2 → R be defined by

f(x, y) =

{
x+ y if x ̸= y,

1 if x = y.

Examine whether

lim
(x,y)→(0,0)

f(x, y)

exists (in R).
Solution: We have ( 1

n
, 0) → (0, 0) and ( 1

n
, 1
n
) → (0, 0). Also, f( 1

n
, 0) = 1

n
→ 0 and

f( 1
n
, 1
n
) = 1 → 1. Since

lim
n→∞

f

(
1

n
, 0

)
̸= lim

n→∞
f

(
1

n
,
1

n

)
,

lim(x,y)→(0,0) f(x, y) does not exist (in R).

28. Let S ⊆ R2, (x0, y0) ∈ R2 and r > 0 be such that (Br(x0) × Br(y0)) \ {(x0, y0)} ⊆ S.
Let limx→x0 f(x, y) exist (in R) for each y ∈ Br(y0) \ {y0}, limy→y0 f(x, y) exist (in R)
for each x ∈ Br(x0) \ {x0} and lim(x,y)→(x0,y0) f(x, y) = ℓ ∈ R. Show that

lim
x→x0

(
lim
y→y0

f(x, y)

)
= lim

y→y0

(
lim
x→x0

f(x, y)

)
= ℓ.
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[ limx→x0(limy→y0 f(x, y)) and limy→y0(limx→x0 f(x, y)) are called the iterated limits of
f at (x0, y0).]

Solution: Let ε > 0. Since lim(x,y)→(x0,y0) f(x, y) = ℓ, there exists δ ∈ (0, r) such
that

|f(x, y)− ℓ| < ε

2
for all (x, y) ∈ Bδ((x0, y0)) \ {(x0, y0)}. Let g(x) = limy→y0 f(x, y) for all x ∈ Br(x0) \
{x0} and let x ∈ Bδ/2(x0)\{x0}. Then there exists s ∈ (0, δ

2
) such that |f(x, y)−g(x)| <

ε
2
for all y ∈ Bs(y0) \ {y0}. We choose any y ∈ Bs(y0) \ {y0}. Then

0 < ∥(x, y)− (x0, y0)∥ =
√

(x− x0)2 + (y − y0)2 <

√
δ2

4
+ s2 < δ,

i.e. (x, y) ∈ Bδ((x0, y0)) \ {(x0, y0)} and hence

|g(x)− ℓ| ≤ |g(x)− f(x, y)|+ |f(x, y)− ℓ| < ε

2
+
ε

2
= ε.

Therefore limx→x0 g(x) = ℓ, i.e.

lim
x→x0

(
lim
y→y0

f(x, y)

)
= ℓ.

Similarly, we can show that

lim
y→y0

(
lim
x→x0

f(x, y)

)
= ℓ.

29. Show that

lim
x→0

(
lim
y→0

x2

x2 + y2

)
̸= lim

y→0

(
lim
x→0

x2

x2 + y2

)
and hence conclude that

lim
(x,y)→(0,0)

x2

x2 + y2

does not exist (in R).
Solution: For each x ∈ R \ {0},

lim
y→0

x2

x2 + y2
=
x2

x2
= 1

and for each y ∈ R \ {0},

lim
x→0

x2

x2 + y2
= 0.

Hence

lim
x→0

(
lim
y→0

x2

x2 + y2

)
= lim

x→0
1 = 1 ̸= 0 = lim

y→0

(
lim
x→0

x2

x2 + y2

)
.

Using Ex. 15 of Practice Problem Set 2, we can conclude that

lim
(x,y)→(0,0)

x2

x2 + y2
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does not exist (in R).

30. Show that

lim
x→0

(
lim
y→0

−x2y2

x4 + y4 + (x− y)2

)
= 0 = lim

y→0

(
lim
x→0

−x2y2

x4 + y4 + (x− y)2

)
but that

lim
(x,y)→(0,0)

−x2y2

x4 + y4 + (x− y)2

does not exist (in R).
Solution: Let f(x, y) = −x2y2

x4+y4+(x−y)2
for all (x, y) ∈ R2 \ {(0, 0)}. Then

lim
y→0

f(x, y) = 0

for each x ∈ R \ {0} and limx→0 f(x, y) = 0 for each y ∈ R \ {0}. Consequently,

lim
x→0

(
lim
y→0

f(x, y)

)
= 0 = lim

y→0

(
lim
x→0

f(x, y)
)
.

Again, we have ( 1
n
, 0) → (0, 0) and ( 1

n
, 1
n
) → (0, 0). Also, f( 1

n
, 0) → 0 and f( 1

n
, 1
n
) →

−1. Since limn→∞ f( 1
n
, 0) ̸= limn→∞ f( 1

n
, 1
n
), lim(x,y)→(0,0) f(x, y) does not exist (in R).

31. Let f : R2 → R be defined by f(x, y) =

{
x sin 1

y
if y ̸= 0

0 if y = 0
.

Show that lim(x,y)→(0,0) f(x, y) = 0 and (limy→0 f(x, y)) = 0 but that limx→0 f(x, y)
does not exist (in R) if x ∈ R \ {0} and so limx→0 (limy→0 f(x, y)) is not defined.

Solution: If ((xn, yn)) is any sequence in R2 \ {(0, 0)} such that (xn, yn) → (0, 0),
then xn → 0 and hence |f(xn, yn)| ≤ |xn| → 0. Therefore f(xn, yn) → 0 and so
lim(x,y)→(0,0) f(x, y) = 0.

Again, for each y ∈ R\{0}, limx→0 f(x, y) = limx→0 x sin
1
y
= 0 and so limx→0 (limy→0 f(x, y)) =

limx→0 0 = 0.
If x ∈ R \ {0}, then limy→0 f(x, y) = limy→0 x sin

1
y
which does not exist (in R) and

so limx→0 (limy→0 f(x, y)) is not defined.

32. Show that

lim
(x,y)→(0,0)

1

3x2 + y4
= ∞.

Solution: Let ((xn, yn)) be any sequence in R2 \{(0, 0)} such that (xn, yn) → (0, 0).
Then xn → 0, yn → 0 and hence 3x2n + y4n → 0. If r > 0, then there exists n0 ∈ N
such that 3x2n + y4n <

1
r
for all n ≥ n0 and so 1

3x2
n+y4n

> r for all n ≥ n0. Therefore
1

3x2
n+y4n

→ ∞ and consequently

lim
(x,y)→(0,0)

1

3x2 + y4
= ∞.
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33. Let I be an open interval in R and let F : I → Rm be a differentiable function such
that F (t) · F ′(t) = 0 for all t ∈ I. Show that ∥F (t)∥ is constant for all t ∈ I.

Solution: Since F is differentiable, the function t 7→ ∥F (t)∥2 = F ′(t) · F (t) from I
to R is also differentiable, and

d

dt
∥F (t)∥2 = F ′(t) · F (t) + F (t) · F ′(t) = 2F (t) · F ′(t) = 0 for all t ∈ I.

Hence, there exists c ∈ R such that

∥F (t)∥2 = c for all t ∈ I.

Clearly, c ≥ 0, and so
∥F (t)∥ =

√
c for all t ∈ I.


