
MA15010H: Multi-variable Calculus
(Practice problem set 3: Hint/Model solution)

July - November, 2025

1. If f(x, y) = ex(x cos y−y sin y) for all (x, y) ∈ R2, then show that fxx(x, y)+fyy(x, y) =
0 for all (x, y) ∈ R2.

Solution. For all (x, y) ∈ R2, we have fx(x, y) = ex(x cos y − y sin y) + ex cos y and
fy(x, y) = ex(−x sin y − y cos y − sin y). Hence fxx(x, y) = ex(x cos y − y sin y) + 2ex cos y
and fyy(x, y) = ex(−x cos y − 2 cos y + y sin y) for all (x, y) ∈ R2. Therefore fxx(x, y) +
fyy(x, y) = 0 for all (x, y) ∈ R2. □

2. If f(x, y) = x2 tan−1
(
y
x

)
for all (x, y) ∈ R2 \ {(x, y) ∈ R : x = 0}, then find ∂2f

∂x∂y
(1, 1).

Solution. For all (x, y) ∈ S = {(x, y) ∈ R2 : x ̸= 0}, we have ∂f
∂y
(x, y) = x3

x2+y2
and hence

∂2f
∂x∂y

(x, y) = x4+3x2y2

(x2+y2)2
. Therefore ∂2f

∂x∂y
(1, 1) = 1. □

3. If f(x, y, z) = 1√
x2+y2+z2

for all (x, y, z) ∈ R3 \ {(0, 0, 0)}, then show that ∂2f
∂x2 +

∂2f
∂y2

+

∂2f
∂z2

= 0 at each point of R3 \ {(0, 0, 0)}.

Solution. We have ∂f
∂x
(x, y, z) = −x(x2 + y2 + z2)−

3
2 and ∂2f

∂x2 (x, y, z) = −(x2 + y2 +

z2)−
3
2 + 3x2(x2 + y2 + z2)−

5
2 for all (x, y, z) ∈ R3 \ {(0, 0, 0)}. Similarly, we find that

∂2f
∂y2

(x, y, z) = −(x2 + y2 + z2)−
3
2 + 3y2(x2 + y2 + z2)−

5
2 and ∂2f

∂z2
(x, y, z) = −(x2 + y2 +

z2)−
3
2 + 3z2(x2 + y2 + z2)−

5
2 for all (x, y, z) ∈ R3 \ {(0, 0, 0)}. Therefore

∂2f

∂x2
(x, y, z) +

∂2f

∂y2
(x, y, z) +

∂2f

∂z2
(x, y, z) = 0

for all (x, y, z) ∈ R3 \ {(0, 0, 0)}. □

4. If f(x, y) =
√

|x2 − y2| for all (x, y) ∈ R2, then find all u ∈ R2 with ∥u∥ = 1 for which
the directional derivative Duf(0, 0) exists (in R).

Solution. If u = (u1, u2) ∈ R2 with ∥u∥ = 1, then

Duf(0, 0) = lim
t→0

f((0, 0) + tu)− f(0, 0)

t
= lim

t→0

f(tu1, tu2)− 0

t
= lim

t→0

|t|
√

|u2
1 − u2

2|
t

exists in R if u2
1 = u2

2. Since ∥u∥ =
√
u2
1 + u2

2 = 1, Duf(0, 0) exists (in R) iff u1 = ± 1√
2

and u2 = ± 1√
2
. Therefore, Duf(0, 0) exists (in R) iff

u ∈
{(

1√
2
,
1√
2

)
,

(
− 1√

2
,
1√
2

)
,

(
1√
2
,− 1√

2

)
,

(
− 1√

2
,− 1√

2

)}
.

□

5. If f(x, y) = ||x| − |y|| − |x| − |y| for all (x, y) ∈ R2, then find all u ∈ R2 with ∥u∥ = 1
for which the directional derivative Duf(0, 0) exists (in R).
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Solution. If u = (u1, u2) ∈ R2 with ∥u∥ = 1, then

Duf(0, 0) = lim
t→0

f((0, 0) + tu)− f(0, 0)

t
= lim

t→0

f(tu1, tu2)− 0

t
= lim

t→0

|t|(||u1| − |u2|| − |u1| − |u2|)
t

exists in R if |u1| = |u2|, i.e., iff |u1|−|u2| = 0. If u2
1+u2

2 = 1 and hence Duf(0, 0) exists (in
R) iff u1 = 0, i.e., u1 = 0 or u2 = 0. Since u2

1+u2
2 = 1, Duf(0, 0) exists (in R) iff u1 = ±1 or

else u2 = ±1. Therefore, Duf(0, 0) exists (in R) iff u ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}. □

6. Find all u ∈ R2 with ∥u∥ = 1 for which the directional derivative Duf(0, 0) exists (in
R), if for all (x, y) ∈ R2,

f(x, y) =

{
xy

x2+y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Solution. If u = (u1, u2) ∈ R2 with ∥u∥ =
√
u2
1 + u2

2 = 1, then

Duf(0, 0) = lim
t→0

f((0, 0) + tu)− f(0, 0)

t
= lim

t→0

f(tu1, tu2)

t
= lim

t→0

u1u2

t(u2
1 + u2

2)

exists (in R) iff u1u2 = 0, i.e. iff u1 = 0 or u2 = 0. Since u2
1 + u2

2 = 1, Duf(0, 0)
exists (in R) iff u1 = ±1 or else u2 = ±1. Therefore Duf(0, 0) exists (in R) iff u ∈
{(1, 0), (−1, 0), (0, 1), (0,−1)}. □

7. Find all u ∈ R2 with ∥u∥ = 1 for which the directional derivative Duf(0, 0) exists (in
R), if for all (x, y) ∈ R2,

f(x, y) =

{
x
y

if y ̸= 0,

0 if y = 0.

Solution. Let u = (u1, u2) ∈ R2 with ∥u∥ = 1.
If u2 = 0, then

Duf(0, 0) = lim
t→0

f((0, 0) + tu)− f(0, 0)

t
= lim

t→0

f(tu1, tu2)

t
= lim

t→0

0

t
= 0.

Again, if u2 ̸= 0, then

Duf(0, 0) = lim
t→0

f((0, 0) + tu)− f(0, 0)

t
= lim

t→0

f(tu1, tu2)

t
= lim

t→0

u1

tu2

exists (in R) iff u1 = 0.
Thus, combining the two cases, we find that Duf(0, 0) exists (in R) iff u2 = 0 or else

u1 = 0. Since u2
1 + u2

2 = 1, Duf(0, 0) exists (in R) iff u1 = ±1 or else u2 = ±1. Therefore
Duf(0, 0) exists (in R) iff u ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}. □

8. State TRUE or FALSE with justification: If f : R2 → R is continuous such that
fx(0, 0) exists (in R), then fy(0, 0) must exist (in R).
Solution. Let f(x, y) = |y| for all (x, y) ∈ R2. If (x, y) ∈ R2 and (xn, yn) is any sequence
in R2 such that (xn, yn) → (x, y), then yn → y and hence f(xn, yn) = |yn| → |y| = f(x, y).
Therefore f is continuous at (x, y) and since (x, y) ∈ R2 is arbitrary, f : R2 → R is
continuous.
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Also,

fx(0, 0) = lim
t→0

f((0, 0) + t(1, 0))− f(0, 0)

t
= lim

t→0

0

t
= 0,

but

fy(0, 0) = lim
t→0

f((0, 0) + t(0, 1))− f(0, 0)

t
= lim

t→0

|t|
t
,

which does not exist (in R). Therefore the given statement is FALSE. □

9. State TRUE or FALSE with justification: If f : R2 → R is such that for each u ∈
R2 with ∥u∥ = 1, the directional derivative of f at (0, 0) along u is 0, then f must be
continuous at (0, 0).

Solution. Let f : R2 → R be defined by

f(x, y) =

{
1 if y < x2 < 2y,

0 otherwise.

We have
(

1√
n+1

, 1
n+2

)
→ (0, 0), but f

(
1√
n+1

, 1
n+2

)
= 1 for all n ∈ N, so that

f

(
1√
n+ 1

,
1

n+ 2

)
→ 1 ̸= 0 = f(0, 0).

Hence f is not continuous at (0, 0).
Again, let u = (u1, u2) ∈ R2 with ∥u∥ = 1. We have

f ′
u(0, 0) = lim

t→0

f((0, 0) + tu)− f(0, 0)

t
= lim

t→0

0

t
= 0.

(The inequalities tu2 < t2u2
1 < 2tu2 are equivalent to the inequalities (i) u2 < tu2

1 < 2u2 if
t > 0 and (ii) u2 > tu2

1 > 2u2 if t < 0. We can make |tu2
1| arbitrarily small for sufficiently

small |t| > 0 and hence for such t, at least one inequality in each of (i) and (ii) cannot be
satisfied. Thus we get f(tu1, tu2) = 0 for sufficiently small |t| > 0.) Therefore the given
statement is FALSE. □

10. Let the height H(x, y) of a hill from the ground (considered as the xy-plane) at each
point (x, y) ∈ (−300, 300)×(−200, 200) be given by H(x, y) = 1000−0.005x2−0.01y2. We
assume that the positive x-axis points east and the positive y-axis points north. Consider
a person situated at the point (60, 40, 966) on the hill.

(a) If the person starts walking due south, then will (s)he start to ascend or descend
the hill?

(b) If the person starts walking north-west, then will (s)he start to ascend or descend
the hill?

(c) If the person starts climbing further, in which direction will (s)he find it most
difficult to climb?
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Solution. Let S = (−300, 300) × (−200, 200). Since Hx(x, y) = −0.01x and Hy(x, y) =
−0.02y for all (x, y) ∈ S, Hx : S → R and Hy : S → R are continuous. Hence H : S → R
is differentiable and so

DuH(60, 40) = ∇H(60, 40) · u = Hx(60, 40)u1 +Hy(60, 40)u2 = −0.6u1 − 0.8u2

for all u = (u1, u2) ∈ R2 with ∥u∥ = 1.

(a) The direction of south corresponds to u = (0,−1) and since DuH(60, 40) = 0.8 >
0, H increases in this direction and hence the person will ascend the hill if he
starts walking due south.

(b) The direction of north-west corresponds to u =
(
− 1√

2
, 1√

2

)
and since

DuH(60, 40) = −0.2√
2
< 0,

H decreases in this direction and hence the person will descend the hill if he starts
walking north-west.

(c) Since H increases fastest in the direction of u = ∇H(60, 40) = (−0.6,−0.8), the
person will find it most difficult to climb the hill in the direction of (−0.6,−0.8).

□

11. Let f : R2 → R be defined by

f(x, y) =

{
x2(x−y)
x2+y2

if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Examine whether fxy(0, 0) = fyx(0, 0).

Solution. We have

fxy(0, 0) = lim
h→0

fx(0, h)− fx(0, 0)

h
, fyx(0, 0) = lim

h→0

fy(h, 0)− fy(0, 0)

h

Now,

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0, fy(0, 0) = lim

h→0

f(0, h)− f(0, 0)

h
= 0.

Also, if h ∈ R \ {0}, then

fy(h, 0) = lim
k→0

f(h, k)− f(h, 0)

h
= lim

k→0

h2(h− k)

k2 + h2
= h

and if k ∈ R \ {0},

fx(0, k) = lim
h→0

f(h, k)− f(0, k)

h
= lim

h→0

h2(h− k)

h2 + k2
= 0.

Hence fxy(0, 0) = limh→0
0−0
h

= 0 and fyx(0, 0) = 1. Therefore fxy(0, 0) ̸= fyx(0, 0). □
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12. Let f : R2 → R be defined by

f(x, y) =

{
xy(x2−y2)
x2+y2

if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Determine all the points of R2 where fxy : R2 → R and fyx : R2 → R are continuous.

Solution. For all (x, y) ∈ R2 \ {(0, 0)}, we have

fx(x, y) =
x4y − y5 + 4x2y3

(x2 + y2)2

and

fxy(x, y) =
x6 − y6 + 9x4y2 − 9x2y4

(x2 + y2)3
.

Similarly, for all (x, y) ∈ R2 \ {(0, 0)}, we have

fy(x, y) =
x5 − xy4 − 4x3y2

x2 + y2

and

fyx(x, y) =
x6 − y6 − 9x4y2 + 9x2y4

(x2 + y2)3
.

Also, we have shown in an example in lectures that fxy(0, 0) = −1 and fyx(0, 0) = 1.
Clearly fxy : R2 → R and fyx : R2 → R are continuous at each point of R2 \ {(0, 0)}.
Again, since

(
1
n
, 0
)
→ (0, 0) and (0, 1

n
) → (0, 0), but

lim
n→∞

fxy

(
1

n
, 0

)
= 1 ̸= fxy(0, 0)

and

lim
n→∞

fyx

(
0,

1

n

)
= 1 ̸= fyx(0, 0), fxy and fyx are not continuous at (0, 0).

□

13. Let f(x, y) = x+y2+xy for all (x, y) ∈ R2. Using directly the definition of differentia-
bility, show that f : R2 → R is differentiable and also find f ′(x0, y0), where (x0, y0) ∈ R2.

Solution. Let (x0, y0) ∈ R2. For all (h, k) ∈ R2, we have

f((x0, y0) + (h, k))− f(x0, y0) = f(x0 + h, y0 + k)− f(x0, y0)

= x0 + h+ (y0 + k)2 + (x0 + h)(y0 + k)− x0 − y20 − x0y0

= h+ (y0 + k)2 − y20 + (x0 + h)(y0 + k)− x0y0

= h+ (y20 + 2y0k + k2 − y20) + (x0y0 + hy0 + x0k + hk − x0y0)

= h+ 2y0k + k2 + hy0 + x0k + hk

Let α = (1 + y0, x0 + 2y0). Then α ∈ R2 and

lim
(h,k)→(0,0)

f((x0, y0) + (h, k))− f(x0, y0)− α · (h, k)
∥(h, k)∥

= lim
(h,k)→(0,0)

k2 + hk√
h2 + k2

= 0,
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since for all (h, k) ∈ R2 \ {(0, 0)}, we have

|k2 + hk|√
h2 + k2

≤ |k|2 + |h||k|
|k|+ |h|

|k| ≤ 2|k|

and since 2|k| → 0 as (h, k) → (0, 0). Therefore f is differentiable at (x0, y0) and
f ′(x0, y0) = [1 + y0, x0 + 2y0]. Since (x0, y0) ∈ R2 is arbitrary, f is differentiable. □

14. Let S be a nonempty open subset of Rm and let g : S → Rm be continuous at x0 ∈ S.
If f : S → R is such that f(x) − f(x0) = g(x) · (x − x0) for all x ∈ S, then show that f
is differentiable at x0.

Solution. For all h ∈ Rm with x0 + h ∈ S, we have

f(x0 + h)− f(x0) = g(x0 + h) · h.
Now g(x0) ∈ Rm and for all h ∈ Rm \ {0} with x0 + h ∈ S, using Cauchy-Schwarz
inequality, we have

|f(x0 + h)− f(x0)− g(x0) · h|
∥h∥

=
|(g(x0 + h)− g(x0)) · h|

∥h∥

≤ ∥g(x0 + h)− g(x0)∥∥h∥
∥h∥

= ∥g(x0 + h)− g(x0)∥.
Since g is continuous at x0, lim∥h∥→0 ∥g(x0 + h)− g(x0)∥ = 0 and hence we get

lim
h→0

|f(x0 + h)− f(x0)− g(x0) · h|
∥h∥

= 0.

Therefore f is differentiable at x0. □

15. The directional derivatives of a differentiable function f : R2 → R at (0, 0) in the

directions
(

1√
5
, 2√

5

)
and

(
2√
5
, 1√

5

)
are 1 and 2 respectively. Find fx(0, 0) and fy(0, 0).

Solution. Since f is differentiable at (0, 0), Duf(0, 0) = ∇f(0, 0) · u = fx(0, 0)u1 +

fy(0, 0)u2 for all u = (u1, u2) ∈ R2 with ∥u∥ = 1. Hence taking u =
(

1√
5
, 2√

5

)
and

u =
(

2√
5
, 1√

5

)
respectively, we get

1√
5
fx(0, 0) +

2√
5
fy(0, 0) = 1,

2√
5
fx(0, 0) +

1√
5
fy(0, 0) = 2.

Solving these two equations, we get fx(0, 0) =
√
5 and fy(0, 0) = 0. □

16. If f : Rm → R satisfies |f(x)| ≤ ∥x∥2 for all x ∈ Rm, then examine whether f is
differentiable at 0.

Solution. Since |f(0)| ≤ ∥0∥2 = 0, we have f(0) = 0. If α = 0, then h ∈ Rm and for all
h ∈ Rm \ {0}, we have

|f(h)− f(0)− αh|
∥h∥

≤ ∥h∥2

∥h∥
= ∥h∥.
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Hence it follows that

lim
h→0

|f(h)− f(0)− αh|
∥h∥

= 0.

Therefore f is differentiable at 0. □

17. Let f(x) = ∥x∥ for all x ∈ Rn. Examine whether f : Rn → R is differentiable at 0.

Solution. Since

lim
t→0

f(0 + te1)− f(0)

t
= lim

t→0

|t|
t

does not exist (in R), ∂f
∂x1

(0) does not exist (in R). Consequently f is not differentiable
at 0. □

18. If f(x, y) =
√

|xy| for all (x, y) ∈ R2, then examine whether f : R2 → R is differen-
tiable at (0, 0).

Solution. We have fx(0, 0) = lim
t→0

f(t, 0)− f(0, 0)

t
= lim

t→0

0

t
= 0

and fy(0, 0) = lim
t→0

f(0, t)− f(0, 0)

t
= lim

t→0

0

t
= 0.

Now

lim
(h,k)→(0,0)

f(h, k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)√
h2 + k2

= lim
(h,k)→(0,0)

√
|hk|√

h2 + k2
̸= 0,

since
(
1
n
, 1
n

)
→ (0, 0) but

lim
n→∞

√
1
n2√
2
n2

=
1√
2
̸= 0.

Therefore f is not differentiable at (0, 0). □

19. If f(x, y) = ||x|− |y||− |x|− |y| for all (x, y) ∈ R2, then examine whether f : R2 → R
is differentiable at (0, 0).

Solution. We have

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= 0

and

fy(0, 0) = lim
k→0

f(0, k)− f(0, 0)

k
= 0.

Now

lim
(h,k)→(0,0)

f(h, k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)√
h2 + k2

= lim
(h,k)→(0,0)

|f(h, k)|√
h2 + k2

̸= 0,

since
(
2
n
, 1
n

)
→ (0, 0) but

lim
n→∞

2
n
− 1

n√
4
n2 +

1
n2

=
1√
5
̸= 0.

Hence f is not differentiable at (0, 0). □
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20. Let f : R2 → R be defined by f(x, y) =

{
x3

x2+y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Examine whether f is differentiable at (0, 0).

Solution. We have fx(0, 0) = lim
t→0

f(t, 0)− f(0, 0)

t
= lim

t→0

t

t
= 1 and

fy(0, 0) = lim
t→0

f(0, t)− f(0, 0)

t
= lim

t→0

0

t
= 0. Now,

lim
(h,k)→(0,0)

f(h, k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)√
h2 + k2

= lim
(h,k)→(0,0)

h3

h2+k2
− h

√
h2 + k2

̸= 0,

since
(
1
n
, 1
n

)
→ (0, 0) but

lim
n→∞

1
2n√

2
n2

=
1

2
√
2
̸= 0.

Therefore f is not differentiable at (0, 0). □

21. Let f : R2 → R be defined by

f(x, y) =

{
y
|y|

√
x2 + y2 if y ̸= 0,

0 if y = 0.

Examine whether f is differentiable at (0, 0).

Solution. We have fx(0, 0) = lim
t→0

f(t, 0)− f(0, 0)

t
= lim

t→0

0

t
= 0 and

fy(0, 0) = lim
t→0

f(0, t)− f(0, 0)

t
= lim

t→0

t

|t|
|t|
t

= 1. Now

lim
(h,k)→(0,0)

f(h, k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)√
h2 + k2

= lim
(h,k)→(0,0)

k
|k|

√
h2 + k2 − k
√
h2 + k2

̸= 0,

since
(
1
n
, 1
n

)
→ (0, 0) but

lim
n→∞

√
2
n

− 1
n√

2
n

= 1− 1√
2
̸= 0.

Hence f is not differentiable at (0, 0). □

22. Let f : R2 → R be defined as

f(x, y) =


√
x2 + y2 if y > 0

x if y = 0

−
√

x2 + y2 if y < 0

Examine whether f is differentiable at (0, 0).
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Solution. We have fx(0, 0) = lim
x→0

f(x, 0)− f(0, 0)

x
= lim

x→0

x

x
= 1. Also, since

lim
y→0+

f(0, y)− f(0, 0)

y
= lim

y→0+

√
y2

y
= 1

and

lim
y→0−

f(0, y)− f(0, 0)

y
= lim

y→0−

−
√

y2

y
= 1,

we get fy(0, 0) = 1. Now,

lim
(h,k)→(0,0)

f(h, k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)√
h2 + k2

= lim
(h,k)→(0,0)

√
h2 + k2 − h− k√

h2 + k2
̸= 0,

since
(
1
n
, 1
n

)
→ (0, 0) but

lim
n→∞

√
2
n

− 2
n√

2
n

̸= 0.

Hence f is not differentiable at (0, 0). □

23. Let f : R2 → R be defined by

f(x, y) =

{
1 if y < x2 < 2y,

0 otherwise.

Examine whether f is differentiable at (0, 0).

Solution. We have
(

1√
n+1

, 1
n+2

)
→ (0, 0) but f

(
1√
n+1

, 1
n+2

)
= 1 ̸= 0 = f(0, 0). Hence f

is not continuous at (0, 0) and consequently f is not differentiable at (0, 0). □

24. For all (x, y) ∈ R2, let

f(x, y) =

{
x if |x| < |y|,
−x if |x| ≥ |y|.

Examine whether f : R2 → R is differentiable at (0, 0).

Solution. We have

fx(0, 0) = lim
t→0

f(t, 0)− f(0, 0)

t
= lim

t→0

−t− 0

t
= −1

and

fy(0, 0) = lim
t→0

f(0, t)− f(0, 0)

t
= lim

t→0

0− 0

t
= 0.

Now,

lim
(h,k)→(0,0)

f(h, k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)√
h2 + k2

= lim
(h,k)→(0,0)

f(h, k) + h√
h2 + k2
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for (0, 0), but

|
(
1
n
, 1
n

)
+ 1|√

1
n2 +

1
n2

=
2/n√
2/n

→ 2√
2
̸= 0.

Therefore f is not differentiable at (0, 0). □

25. Let f : R2 → R be defined by

f(x, y) =

{
sin(x2y2)
x2+y2

if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Examine whether f is differentiable at (0, 0).

Solution. We have

fx(0, 0) = lim
x→0

f(x, 0)− f(0, 0)

x
= lim

x→0

0− 0

x
= 0

and

fy(0, 0) = lim
y→0

f(0, y)− f(0, 0)

y
= lim

y→0

0− 0

y
= 0.

For all (h, k) ∈ R2 \ {(0, 0)}, we have ϵ(h, k) = f(h,k)−f(0,0)−hfx(0,0)−kfy(0,0)√
h2+k2

. This implies

that ∣∣∣∣ sin(h2k2)

(h2 + k2)
√
h2 + k2

∣∣∣∣ ≤ h2k2

(h2 + k2)
√
h2 + k2

=
√
h2 + k2.

So lim(h,k)→(0,0) ϵ(h, k) = 0 and so f is differentiable at (0, 0). □

26. Let f : R2 → R be defined by

f(x, y) =

{
sin2 x+ x2 sin 1

x
if x ̸= 0,

0 if x = 0.

Examine whether f is differentiable at (0, 0).

Solution. We have fx(0, 0) = limt→0
f(t,0)−f(0,0)

t
= limt→0

sin2 t+t2 sin 1
t

t
= 0 and fy(x, y) = 0

for all (x, y) ∈ R2. Since fy : R2 → R is continuous at (0, 0), it follows that g is
differentiable at (0, 0). □

27. Let f : R2 → R be defined by

f(x, y) =

(x2 + y2) sin

(
1√

x2+y2

)
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Show that f is differentiable at (0, 0) although neither fx : R2 → R nor fy : R2 → R is
continuous at (0, 0).
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Solution. Here fx(0, 0) = fy(0, 0) = 0. For all (h, k) ∈ R2 \ {(0, 0)},

ϵ(h, k) =
f(h, k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)√

h2 + k2
≤

√
h2 + k2,

so that
lim

(h,k)→(0,0)
ϵ(h, k) = 0.

Hence f is differentiable at (0, 0).
Again,

fx(x, y) = 2x sin

(
1√

x2 + y2

)
− x√

x2 + y2
cos

(
1√

x2 + y2

)
for all (x, y) ∈ R2 \ {(0, 0)}. Now

(
2πn
n
, 0
)
is a sequence in R2 converging to (0, 0) but

fx

(
1

2πn
, 0

)
= −1 for all n ∈ N and so fx

(
1

2πn
, 0

)
→ −1 ̸= fx(0, 0).

This shows that fx is not continuous at (0, 0). Similarly fy is not continuous at (0, 0). □

28. Let

f(x, y) =

{
(x2 + y2) cos

(
1

x2+y2

)
if (x, y) ∈ R2 \ {(0, 0)},

0 if (x, y) = (0, 0).

Examine whether f : R2 → R is continuously differentiable.

Solution. For all (x, y) ∈ R2\{(0, 0)}, we have fx(x, y) = 2x cos
(

1
x2+y2

)
+ 2x

x2+y2
sin
(

1
x2+y2

)
.

Now
( √

2
(
√
4n+1)π

, 0
)
→ (0, 0) but fx

( √
2√

4n+1π
, 0
)
=
√

2(4n+ 1)π → ∞. Hence lim(x,y)→(0,0) fx(x, y)

does not exist (in R) and consequently fx is not continuous at (0, 0). Therefore f is not
continuously differentiable. □

29. Let α ∈ R and α > 0. If f(x, y) = |xy|α for all (x, y) ∈ R2, then determine all values
of α for which f : R2 → R is differentiable at (0, 0).

Solution. We have fx(0, 0) = limt→0
f(t,0)−f(0,0)

t
= limt→0

0−0
t

= 0 and

fy(0, 0) = lim
t→0

f(0, t)− f(0, 0)

t
= lim

t→0

0− 0

t
= 0.

For all (h, k) ∈ R2 \ {(0, 0)}, let

φ(h, k) =
f(h, k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)√

h2 + k2
=

|hk|α√
h2 + k2

.

If α > 1
2
, then

φ(h, k) ≤ (h2 + k2)α√
h2 + k2

= (h2 + k2)α−
1
2 ,

and so lim(h,k)→(0,0) φ(h, k) = 0. Consequently f is differentiable at (0, 0).

Again, if α ≤ 1
2
, then

(
1
n
, 1
n

)
→ (0, 0) but φ

(
1
n
, 1
n

)
= 1√

2
n1−2α ̸= 0 (for α = 1

2
, φ
(
1
n
, 1
n

)
→
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1√
2
and for α < 1

2
, the sequence φ

(
1
n
, 1
n

)
is unbounded). Hence lim(h,k)→(0,0) φ(h, k) ̸= 0

and so f is not differentiable at (0, 0). □

30. Let f(x, y) = |xy| for all (x, y) ∈ R2. Determine all the points of R2 where f : R2 → R
is differentiable.

Solution. Let S1 = {(x, y) ∈ R2 : xy > 0} and S2 = {(x, y) ∈ R2 : xy < 0}. Then
f(x, y) = xy for all (x, y) ∈ S1 and f(x, y) = −xy for all (x, y) ∈ S2. Since fx(x, y) = y
and fy(x, y) = x for all (x, y) ∈ S1, we find that both fx : S1 → R and fy : S1 → R
are continuous. Hence f is differentiable at every point of S1. By a similar argument,
we can show that f is differentiable at every point of S2. If α(̸= 0) ∈ R, then fy(α, 0) =

limt→0
f(α,t)−f(0,0)

t
= limt→0

|α||t|
t

does not exist (in R) and similarly fx(0, α) does not exist
(in R). Hence f is not differentiable at any point (x, y) ∈ R2 \ {(0, 0)} for which xy = 0.

Again, fx(0, 0) = limt→0
f(t,0)−f(0,0)

t
= 0 and

lim
(h,k)→(0,0)

[f(h, k)− f(0, 0)]− hfx(0, 0)− kfy(0, 0)√
h2 + k2

= lim
(h,k)→(0,0)

|hk|√
h2 + k2

= 0

(since |h||k| ≤ h2+k2 for all (h, k) ∈ R2). Hence f is differentiable at (0, 0). Therefore, the
set of all points of R2 at which f is differentiable is {(x, y) ∈ R2 : xy ̸= 0} ∪ {(0, 0)}. □

31. Let f(x, y) = (xy)
2
3 for all (x, y) ∈ R2. Determine all the points of R2 at which

f : R2 → R is differentiable.

Solution. Let S = {(x, y) ∈ R2 : xy ̸= 0}. Since fx(x, y) = 2
3
x− 1

3y
2
3 and fy(x, y) =

2
3
x

2
3y−

1
3 for all (x, y) ∈ S, we find that both fx : S → R and fy : S → R are contin-

uous. Hence f is differentiable at every point of S. If α(̸= 0) ∈ R, then fy(α, 0) =

limt→0
f(α,t)−f(0,0)

t
= limt→0

α
2
3 t

2
3

t
= limt→0

α
2
3

t
1
3
does not exist (in R) and similarly fx(0, α)

does not exist (in R). Hence f is not differentiable at any point (x, y) ∈ R2 \ {(0, 0)} for

which xy = 0. Again, fx(0, 0) = limt→0
f(t,0)−f(0,0)

t
= 0, and

fy(0, 0) = lim
t→0

f(0, t)− f(0, 0)

t
= 0,

lim
(h,k)→(0,0)

[f(h, k)− f(0, 0)]− hfx(0, 0)− kfy(0, 0)√
h2 + k2

= lim
(h,k)→(0,0)

|h| 23 |k| 23√
h2 + k2

= 0

(since |h| 23 |k| 23 ≤ (h2 + k2)
2
3 for all (h, k) ∈ R2). Hence f is differentiable at (0, 0).

Therefore the set of all points of R2 at which f is differentiable is {(x, y) ∈ R2 : xy ̸=
0} ∪ {(0, 0)}. □

32. Let f(x, y) = |x| sin(x2+ y2) for all (x, y) ∈ R2. Determine all the points of R2 where
f : R2 → R is differentiable.

Solution. Clearly f is differentiable at all (x, y) ∈ R2 for which x ̸= 0. Let y0 ∈ R. Then

fx(0, y0) = lim
x→0

f(x, y0)− f(0, y0)

x
= lim

x→0

|x| sin(x2 + y20)

x
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which exists in R (and equals 0) iff y0 = ±
√
nπ for some n ∈ N ∪ {0}. Also, fy(x, y) =

2|x|y cos(x2 + y2) for all (x, y) ∈ R2. So fy is continuous at each point of R2. Therefore
f is differentiable at (0, y0) iff y0 = ±

√
nπ for some n ∈ N ∪ {0}. □

33. Determine all the points of R2 where f : R2 → R is differentiable, if for all (x, y) ∈ R2,

f(x, y) =

{
x2 + y2 if both x, y ∈ Q,

0 otherwise.

Solution. Since |f(x, y)| ≤ x2+y2 = ∥(x, y)∥2 for all (x, y) ∈ R2, by Ex.12(a) of Practice
Problem Set - 3, f is differentiable at (0, 0).

Let (x0, y0) ∈ R2 \ {(0, 0)}. If (x0, y0) ∈ Q × Q, then (x0 +
√
2
n
, y0) → (x0, y0) but

f(x0 +
√
2
n
, y0) → 0 ̸= x2

0 + y20 = f(x0, y0). Again if (x0, y0) /∈ Q × Q, then we choose
rational sequences (xn) and (yn) such that xn → x0 and yn → y0. Then (xn, yn) → (x0, y0)
but f(xn, yn) = x2

n + y2n → x2
0 + y20 ̸= 0 = f(x0, y0). Hence f is not continuous at (x0, y0)

and consequently f is not differentiable at (x0, y0). □

34. State TRUE or FALSE with justification: If S = {(x, y) ∈ R2 : x2 + y2 < 1} and if
f(x, y) = |xy| for all (x, y) ∈ S, then f : S → R is differentiable.

Solution. Clearly (1
2
, 0) ∈ S. Since limt→0

f( 1
2
,t)−f( 1

2
,0)

t
= limt→0

|t|
2

t
does not exist (in

R), fy(12 , 0) does not exist (in R). Hence f is not differentiable at (1
2
, 0) and so f is not

differentiable. Therefore the given statement is FALSE. □

35. State TRUE or FALSE with justification: There exists a function f : R2 → R which
is differentiable only at (1, 0).

Solution. For all (x, y) ∈ R2, let f(x, y) =

{
(x− 1)2 + y2 if x, y ∈ Q,

0 otherwise.

Taking α = (1, 0) ∈ R2, we find that

lim
(h,k)→(0,0)

[f(1 + h, k)− f(1, 0)− hfx(1, 0)− kfy(1, 0)]√
h2 + k2

≤ lim
(h,k)→(0,0)

h2 + k2

√
h2 + k2

= lim
(h,k)→(0,0)

√
h2 + k2

= 0.

Hence f is differentiable at (1, 0).
Again let (x, y) ∈ R2 \ {(1, 0)}. Then f(x, y) ̸= 0. We can find a sequence (xn) in

R \ Q such that xn → x. So (xn, y) → (x, y) but f(xn, y) = 0 for all n ∈ N and so
f(xn, y) → 0 ̸= f(x, y). Hence f is not continuous at (x, y) and so f is not differentiable
at (x, y). Thus f : R2 → R is differentiable only at (1, 0). Therefore the given statement
is TRUE. □

36. Let f : R2 → R be differentiable at (0, 0) and let limx→0
f(x,−x)−f(x,x)

x
= 1. Find

fy(0, 0).
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Solution. Since f is differentiable at (0, 0), we have limt→0
f(t,0)−f(0,0)+f(0,t)−f(0,0)√

2t2
= 0

and

lim
t→0

f(t,−t)− f(t, t)− 2fy(0, 0)t√
2t2

= 0,

so limt→0
f(t,−t)−f(t,t)√

2|t| − 2fy(0, 0) = 0. Hence

2fy(0, 0) = lim
t→0

f(t,−t)− f(t, t)

t
= 1

and therefore fy(0, 0) =
1
2
. □

37. Let f : Rm → R be differentiable at 0 and let f(αx) = αf(x) for all x ∈ Rm and for
all α ∈ R. Show that f(x+ y) = f(x) + f(y) for all x, y ∈ Rm.

Solution. We have f(0) = f(0 · 0) = 0 · f(0) = 0. Since f is differentiable at 0, there

exists a ∈ Rm such that lim|h|→0
|f(h)−a·h|

||h|| = lim|h|→0
|f(0+h)−f(0)−a·h|

||h|| = 0. If x ∈ Rm \ {0},
then from above,

lim
|t|→0

|f(tx)− ta · x|
||tx||

= 0,

which gives lim|t|→0
|f(x)−ta·x|

|t|||x|| = 0 and so

lim
|t|→0

|f(x)− a · x|
|t|||x||

= 0

and so |f(x)− a · x| = 0 and hence f(x) = a · x.
Since f(0) = 0 = a · 0, we have f(x) = a · x for all x ∈ Rm. Now, if x, y ∈ Rm, then
f(x+ y) = a · (x+ y) = a · x+ a · y = f(x) + f(y). □

38. Let f : Rm → R be differentiable at 0 and f(0) = 0. Show that there exist α > 0 and
r > 0 such that |f(x)| ≤ α||x|| for all x ∈ Rm with ||x|| < r.

Solution. Since f is differentiable at 0 and f(0) = 0, there exists a ∈ Rm such that

lim
x→0

|f(x)− a · x|
||x||

= 0.

Hence there exists r > 0 such that |f(x)−a·x|
||x|| < 1 for all x ∈ Rm with 0 < ||x|| < r.

Therefore if x ∈ Rm with ||x|| < r, then |f(x)− a · x| ≤ ||x|| and so |f(x)| ≤ |f(x) − a ·
x|+ |a · x| ≤ ||x||+ ||a|| ||x|| = α||x||, where α = 1 + ||a|| > 0. □

39. Let f : R2 → R be such that fx exists (in R) at all points of Bδ((x0, y0)) for some
(x0, y0) ∈ R2 and δ > 0, f is continuous at (x0, y0) and fy(x0, y0) exists (in R). Show
that f is differentiable at (x0, y0).

Solution. For all (h, k) ∈ Bδ((0, 0)), we have f(x0+h, y0+k)−f(x0, y0) = f(x0+h, y0+
k)− f(x0, y0 + k) + f(x0, y0 + k)− f(x0, y0).
Now, by the mean value theorem for single real variable, we get f(x0+h, y0+k)−f(x0, y0+
k) = hfx(x0 + θh, y0 + k) for some θ ∈ (0, 1).
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Again, if ϵ(k) = f(x0, y0 + k)− f(x0, y0)− kfy(x0, y0) for all k ∈ R \ {0} with |k| < δ and
ϵ(0) = 0, then

f(x0, y0 + k)− f(x0, y0) = kfy(x0, y0) + kϵ(k)

for all k ∈ R with |k| < δ and ϵ(k) → 0 as k → 0.
Now,

lim
(h,k)→(0,0)

f(x0 + h, y0 + k)− f(x0, y0)− hfx(x0, y0)− kfy(x0, y0)√
h2 + k2

≤ lim
(h,k)→(0,0)

(
|h|√

h2 + k2
|fx(x0 + θh, y0 + k)− fx(x0, y0)|+

|k|√
h2 + k2

|ϵ(k)|
)

≤ lim
(h,k)→(0,0)

(|fx(x0 + θh, y0 + k)− fx(x0, y0)|+ |ϵ(k)|) = 0.

Therefore f is differentiable at (x0, y0). □

40. Let f, g : S ⊆ Rm → R be differentiable at x0 ∈ S0. Show that f + g : S → R is
differentiable at x0 and ∇(f + g)(x0) = ∇f(x0) +∇g(x0).

Solution. Since f and g are differentiable at x0, ∇f(x0), ∇g(x0) ∈ Rm and by increment
theorem, there exist δ1, δ2 > 0 and functions ε1 : Bδ1(0) → R, ε2 : Bδ2(0) → R such that

lim
h→0

ε1(h) = lim
h→0

ε2(h) = 0 and f(x0+h) = f(x0)+∇f(x0)·h+||h||ε1(h) for all h ∈ Bδ1(0)

and

g(x0 + h) = g(x0) +∇g(x0) · h+ ||h||ε2(h) for all h ∈ Bδ2(0).

Let δ = min{δ1, δ2}. Then δ > 0 and

(f+g)(x0+h) = f(x0+h)+g(x0+h) = (f+g)(x0)+(∇f(x0)+∇g(x0))·h+||h||[ε1(h)+ε2(h)]

for all h ∈ Bδ(0), where ε : Bδ(0) → R is defined by ε(h) = ε1(h)+ ε2(h) for all h ∈ Bδ(0)
and so limh→0 ε(h) = limh→0 ε1(h) + limh→0 ε2(h) = 0. Therefore by increment theorem,
f + g is differentiable at x0 and ∇(f + g)(x0) = ∇f(x0) +∇g(x0). □

41. Using the linearization of a suitable function at a suitable point, find an approximate
value of ((3.8)2 + 2(2.1)2)

5
8 .

Solution. Let S = {(x, y) ∈ R2 : x > 0, y > 0} and let f(x, y) = (x2 + 2y2)
5
8 for

all (x, y) ∈ S. Then fx(x, y) = 5
4
x(x2 + 2y2)−

3
8 and fy(x, y) = 5

2
y(x2 + 2y2)−

3
8 for all

(x, y) ∈ S. Since fx, fy : S → R are continuous, f : S → R is differentiable. Hence the
linearization of f at (4, 2) ∈ S is given by

L(x, y) = f(4, 2) + fx(4, 2)(x− 4) + fy(4, 2)(y − 2) = 2 +
1

10
(x− 4) +

3

10
(y − 2)

for all (x, y) ∈ S. Therefore an approximate value of f(3.8, 2.1) is given by

L(3.8, 2.1) = 2− 0.02 + 0.03 = 2.01.

□
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42. Show that the maximum error in calculating the volume of a right circular cylinder is
approximately ±8% if its radius can be measured with a maximum error of ±3% and its
height can be measured with a maximum error of ±2%.

Solution. We know that the volume of a right circular cylinder of radius r and height
h is given by V (r, h) = πr2h. If S = {(x, y) ∈ R2 : x > 0, y > 0}, then V : S → R
is differentiable (since Vr, Vh : S → R are continuous) and the linearization of V at any
point (r0, h0) ∈ S is given by

L(r, h) = V (r0, h0) + Vr(r0, h0)(r − r0) + Vh(r0, h0)(h− h0)

= V (r0, h0) + 2πr0h0(r − r0) + πr20(h− h0)

Hence the absolute value of an approximate percentage error in V (r, h) at (r0, h0) is given

by
∣∣∣L(r,h)−V (r0,h0)

V (r0,h0)

∣∣∣× 100. Since it is given that
∣∣∣ r−r0

r0

∣∣∣× 100 ≤ 3 and
∣∣∣h−h0

h0

∣∣∣× 100 ≤ 2, we

get ∣∣∣∣L(r, h)− V (r0, h0)

V (r0, h0)

∣∣∣∣× 100 ≤ 2

∣∣∣∣r − r0
r0

∣∣∣∣× 100 +

∣∣∣∣h− h0

h0

∣∣∣∣× 100 ≤ 6 + 2 = 8.

Therefore the maximum error in calculating V (r, h) at any (r0, h0) ∈ S is approximately
±8%. □


