MA15010H: Multi-variable Calculus

(Practice problem set 3: Hint/Model solution) July - November, 2025

1. If $f(x,y) = e^x(x\cos y - y\sin y)$ for all $(x,y) \in \mathbb{R}^2$, then show that $f_{xx}(x,y) + f_{yy}(x,y) = 0$ for all $(x,y) \in \mathbb{R}^2$.

Solution. For all $(x,y) \in \mathbb{R}^2$, we have $f_x(x,y) = e^x(x\cos y - y\sin y) + e^x\cos y$ and $f_y(x,y) = e^x(-x\sin y - y\cos y - \sin y)$. Hence $f_{xx}(x,y) = e^x(x\cos y - y\sin y) + 2e^x\cos y$ and $f_{yy}(x,y) = e^x(-x\cos y - 2\cos y + y\sin y)$ for all $(x,y) \in \mathbb{R}^2$. Therefore $f_{xx}(x,y) + f_{yy}(x,y) = 0$ for all $(x,y) \in \mathbb{R}^2$.

2. If $f(x,y) = x^2 \tan^{-1} \left(\frac{y}{x}\right)$ for all $(x,y) \in \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R} : x = 0\}$, then find $\frac{\partial^2 f}{\partial x \partial y}(1,1)$.

Solution. For all $(x,y) \in S = \{(x,y) \in \mathbb{R}^2 : x \neq 0\}$, we have $\frac{\partial f}{\partial y}(x,y) = \frac{x^3}{x^2 + y^2}$ and hence $\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{x^4 + 3x^2y^2}{(x^2 + y^2)^2}$. Therefore $\frac{\partial^2 f}{\partial x \partial y}(1,1) = 1$.

3. If $f(x,y,z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ for all $(x,y,z) \in \mathbb{R}^3 \setminus \{(0,0,0)\}$, then show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$ at each point of $\mathbb{R}^3 \setminus \{(0,0,0)\}$.

Solution. We have $\frac{\partial f}{\partial x}(x,y,z) = -x(x^2+y^2+z^2)^{-\frac{3}{2}}$ and $\frac{\partial^2 f}{\partial x^2}(x,y,z) = -(x^2+y^2+z^2)^{-\frac{3}{2}}$ and $\frac{\partial^2 f}{\partial x^2}(x,y,z) = -(x^2+y^2+z^2)^{-\frac{3}{2}}$ for all $(x,y,z) \in \mathbb{R}^3 \setminus \{(0,0,0)\}$. Similarly, we find that $\frac{\partial^2 f}{\partial y^2}(x,y,z) = -(x^2+y^2+z^2)^{-\frac{3}{2}} + 3y^2(x^2+y^2+z^2)^{-\frac{5}{2}}$ and $\frac{\partial^2 f}{\partial z^2}(x,y,z) = -(x^2+y^2+z^2)^{-\frac{3}{2}} + 3z^2(x^2+y^2+z^2)^{-\frac{5}{2}}$ for all $(x,y,z) \in \mathbb{R}^3 \setminus \{(0,0,0)\}$. Therefore

$$\frac{\partial^2 f}{\partial x^2}(x, y, z) + \frac{\partial^2 f}{\partial y^2}(x, y, z) + \frac{\partial^2 f}{\partial z^2}(x, y, z) = 0$$

for all $(x, y, z) \in \mathbb{R}^3 \setminus \{(0, 0, 0)\}.$

4. If $f(x,y) = \sqrt{|x^2 - y^2|}$ for all $(x,y) \in \mathbb{R}^2$, then find all $u \in \mathbb{R}^2$ with ||u|| = 1 for which the directional derivative $D_u f(0,0)$ exists (in \mathbb{R}).

Solution. If $u = (u_1, u_2) \in \mathbb{R}^2$ with ||u|| = 1, then

$$D_u f(0,0) = \lim_{t \to 0} \frac{f((0,0) + tu) - f(0,0)}{t} = \lim_{t \to 0} \frac{f(tu_1, tu_2) - 0}{t} = \lim_{t \to 0} \frac{|t|\sqrt{|u_1^2 - u_2^2|}}{t}$$

exists in \mathbb{R} if $u_1^2 = u_2^2$. Since $||u|| = \sqrt{u_1^2 + u_2^2} = 1$, $D_u f(0,0)$ exists (in \mathbb{R}) iff $u_1 = \pm \frac{1}{\sqrt{2}}$ and $u_2 = \pm \frac{1}{\sqrt{2}}$. Therefore, $D_u f(0,0)$ exists (in \mathbb{R}) iff

$$u \in \left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \right\}.$$

5. If f(x,y) = ||x| - |y|| - |x| - |y| for all $(x,y) \in \mathbb{R}^2$, then find all $u \in \mathbb{R}^2$ with ||u|| = 1 for which the directional derivative $D_u f(0,0)$ exists (in \mathbb{R}).

Solution. If $u = (u_1, u_2) \in \mathbb{R}^2$ with ||u|| = 1, then

$$D_u f(0,0) = \lim_{t \to 0} \frac{f((0,0) + tu) - f(0,0)}{t} = \lim_{t \to 0} \frac{f(tu_1, tu_2) - 0}{t} = \lim_{t \to 0} \frac{|t|(||u_1| - |u_2|| - |u_1| - |u_2|)}{t}$$

exists in \mathbb{R} if $|u_1| = |u_2|$, i.e., iff $|u_1| - |u_2| = 0$. If $u_1^2 + u_2^2 = 1$ and hence $D_u f(0,0)$ exists (in \mathbb{R}) iff $u_1 = 0$, i.e., $u_1 = 0$ or $u_2 = 0$. Since $u_1^2 + u_2^2 = 1$, $D_u f(0,0)$ exists (in \mathbb{R}) iff $u_1 = \pm 1$ or else $u_2 = \pm 1$. Therefore, $D_u f(0,0)$ exists (in \mathbb{R}) iff $u \in \{(1,0), (-1,0), (0,1), (0,-1)\}$. \square

6. Find all $u \in \mathbb{R}^2$ with ||u|| = 1 for which the directional derivative $D_u f(0,0)$ exists (in \mathbb{R}), if for all $(x,y) \in \mathbb{R}^2$,

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Solution. If $u = (u_1, u_2) \in \mathbb{R}^2$ with $||u|| = \sqrt{u_1^2 + u_2^2} = 1$, then

$$D_u f(0,0) = \lim_{t \to 0} \frac{f((0,0) + tu) - f(0,0)}{t} = \lim_{t \to 0} \frac{f(tu_1, tu_2)}{t} = \lim_{t \to 0} \frac{u_1 u_2}{t(u_1^2 + u_2^2)}$$

exists (in \mathbb{R}) iff $u_1u_2 = 0$, i.e. iff $u_1 = 0$ or $u_2 = 0$. Since $u_1^2 + u_2^2 = 1$, $D_u f(0,0)$ exists (in \mathbb{R}) iff $u_1 = \pm 1$ or else $u_2 = \pm 1$. Therefore $D_u f(0,0)$ exists (in \mathbb{R}) iff $u \in \{(1,0),(-1,0),(0,1),(0,-1)\}$.

7. Find all $u \in \mathbb{R}^2$ with ||u|| = 1 for which the directional derivative $D_u f(0,0)$ exists (in \mathbb{R}), if for all $(x,y) \in \mathbb{R}^2$,

$$f(x,y) = \begin{cases} \frac{x}{y} & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$$

Solution. Let $u = (u_1, u_2) \in \mathbb{R}^2$ with ||u|| = 1. If $u_2 = 0$, then

$$D_u f(0,0) = \lim_{t \to 0} \frac{f((0,0) + tu) - f(0,0)}{t} = \lim_{t \to 0} \frac{f(tu_1, tu_2)}{t} = \lim_{t \to 0} \frac{0}{t} = 0.$$

Again, if $u_2 \neq 0$, then

$$D_u f(0,0) = \lim_{t \to 0} \frac{f((0,0) + tu) - f(0,0)}{t} = \lim_{t \to 0} \frac{f(tu_1, tu_2)}{t} = \lim_{t \to 0} \frac{u_1}{tu_2}$$

exists (in \mathbb{R}) iff $u_1 = 0$.

Thus, combining the two cases, we find that $D_u f(0,0)$ exists (in \mathbb{R}) iff $u_2 = 0$ or else $u_1 = 0$. Since $u_1^2 + u_2^2 = 1$, $D_u f(0,0)$ exists (in \mathbb{R}) iff $u_1 = \pm 1$ or else $u_2 = \pm 1$. Therefore $D_u f(0,0)$ exists (in \mathbb{R}) iff $u \in \{(1,0), (-1,0), (0,1), (0,-1)\}$.

8. State TRUE or FALSE with justification: If $f : \mathbb{R}^2 \to \mathbb{R}$ is continuous such that $f_x(0,0)$ exists (in \mathbb{R}), then $f_y(0,0)$ must exist (in \mathbb{R}).

Solution. Let f(x,y) = |y| for all $(x,y) \in \mathbb{R}^2$. If $(x,y) \in \mathbb{R}^2$ and (x_n,y_n) is any sequence in \mathbb{R}^2 such that $(x_n,y_n) \to (x,y)$, then $y_n \to y$ and hence $f(x_n,y_n) = |y_n| \to |y| = f(x,y)$. Therefore f is continuous at (x,y) and since $(x,y) \in \mathbb{R}^2$ is arbitrary, $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous.

Also,

$$f_x(0,0) = \lim_{t \to 0} \frac{f((0,0) + t(1,0)) - f(0,0)}{t} = \lim_{t \to 0} \frac{0}{t} = 0,$$

but

$$f_y(0,0) = \lim_{t \to 0} \frac{f((0,0) + t(0,1)) - f(0,0)}{t} = \lim_{t \to 0} \frac{|t|}{t},$$

which does not exist (in \mathbb{R}). Therefore the given statement is FALSE.

9. State TRUE or FALSE with justification: If $f: \mathbb{R}^2 \to \mathbb{R}$ is such that for each $u \in \mathbb{R}^2$ with ||u|| = 1, the directional derivative of f at (0,0) along u is 0, then f must be continuous at (0,0).

Solution. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} 1 & \text{if } y < x^2 < 2y, \\ 0 & \text{otherwise.} \end{cases}$$

We have $\left(\frac{1}{\sqrt{n+1}}, \frac{1}{n+2}\right) \to (0,0)$, but $f\left(\frac{1}{\sqrt{n+1}}, \frac{1}{n+2}\right) = 1$ for all $n \in \mathbb{N}$, so that

$$f\left(\frac{1}{\sqrt{n+1}}, \frac{1}{n+2}\right) \to 1 \neq 0 = f(0,0).$$

Hence f is not continuous at (0,0).

Again, let $u = (u_1, u_2) \in \mathbb{R}^2$ with ||u|| = 1. We have

$$f_u'(0,0) = \lim_{t \to 0} \frac{f((0,0) + tu) - f(0,0)}{t} = \lim_{t \to 0} \frac{0}{t} = 0.$$

(The inequalities $tu_2 < t^2u_1^2 < 2tu_2$ are equivalent to the inequalities (i) $u_2 < tu_1^2 < 2u_2$ if t > 0 and (ii) $u_2 > tu_1^2 > 2u_2$ if t < 0. We can make $|tu_1^2|$ arbitrarily small for sufficiently small |t| > 0 and hence for such t, at least one inequality in each of (i) and (ii) cannot be satisfied. Thus we get $f(tu_1, tu_2) = 0$ for sufficiently small |t| > 0.) Therefore the given statement is FALSE.

- **10.** Let the height H(x,y) of a hill from the ground (considered as the xy-plane) at each point $(x,y) \in (-300,300) \times (-200,200)$ be given by $H(x,y) = 1000 0.005x^2 0.01y^2$. We assume that the positive x-axis points east and the positive y-axis points north. Consider a person situated at the point (60,40,966) on the hill.
 - (a) If the person starts walking due south, then will (s)he start to ascend or descend the hill?
 - (b) If the person starts walking north-west, then will (s)he start to ascend or descend the hill?
 - (c) If the person starts climbing further, in which direction will (s)he find it most difficult to climb?

Solution. Let $S = (-300, 300) \times (-200, 200)$. Since $H_x(x, y) = -0.01x$ and $H_y(x, y) = -0.02y$ for all $(x, y) \in S$, $H_x : S \to \mathbb{R}$ and $H_y : S \to \mathbb{R}$ are continuous. Hence $H : S \to \mathbb{R}$ is differentiable and so

 $D_u H(60, 40) = \nabla H(60, 40) \cdot u = H_x(60, 40) u_1 + H_y(60, 40) u_2 = -0.6 u_1 - 0.8 u_2$ for all $u = (u_1, u_2) \in \mathbb{R}^2$ with ||u|| = 1.

- (a) The direction of south corresponds to u = (0, -1) and since $D_u H(60, 40) = 0.8 > 0$, H increases in this direction and hence the person will ascend the hill if he starts walking due south.
- (b) The direction of north-west corresponds to $u = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and since

$$D_u H(60, 40) = -\frac{0.2}{\sqrt{2}} < 0,$$

H decreases in this direction and hence the person will descend the hill if he starts walking north-west.

(c) Since H increases fastest in the direction of $u = \nabla H(60, 40) = (-0.6, -0.8)$, the person will find it most difficult to climb the hill in the direction of (-0.6, -0.8).

11. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{x^2(x-y)}{x^2+y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Examine whether $f_{xy}(0,0) = f_{yx}(0,0)$.

Solution. We have

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{f_x(0,h) - f_x(0,0)}{h}, \qquad f_{yx}(0,0) = \lim_{h \to 0} \frac{f_y(h,0) - f_y(0,0)}{h}$$

Now.

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0, \qquad f_y(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = 0.$$

Also, if $h \in \mathbb{R} \setminus \{0\}$, then

$$f_y(h,0) = \lim_{k \to 0} \frac{f(h,k) - f(h,0)}{h} = \lim_{k \to 0} \frac{h^2(h-k)}{k^2 + h^2} = h$$

and if $k \in \mathbb{R} \setminus \{0\}$,

$$f_x(0,k) = \lim_{h \to 0} \frac{f(h,k) - f(0,k)}{h} = \lim_{h \to 0} \frac{h^2(h-k)}{h^2 + k^2} = 0.$$

Hence $f_{xy}(0,0) = \lim_{h\to 0} \frac{0-0}{h} = 0$ and $f_{yx}(0,0) = 1$. Therefore $f_{xy}(0,0) \neq f_{yx}(0,0)$.

12. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Determine all the points of \mathbb{R}^2 where $f_{xy}: \mathbb{R}^2 \to \mathbb{R}$ and $f_{yx}: \mathbb{R}^2 \to \mathbb{R}$ are continuous.

Solution. For all $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, we have

$$f_x(x,y) = \frac{x^4y - y^5 + 4x^2y^3}{(x^2 + y^2)^2}$$

and

$$f_{xy}(x,y) = \frac{x^6 - y^6 + 9x^4y^2 - 9x^2y^4}{(x^2 + y^2)^3}.$$

Similarly, for all $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, we have

$$f_y(x,y) = \frac{x^5 - xy^4 - 4x^3y^2}{x^2 + y^2}$$

and

$$f_{yx}(x,y) = \frac{x^6 - y^6 - 9x^4y^2 + 9x^2y^4}{(x^2 + y^2)^3}.$$

Also, we have shown in an example in lectures that $f_{xy}(0,0) = -1$ and $f_{yx}(0,0) = 1$. Clearly $f_{xy}: \mathbb{R}^2 \to \mathbb{R}$ and $f_{yx}: \mathbb{R}^2 \to \mathbb{R}$ are continuous at each point of $\mathbb{R}^2 \setminus \{(0,0)\}$. Again, since $(\frac{1}{n},0) \to (0,0)$ and $(0,\frac{1}{n}) \to (0,0)$, but

$$\lim_{n \to \infty} f_{xy}\left(\frac{1}{n}, 0\right) = 1 \neq f_{xy}(0, 0)$$

and

$$\lim_{n\to\infty} f_{yx}\left(0,\frac{1}{n}\right) = 1 \neq f_{yx}(0,0), f_{xy} \text{ and } f_{yx} \text{ are not continuous at } (0,0).$$

13. Let $f(x,y) = x + y^2 + xy$ for all $(x,y) \in \mathbb{R}^2$. Using directly the definition of differentiability, show that $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable and also find $f'(x_0, y_0)$, where $(x_0, y_0) \in \mathbb{R}^2$.

Solution. Let $(x_0, y_0) \in \mathbb{R}^2$. For all $(h, k) \in \mathbb{R}^2$, we have

$$f((x_0, y_0) + (h, k)) - f(x_0, y_0) = f(x_0 + h, y_0 + k) - f(x_0, y_0)$$

$$= x_0 + h + (y_0 + k)^2 + (x_0 + h)(y_0 + k) - x_0 - y_0^2 - x_0 y_0$$

$$= h + (y_0 + k)^2 - y_0^2 + (x_0 + h)(y_0 + k) - x_0 y_0$$

$$= h + (y_0^2 + 2y_0 k + k^2 - y_0^2) + (x_0 y_0 + h y_0 + x_0 k + h k - x_0 y_0)$$

$$= h + 2y_0 k + k^2 + h y_0 + x_0 k + h k$$

Let $\alpha = (1 + y_0, x_0 + 2y_0)$. Then $\alpha \in \mathbb{R}^2$ and

$$\lim_{(h,k)\to(0,0)} \frac{f((x_0,y_0)+(h,k))-f(x_0,y_0)-\alpha\cdot(h,k)}{\|(h,k)\|} = \lim_{(h,k)\to(0,0)} \frac{k^2+hk}{\sqrt{h^2+k^2}} = 0,$$

since for all $(h, k) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, we have

$$\frac{|k^2 + hk|}{\sqrt{h^2 + k^2}} \le \frac{|k|^2 + |h||k|}{|k| + |h|}|k| \le 2|k|$$

and since $2|k| \to 0$ as $(h, k) \to (0, 0)$. Therefore f is differentiable at (x_0, y_0) and $f'(x_0, y_0) = [1 + y_0, x_0 + 2y_0]$. Since $(x_0, y_0) \in \mathbb{R}^2$ is arbitrary, f is differentiable. \square

14. Let S be a nonempty open subset of \mathbb{R}^m and let $g: S \to \mathbb{R}^m$ be continuous at $x_0 \in S$. If $f: S \to \mathbb{R}$ is such that $f(x) - f(x_0) = g(x) \cdot (x - x_0)$ for all $x \in S$, then show that f is differentiable at x_0 .

Solution. For all $h \in \mathbb{R}^m$ with $x_0 + h \in S$, we have

$$f(x_0 + h) - f(x_0) = g(x_0 + h) \cdot h.$$

Now $g(x_0) \in \mathbb{R}^m$ and for all $h \in \mathbb{R}^m \setminus \{0\}$ with $x_0 + h \in S$, using Cauchy-Schwarz inequality, we have

$$\frac{|f(x_0+h) - f(x_0) - g(x_0) \cdot h|}{\|h\|} = \frac{|(g(x_0+h) - g(x_0)) \cdot h|}{\|h\|}$$

$$\leq \frac{\|g(x_0+h) - g(x_0)\| \|h\|}{\|h\|}$$

$$= \|g(x_0+h) - g(x_0)\|.$$

Since g is continuous at x_0 , $\lim_{\|h\|\to 0} \|g(x_0+h)-g(x_0)\|=0$ and hence we get

$$\lim_{h \to 0} \frac{|f(x_0 + h) - f(x_0) - g(x_0) \cdot h|}{\|h\|} = 0.$$

Therefore f is differentiable at x_0 .

15. The directional derivatives of a differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$ at (0,0) in the directions $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$ and $\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$ are 1 and 2 respectively. Find $f_x(0,0)$ and $f_y(0,0)$.

Solution. Since f is differentiable at (0,0), $D_u f(0,0) = \nabla f(0,0) \cdot u = f_x(0,0)u_1 + f_y(0,0)u_2$ for all $u = (u_1, u_2) \in \mathbb{R}^2$ with ||u|| = 1. Hence taking $u = \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$ and $u = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$ respectively, we get

$$\frac{1}{\sqrt{5}}f_x(0,0) + \frac{2}{\sqrt{5}}f_y(0,0) = 1, \qquad \frac{2}{\sqrt{5}}f_x(0,0) + \frac{1}{\sqrt{5}}f_y(0,0) = 2.$$

Solving these two equations, we get $f_x(0,0) = \sqrt{5}$ and $f_y(0,0) = 0$.

16. If $f: \mathbb{R}^m \to \mathbb{R}$ satisfies $|f(x)| \le ||x||^2$ for all $x \in \mathbb{R}^m$, then examine whether f is differentiable at 0.

Solution. Since $|f(0)| \le ||0||^2 = 0$, we have f(0) = 0. If $\alpha = 0$, then $h \in \mathbb{R}^m$ and for all $h \in \mathbb{R}^m \setminus \{0\}$, we have

$$\frac{|f(h) - f(0) - \alpha h|}{\|h\|} \le \frac{\|h\|^2}{\|h\|} = \|h\|.$$

Hence it follows that

$$\lim_{h \to 0} \frac{|f(h) - f(0) - \alpha h|}{\|h\|} = 0.$$

Therefore f is differentiable at 0.

17. Let f(x) = ||x|| for all $x \in \mathbb{R}^n$. Examine whether $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at 0.

Solution. Since

$$\lim_{t \to 0} \frac{f(0 + te_1) - f(0)}{t} = \lim_{t \to 0} \frac{|t|}{t}$$

does not exist (in \mathbb{R}), $\frac{\partial f}{\partial x_1}(0)$ does not exist (in \mathbb{R}). Consequently f is not differentiable at 0.

18. If $f(x,y) = \sqrt{|xy|}$ for all $(x,y) \in \mathbb{R}^2$, then examine whether $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (0,0).

Solution. We have
$$f_x(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{0}{t} = 0$$
 and $f_y(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \lim_{t \to 0} \frac{0}{t} = 0$.

$$\lim_{(h,k)\to(0,0)}\frac{f(h,k)-f(0,0)-hf_x(0,0)-kf_y(0,0)}{\sqrt{h^2+k^2}}=\lim_{(h,k)\to(0,0)}\frac{\sqrt{|hk|}}{\sqrt{h^2+k^2}}\neq 0,$$

since $\left(\frac{1}{n}, \frac{1}{n}\right) \to (0, 0)$ but

$$\lim_{n \to \infty} \frac{\sqrt{\frac{1}{n^2}}}{\sqrt{\frac{2}{n^2}}} = \frac{1}{\sqrt{2}} \neq 0.$$

Therefore f is not differentiable at (0,0).

19. If f(x,y) = ||x| - |y|| - |x| - |y| for all $(x,y) \in \mathbb{R}^2$, then examine whether $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (0,0).

Solution. We have

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0$$

and

$$f_y(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = 0.$$

Now

$$\lim_{(h,k)\to(0,0)}\frac{f(h,k)-f(0,0)-hf_x(0,0)-kf_y(0,0)}{\sqrt{h^2+k^2}}=\lim_{(h,k)\to(0,0)}\frac{|f(h,k)|}{\sqrt{h^2+k^2}}\neq 0,$$

since $\left(\frac{2}{n}, \frac{1}{n}\right) \to (0, 0)$ but

$$\lim_{n \to \infty} \frac{\frac{2}{n} - \frac{1}{n}}{\sqrt{\frac{4}{n^2} + \frac{1}{n^2}}} = \frac{1}{\sqrt{5}} \neq 0.$$

Hence f is not differentiable at (0,0).

20. Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 be defined by $f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$

Examine whether f is differentiable at (0,0).

Solution. We have
$$f_x(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{t}{t} = 1$$
 and $f_y(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \lim_{t \to 0} \frac{0}{t} = 0$. Now,

$$\lim_{(h,k)\to(0,0)} \frac{f(h,k) - f(0,0) - hf_x(0,0) - kf_y(0,0)}{\sqrt{h^2 + k^2}} = \lim_{(h,k)\to(0,0)} \frac{\frac{h^3}{h^2 + k^2} - h}{\sqrt{h^2 + k^2}} \neq 0,$$

since $\left(\frac{1}{n}, \frac{1}{n}\right) \to (0, 0)$ but

$$\lim_{n \to \infty} \frac{\frac{1}{2n}}{\sqrt{\frac{2}{n^2}}} = \frac{1}{2\sqrt{2}} \neq 0.$$

Therefore f is not differentiable at (0,0).

21. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{y}{|y|} \sqrt{x^2 + y^2} & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$$

Examine whether f is differentiable at (0,0).

Solution. We have
$$f_x(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{0}{t} = 0$$
 and $f_y(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \lim_{t \to 0} \frac{t}{|t|} \frac{|t|}{t} = 1$. Now

$$\lim_{(h,k)\to(0,0)}\frac{f(h,k)-f(0,0)-hf_x(0,0)-kf_y(0,0)}{\sqrt{h^2+k^2}}=\lim_{(h,k)\to(0,0)}\frac{\frac{k}{|k|}\sqrt{h^2+k^2}-k}{\sqrt{h^2+k^2}}\neq 0,$$

since $\left(\frac{1}{n}, \frac{1}{n}\right) \to (0, 0)$ but

$$\lim_{n \to \infty} \frac{\frac{\sqrt{2}}{n} - \frac{1}{n}}{\frac{\sqrt{2}}{n}} = 1 - \frac{1}{\sqrt{2}} \neq 0.$$

Hence f is not differentiable at (0,0).

22. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as

$$f(x,y) = \begin{cases} \sqrt{x^2 + y^2} & \text{if } y > 0\\ x & \text{if } y = 0\\ -\sqrt{x^2 + y^2} & \text{if } y < 0 \end{cases}$$

Examine whether f is differentiable at (0,0).

Solution. We have $f_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{x}{x} = 1$. Also, since

$$\lim_{y \to 0^+} \frac{f(0,y) - f(0,0)}{y} = \lim_{y \to 0^+} \frac{\sqrt{y^2}}{y} = 1$$

and

$$\lim_{y \to 0^{-}} \frac{f(0,y) - f(0,0)}{y} = \lim_{y \to 0^{-}} \frac{-\sqrt{y^{2}}}{y} = 1,$$

we get $f_{y}(0,0) = 1$. Now,

$$\lim_{(h,k)\to(0,0)} \frac{f(h,k) - f(0,0) - hf_x(0,0) - kf_y(0,0)}{\sqrt{h^2 + k^2}} = \lim_{(h,k)\to(0,0)} \frac{\sqrt{h^2 + k^2} - h - k}{\sqrt{h^2 + k^2}} \neq 0,$$

since $\left(\frac{1}{n}, \frac{1}{n}\right) \to (0,0)$ but

$$\lim_{n \to \infty} \frac{\frac{\sqrt{2}}{n} - \frac{2}{n}}{\frac{\sqrt{2}}{n}} \neq 0.$$

Hence f is not differentiable at (0,0).

23. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} 1 & if \ y < x^2 < 2y, \\ 0 & otherwise. \end{cases}$$

Examine whether f is differentiable at (0,0).

Solution. We have $\left(\frac{1}{\sqrt{n+1}}, \frac{1}{n+2}\right) \to (0,0)$ but $f\left(\frac{1}{\sqrt{n+1}}, \frac{1}{n+2}\right) = 1 \neq 0 = f(0,0)$. Hence f is not continuous at (0,0) and consequently f is not differentiable at (0,0).

24. For all $(x,y) \in \mathbb{R}^2$, let

$$f(x,y) = \begin{cases} x & \text{if } |x| < |y|, \\ -x & \text{if } |x| \ge |y|. \end{cases}$$

Examine whether $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (0,0).

Solution. We have

$$f_x(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{-t - 0}{t} = -1$$

and

$$f_y(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \lim_{t \to 0} \frac{0-0}{t} = 0.$$

Now,

$$\lim_{(h,k)\to(0,0)} \frac{f(h,k) - f(0,0) - hf_x(0,0) - kf_y(0,0)}{\sqrt{h^2 + k^2}} = \lim_{(h,k)\to(0,0)} \frac{f(h,k) + h}{\sqrt{h^2 + k^2}}$$

for (0,0), but

$$\frac{\left| \left(\frac{1}{n}, \frac{1}{n} \right) + 1 \right|}{\sqrt{\frac{1}{n^2} + \frac{1}{n^2}}} = \frac{2/n}{\sqrt{2}/n} \to \frac{2}{\sqrt{2}} \neq 0.$$

Therefore f is not differentiable at (0,0).

25. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{\sin(x^2y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Examine whether f is differentiable at (0,0).

Solution. We have

$$f_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{0-0}{x} = 0$$

and

$$f_y(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = \lim_{y \to 0} \frac{0 - 0}{y} = 0.$$

For all $(h, k) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, we have $\epsilon(h, k) = \frac{f(h, k) - f(0, 0) - hf_x(0, 0) - kf_y(0, 0)}{\sqrt{h^2 + k^2}}$. This implies that

$$\left| \frac{\sin(h^2 k^2)}{(h^2 + k^2)\sqrt{h^2 + k^2}} \right| \le \frac{h^2 k^2}{(h^2 + k^2)\sqrt{h^2 + k^2}} = \sqrt{h^2 + k^2}.$$

So $\lim_{(h,k)\to(0,0)} \epsilon(h,k) = 0$ and so f is differentiable at (0,0).

26. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \sin^2 x + x^2 \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Examine whether f is differentiable at (0,0).

Solution. We have $f_x(0,0) = \lim_{t\to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t\to 0} \frac{\sin^2 t + t^2 \sin\frac{1}{t}}{t} = 0$ and $f_y(x,y) = 0$ for all $(x,y) \in \mathbb{R}^2$. Since $f_y : \mathbb{R}^2 \to \mathbb{R}$ is continuous at (0,0), it follows that g is differentiable at (0,0).

27. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Show that f is differentiable at (0,0) although neither $f_x : \mathbb{R}^2 \to \mathbb{R}$ nor $f_y : \mathbb{R}^2 \to \mathbb{R}$ is continuous at (0,0).

Solution. Here $f_x(0,0) = f_y(0,0) = 0$. For all $(h,k) \in \mathbb{R}^2 \setminus \{(0,0)\}$,

$$\epsilon(h,k) = \frac{f(h,k) - f(0,0) - hf_x(0,0) - kf_y(0,0)}{\sqrt{h^2 + k^2}} \le \sqrt{h^2 + k^2},$$

so that

$$\lim_{(h,k)\to(0,0)} \epsilon(h,k) = 0.$$

Hence f is differentiable at (0,0).

Again,

$$f_x(x,y) = 2x \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) - \frac{x}{\sqrt{x^2 + y^2}} \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$$

for all $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Now $\left(\frac{2\pi n}{n},0\right)$ is a sequence in \mathbb{R}^2 converging to (0,0) but

$$f_x\left(\frac{1}{2\pi n},0\right) = -1 \text{ for all } n \in \mathbb{N} \text{ and so } f_x\left(\frac{1}{2\pi n},0\right) \to -1 \neq f_x(0,0).$$

This shows that f_x is not continuous at (0,0). Similarly f_y is not continuous at (0,0). \square

28. Let

$$f(x,y) = \begin{cases} (x^2 + y^2)\cos\left(\frac{1}{x^2 + y^2}\right) & if (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \\ 0 & if (x,y) = (0,0). \end{cases}$$

Examine whether $f: \mathbb{R}^2 \to \mathbb{R}$ is continuously differentiable.

Solution. For all $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, we have $f_x(x,y) = 2x \cos\left(\frac{1}{x^2+y^2}\right) + \frac{2x}{x^2+y^2} \sin\left(\frac{1}{x^2+y^2}\right)$. Now $\left(\frac{\sqrt{2}}{(\sqrt{4n+1})\pi},0\right) \to (0,0)$ but $f_x\left(\frac{\sqrt{2}}{\sqrt{4n+1}\pi},0\right) = \sqrt{2(4n+1)\pi} \to \infty$. Hence $\lim_{(x,y)\to(0,0)} f_x(x,y)$ does not exist (in \mathbb{R}) and consequently f_x is not continuous at (0,0). Therefore f is not continuously differentiable.

29. Let $\alpha \in \mathbb{R}$ and $\alpha > 0$. If $f(x,y) = |xy|^{\alpha}$ for all $(x,y) \in \mathbb{R}^2$, then determine all values of α for which $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (0,0).

Solution. We have $f_x(0,0) = \lim_{t\to 0} \frac{f(t,0)-f(0,0)}{t} = \lim_{t\to 0} \frac{0-0}{t} = 0$ and

$$f_y(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \lim_{t \to 0} \frac{0-0}{t} = 0.$$

For all $(h, k) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, let

$$\varphi(h,k) = \frac{f(h,k) - f(0,0) - hf_x(0,0) - kf_y(0,0)}{\sqrt{h^2 + k^2}} = \frac{|hk|^{\alpha}}{\sqrt{h^2 + k^2}}.$$

If $\alpha > \frac{1}{2}$, then

$$\varphi(h,k) \le \frac{(h^2 + k^2)^{\alpha}}{\sqrt{h^2 + k^2}} = (h^2 + k^2)^{\alpha - \frac{1}{2}},$$

and so $\lim_{(h,k)\to(0,0)} \varphi(h,k) = 0$. Consequently f is differentiable at (0,0). Again, if $\alpha \leq \frac{1}{2}$, then $(\frac{1}{n},\frac{1}{n}) \to (0,0)$ but $\varphi(\frac{1}{n},\frac{1}{n}) = \frac{1}{\sqrt{2}}n^{1-2\alpha} \neq 0$ (for $\alpha = \frac{1}{2}$, $\varphi(\frac{1}{n},\frac{1}{n}) \to (0,0)$) $\frac{1}{\sqrt{2}}$ and for $\alpha < \frac{1}{2}$, the sequence $\varphi\left(\frac{1}{n}, \frac{1}{n}\right)$ is unbounded). Hence $\lim_{(h,k)\to(0,0)} \varphi(h,k) \neq 0$ and so f is not differentiable at (0,0).

30. Let f(x,y) = |xy| for all $(x,y) \in \mathbb{R}^2$. Determine all the points of \mathbb{R}^2 where $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable.

Solution. Let $S_1 = \{(x,y) \in \mathbb{R}^2 : xy > 0\}$ and $S_2 = \{(x,y) \in \mathbb{R}^2 : xy < 0\}$. Then f(x,y) = xy for all $(x,y) \in S_1$ and f(x,y) = -xy for all $(x,y) \in S_2$. Since $f_x(x,y) = y$ and $f_y(x,y) = x$ for all $(x,y) \in S_1$, we find that both $f_x : S_1 \to \mathbb{R}$ and $f_y : S_1 \to \mathbb{R}$ are continuous. Hence f is differentiable at every point of S_1 . By a similar argument, we can show that f is differentiable at every point of S_2 . If $\alpha(\neq 0) \in \mathbb{R}$, then $f_y(\alpha,0) = \lim_{t\to 0} \frac{f(\alpha,t)-f(0,0)}{t} = \lim_{t\to 0} \frac{|\alpha||t|}{t}$ does not exist (in \mathbb{R}) and similarly $f_x(0,\alpha)$ does not exist (in \mathbb{R}). Hence f is not differentiable at any point $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ for which xy = 0. Again, $f_x(0,0) = \lim_{t\to 0} \frac{f(t,0)-f(0,0)}{t} = 0$ and

$$\lim_{(h,k)\to(0,0)} \frac{[f(h,k)-f(0,0)]-hf_x(0,0)-kf_y(0,0)}{\sqrt{h^2+k^2}} = \lim_{(h,k)\to(0,0)} \frac{|hk|}{\sqrt{h^2+k^2}} = 0$$

(since $|h||k| \le h^2 + k^2$ for all $(h, k) \in \mathbb{R}^2$). Hence f is differentiable at (0, 0). Therefore, the set of all points of \mathbb{R}^2 at which f is differentiable is $\{(x, y) \in \mathbb{R}^2 : xy \ne 0\} \cup \{(0, 0)\}$. \square

31. Let $f(x,y) = (xy)^{\frac{2}{3}}$ for all $(x,y) \in \mathbb{R}^2$. Determine all the points of \mathbb{R}^2 at which $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable.

Solution. Let $S = \{(x,y) \in \mathbb{R}^2 : xy \neq 0\}$. Since $f_x(x,y) = \frac{2}{3}x^{-\frac{1}{3}}y^{\frac{2}{3}}$ and $f_y(x,y) = \frac{2}{3}x^{\frac{2}{3}}y^{-\frac{1}{3}}$ for all $(x,y) \in S$, we find that both $f_x : S \to \mathbb{R}$ and $f_y : S \to \mathbb{R}$ are continuous. Hence f is differentiable at every point of S. If $\alpha(\neq 0) \in \mathbb{R}$, then $f_y(\alpha,0) = \lim_{t\to 0} \frac{f(\alpha,t)-f(0,0)}{t} = \lim_{t\to 0} \frac{\alpha^{\frac{2}{3}}t^{\frac{2}{3}}}{t} = \lim_{t\to 0} \frac{\alpha^{\frac{2}{3}}}{t^{\frac{1}{3}}}$ does not exist (in \mathbb{R}) and similarly $f_x(0,\alpha)$ does not exist (in \mathbb{R}). Hence f is not differentiable at any point $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ for which xy = 0. Again, $f_x(0,0) = \lim_{t\to 0} \frac{f(t,0)-f(0,0)}{t} = 0$, and

$$f_y(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 0,$$

$$\lim_{(h,k)\to(0,0)}\frac{[f(h,k)-f(0,0)]-hf_x(0,0)-kf_y(0,0)}{\sqrt{h^2+k^2}}=\lim_{(h,k)\to(0,0)}\frac{|h|^{\frac{2}{3}}|k|^{\frac{2}{3}}}{\sqrt{h^2+k^2}}=0$$

(since $|h|^{\frac{2}{3}}|k|^{\frac{2}{3}} \leq (h^2 + k^2)^{\frac{2}{3}}$ for all $(h,k) \in \mathbb{R}^2$). Hence f is differentiable at (0,0). Therefore the set of all points of \mathbb{R}^2 at which f is differentiable is $\{(x,y) \in \mathbb{R}^2 : xy \neq 0\} \cup \{(0,0)\}$.

32. Let $f(x,y) = |x| \sin(x^2 + y^2)$ for all $(x,y) \in \mathbb{R}^2$. Determine all the points of \mathbb{R}^2 where $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable.

Solution. Clearly f is differentiable at all $(x,y) \in \mathbb{R}^2$ for which $x \neq 0$. Let $y_0 \in \mathbb{R}$. Then

$$f_x(0, y_0) = \lim_{x \to 0} \frac{f(x, y_0) - f(0, y_0)}{x} = \lim_{x \to 0} \frac{|x|\sin(x^2 + y_0^2)}{x}$$

which exists in \mathbb{R} (and equals 0) iff $y_0 = \pm \sqrt{n\pi}$ for some $n \in \mathbb{N} \cup \{0\}$. Also, $f_y(x,y) = 2|x|y\cos(x^2+y^2)$ for all $(x,y) \in \mathbb{R}^2$. So f_y is continuous at each point of \mathbb{R}^2 . Therefore f is differentiable at $(0,y_0)$ iff $y_0 = \pm \sqrt{n\pi}$ for some $n \in \mathbb{N} \cup \{0\}$.

33. Determine all the points of \mathbb{R}^2 where $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable, if for all $(x,y) \in \mathbb{R}^2$,

$$f(x,y) = \begin{cases} x^2 + y^2 & \text{if both } x, y \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{cases}$$

Solution. Since $|f(x,y)| \le x^2 + y^2 = ||(x,y)||^2$ for all $(x,y) \in \mathbb{R}^2$, by Ex.12(a) of Practice Problem Set - 3, f is differentiable at (0,0).

Let $(x_0, y_0) \in \mathbb{R}^2 \setminus \{(0, 0)\}$. If $(x_0, y_0) \in \mathbb{Q} \times \mathbb{Q}$, then $(x_0 + \frac{\sqrt{2}}{n}, y_0) \to (x_0, y_0)$ but $f(x_0 + \frac{\sqrt{2}}{n}, y_0) \to 0 \neq x_0^2 + y_0^2 = f(x_0, y_0)$. Again if $(x_0, y_0) \notin \mathbb{Q} \times \mathbb{Q}$, then we choose rational sequences (x_n) and (y_n) such that $x_n \to x_0$ and $y_n \to y_0$. Then $(x_n, y_n) \to (x_0, y_0)$ but $f(x_n, y_n) = x_n^2 + y_n^2 \to x_0^2 + y_0^2 \neq 0 = f(x_0, y_0)$. Hence f is not continuous at (x_0, y_0) and consequently f is not differentiable at (x_0, y_0) .

34. State TRUE or FALSE with justification: If $S = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ and if f(x,y) = |xy| for all $(x,y) \in S$, then $f: S \to \mathbb{R}$ is differentiable.

Solution. Clearly $(\frac{1}{2},0) \in S$. Since $\lim_{t\to 0} \frac{f(\frac{1}{2},t)-f(\frac{1}{2},0)}{t} = \lim_{t\to 0} \frac{\frac{|t|}{2}}{t}$ does not exist (in \mathbb{R}), $f_y(\frac{1}{2},0)$ does not exist (in \mathbb{R}). Hence f is not differentiable at $(\frac{1}{2},0)$ and so f is not differentiable. Therefore the given statement is FALSE.

35. State TRUE or FALSE with justification: There exists a function $f: \mathbb{R}^2 \to \mathbb{R}$ which is differentiable only at (1,0).

Solution. For all
$$(x,y) \in \mathbb{R}^2$$
, let $f(x,y) = \begin{cases} (x-1)^2 + y^2 & \text{if } x,y \in \mathbb{Q}, \\ 0 & \text{otherwise.} \end{cases}$

Taking $\alpha = (1,0) \in \mathbb{R}^2$, we find that

$$\lim_{(h,k)\to(0,0)} \frac{\left[f(1+h,k)-f(1,0)-hf_x(1,0)-kf_y(1,0)\right]}{\sqrt{h^2+k^2}} \le \lim_{(h,k)\to(0,0)} \frac{h^2+k^2}{\sqrt{h^2+k^2}}$$

$$= \lim_{(h,k)\to(0,0)} \sqrt{h^2+k^2}$$

$$= 0.$$

Hence f is differentiable at (1,0).

Again let $(x,y) \in \mathbb{R}^2 \setminus \{(1,0)\}$. Then $f(x,y) \neq 0$. We can find a sequence (x_n) in $\mathbb{R} \setminus \mathbb{Q}$ such that $x_n \to x$. So $(x_n,y) \to (x,y)$ but $f(x_n,y) = 0$ for all $n \in \mathbb{N}$ and so $f(x_n,y) \to 0 \neq f(x,y)$. Hence f is not continuous at (x,y) and so f is not differentiable at (x,y). Thus $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable only at (1,0). Therefore the given statement is TRUE.

36. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable at (0,0) and let $\lim_{x\to 0} \frac{f(x,-x)-f(x,x)}{x} = 1$. Find $f_y(0,0)$.

Solution. Since f is differentiable at (0,0), we have $\lim_{t\to 0} \frac{f(t,0)-f(0,0)+f(0,t)-f(0,0)}{\sqrt{2t^2}} = 0$ and

$$\lim_{t \to 0} \frac{f(t, -t) - f(t, t) - 2f_y(0, 0)t}{\sqrt{2t^2}} = 0,$$

so $\lim_{t\to 0} \frac{f(t,-t)-f(t,t)}{\sqrt{2}|t|} - 2f_y(0,0) = 0$. Hence

$$2f_y(0,0) = \lim_{t \to 0} \frac{f(t,-t) - f(t,t)}{t} = 1$$

and therefore $f_y(0,0) = \frac{1}{2}$.

37. Let $f: \mathbb{R}^m \to \mathbb{R}$ be differentiable at 0 and let $f(\alpha x) = \alpha f(x)$ for all $x \in \mathbb{R}^m$ and for all $\alpha \in \mathbb{R}$. Show that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}^m$.

Solution. We have $f(0) = f(0 \cdot 0) = 0 \cdot f(0) = 0$. Since f is differentiable at 0, there exists $a \in \mathbb{R}^m$ such that $\lim_{|h| \to 0} \frac{|f(h) - a \cdot h|}{||h||} = \lim_{|h| \to 0} \frac{|f(0+h) - f(0) - a \cdot h|}{||h||} = 0$. If $x \in \mathbb{R}^m \setminus \{0\}$, then from above,

$$\lim_{|t|\to 0} \frac{|f(tx) - ta \cdot x|}{||tx||} = 0,$$

which gives $\lim_{|t|\to 0} \frac{|f(x)-ta\cdot x|}{|t|||x||} = 0$ and so

$$\lim_{|t| \to 0} \frac{|f(x) - a \cdot x|}{|t|||x||} = 0$$

and so $|f(x) - a \cdot x| = 0$ and hence $f(x) = a \cdot x$.

Since $f(0) = 0 = a \cdot 0$, we have $f(x) = a \cdot x$ for all $x \in \mathbb{R}^m$. Now, if $x, y \in \mathbb{R}^m$, then $f(x+y) = a \cdot (x+y) = a \cdot x + a \cdot y = f(x) + f(y)$.

38. Let $f: \mathbb{R}^m \to \mathbb{R}$ be differentiable at 0 and f(0) = 0. Show that there exist $\alpha > 0$ and r > 0 such that $|f(x)| \le \alpha ||x||$ for all $x \in \mathbb{R}^m$ with ||x|| < r.

Solution. Since f is differentiable at 0 and f(0) = 0, there exists $a \in \mathbb{R}^m$ such that

$$\lim_{x \to 0} \frac{|f(x) - a \cdot x|}{||x||} = 0.$$

Hence there exists r > 0 such that $\frac{|f(x) - a \cdot x|}{||x||} < 1$ for all $x \in \mathbb{R}^m$ with 0 < ||x|| < r. Therefore if $x \in \mathbb{R}^m$ with ||x|| < r, then $|f(x) - a \cdot x| \le ||x||$ and so $|f(x)| \le |f(x) - a \cdot x| + |a \cdot x| \le ||x|| + ||a|| +$

39. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that f_x exists (in \mathbb{R}) at all points of $B_{\delta}((x_0, y_0))$ for some $(x_0, y_0) \in \mathbb{R}^2$ and $\delta > 0$, f is continuous at (x_0, y_0) and $f_y(x_0, y_0)$ exists (in \mathbb{R}). Show that f is differentiable at (x_0, y_0) .

Solution. For all $(h, k) \in B_{\delta}((0, 0))$, we have $f(x_0 + h, y_0 + k) - f(x_0, y_0) = f(x_0 + h, y_0 + k) - f(x_0, y_0 + k) + f(x_0, y_0 + k) - f(x_0, y_0)$.

Now, by the mean value theorem for single real variable, we get $f(x_0+h, y_0+k) - f(x_0, y_0+k) = hf_x(x_0+\theta h, y_0+k)$ for some $\theta \in (0,1)$.

Again, if $\epsilon(k) = f(x_0, y_0 + k) - f(x_0, y_0) - kf_y(x_0, y_0)$ for all $k \in \mathbb{R} \setminus \{0\}$ with $|k| < \delta$ and $\epsilon(0) = 0$, then

$$f(x_0, y_0 + k) - f(x_0, y_0) = k f_y(x_0, y_0) + k \epsilon(k)$$

for all $k \in \mathbb{R}$ with $|k| < \delta$ and $\epsilon(k) \to 0$ as $k \to 0$. Now,

$$\lim_{(h,k)\to(0,0)} \frac{f(x_0+h,y_0+k) - f(x_0,y_0) - hf_x(x_0,y_0) - kf_y(x_0,y_0)}{\sqrt{h^2 + k^2}}$$

$$\leq \lim_{(h,k)\to(0,0)} \left(\frac{|h|}{\sqrt{h^2 + k^2}} |f_x(x_0 + \theta h, y_0 + k) - f_x(x_0, y_0)| + \frac{|k|}{\sqrt{h^2 + k^2}} |\epsilon(k)| \right)$$

$$\leq \lim_{(h,k)\to(0,0)} (|f_x(x_0 + \theta h, y_0 + k) - f_x(x_0, y_0)| + |\epsilon(k)|) = 0.$$

Therefore f is differentiable at (x_0, y_0) .

40. Let $f, g: S \subseteq \mathbb{R}^m \to \mathbb{R}$ be differentiable at $\mathbf{x}_0 \in S^0$. Show that $f + g: S \to \mathbb{R}$ is differentiable at \mathbf{x}_0 and $\nabla (f + g)(\mathbf{x}_0) = \nabla f(\mathbf{x}_0) + \nabla g(\mathbf{x}_0)$.

Solution. Since f and g are differentiable at \mathbf{x}_0 , $\nabla f(\mathbf{x}_0)$, $\nabla g(\mathbf{x}_0) \in \mathbb{R}^m$ and by increment theorem, there exist $\delta_1, \delta_2 > 0$ and functions $\varepsilon_1 : B_{\delta_1}(0) \to \mathbb{R}$, $\varepsilon_2 : B_{\delta_2}(0) \to \mathbb{R}$ such that

 $\lim_{h\to 0} \varepsilon_1(h) = \lim_{h\to 0} \varepsilon_2(h) = 0 \text{ and } f(\mathbf{x}_0 + h) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \cdot h + ||h|| \varepsilon_1(h) \text{ for all } h \in B_{\delta_1}(0)$ and

$$g(\mathbf{x}_0 + h) = g(\mathbf{x}_0) + \nabla g(\mathbf{x}_0) \cdot h + ||h|| \varepsilon_2(h) \text{ for all } h \in B_{\delta_2}(0).$$

Let $\delta = \min\{\delta_1, \delta_2\}$. Then $\delta > 0$ and

$$(f+g)(\mathbf{x}_0+h) = f(\mathbf{x}_0+h) + g(\mathbf{x}_0+h) = (f+g)(\mathbf{x}_0) + (\nabla f(\mathbf{x}_0) + \nabla g(\mathbf{x}_0)) \cdot h + ||h||[\varepsilon_1(h) + \varepsilon_2(h)]$$

for all $h \in B_{\delta}(0)$, where $\varepsilon : B_{\delta}(0) \to \mathbb{R}$ is defined by $\varepsilon(h) = \varepsilon_1(h) + \varepsilon_2(h)$ for all $h \in B_{\delta}(0)$ and so $\lim_{h\to 0} \varepsilon(h) = \lim_{h\to 0} \varepsilon_1(h) + \lim_{h\to 0} \varepsilon_2(h) = 0$. Therefore by increment theorem, f+g is differentiable at \mathbf{x}_0 and $\nabla(f+g)(\mathbf{x}_0) = \nabla f(\mathbf{x}_0) + \nabla g(\mathbf{x}_0)$.

41. Using the linearization of a suitable function at a suitable point, find an approximate value of $((3.8)^2 + 2(2.1)^2)^{\frac{5}{8}}$.

Solution. Let $S = \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0\}$ and let $f(x,y) = (x^2 + 2y^2)^{\frac{5}{8}}$ for all $(x,y) \in S$. Then $f_x(x,y) = \frac{5}{4}x(x^2 + 2y^2)^{-\frac{3}{8}}$ and $f_y(x,y) = \frac{5}{2}y(x^2 + 2y^2)^{-\frac{3}{8}}$ for all $(x,y) \in S$. Since $f_x, f_y : S \to \mathbb{R}$ are continuous, $f : S \to \mathbb{R}$ is differentiable. Hence the linearization of f at $(4,2) \in S$ is given by

$$L(x,y) = f(4,2) + f_x(4,2)(x-4) + f_y(4,2)(y-2) = 2 + \frac{1}{10}(x-4) + \frac{3}{10}(y-2)$$

for all $(x,y) \in S$. Therefore an approximate value of f(3.8,2.1) is given by

$$L(3.8, 2.1) = 2 - 0.02 + 0.03 = 2.01.$$

42. Show that the maximum error in calculating the volume of a right circular cylinder is approximately $\pm 8\%$ if its radius can be measured with a maximum error of $\pm 3\%$ and its height can be measured with a maximum error of $\pm 2\%$.

Solution. We know that the volume of a right circular cylinder of radius r and height h is given by $V(r,h) = \pi r^2 h$. If $S = \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0\}$, then $V : S \to \mathbb{R}$ is differentiable (since $V_r, V_h : S \to \mathbb{R}$ are continuous) and the linearization of V at any point $(r_0, h_0) \in S$ is given by

$$L(r,h) = V(r_0, h_0) + V_r(r_0, h_0)(r - r_0) + V_h(r_0, h_0)(h - h_0)$$

= $V(r_0, h_0) + 2\pi r_0 h_0(r - r_0) + \pi r_0^2 (h - h_0)$

Hence the absolute value of an approximate percentage error in V(r,h) at (r_0,h_0) is given by $\left|\frac{L(r,h)-V(r_0,h_0)}{V(r_0,h_0)}\right| \times 100$. Since it is given that $\left|\frac{r-r_0}{r_0}\right| \times 100 \le 3$ and $\left|\frac{h-h_0}{h_0}\right| \times 100 \le 2$, we get

$$\left| \frac{L(r,h) - V(r_0, h_0)}{V(r_0, h_0)} \right| \times 100 \le 2 \left| \frac{r - r_0}{r_0} \right| \times 100 + \left| \frac{h - h_0}{h_0} \right| \times 100 \le 6 + 2 = 8.$$

Therefore the maximum error in calculating V(r,h) at any $(r_0,h_0) \in S$ is approximately $\pm 8\%$.