MA15010H: Multi-variable Calculus

(Practice problem set 4: Higher order derivatives, maxima, minima) July - November, 2025

- 1. Let $f(\mathbf{x}) = \|\mathbf{x}\|_2^5$ for all $\mathbf{x} \in \mathbb{R}^m$. Using chain rule, show that $f : \mathbb{R}^m \to \mathbb{R}$ is differentiable and determine $f'(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^m$.
- 2. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be differentiable and let u(x,y,z) = f(x-y,y-z,z-x) for all $(x,y,z) \in \mathbb{R}^2$. Show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$ at each point of \mathbb{R}^3 .
- 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be twice continuously differentiable and let $u(r,\theta) = f(r\cos\theta, r\sin\theta)$ for all r > 0, $\theta \in \mathbb{R}$. Show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$ at each point $(x,y) = (r\cos\theta, r\sin\theta)$ of $\mathbb{R}^2 \setminus \{(0,0)\}$.
- 4. Show that a differentiable function $f: \mathbb{R}^m \setminus \{0\} \to \mathbb{R}$ is homogeneous of degree $\alpha \in \mathbb{R}$ (i.e., $f(t\mathbf{x}) = t^{\alpha}f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^m \setminus \{0\}$ and for all t > 0) iff $\nabla f(\mathbf{x}) \cdot \mathbf{x} = \alpha f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^m \setminus \{0\}$.

(The only if part of this result is known as Euler's theorem on homogeneous functions.)

- 5. If $f(x,y) = \tan^{-1}\left(\frac{x^2+y^2}{x-y}\right)$ for all $(x,y) \in \mathbb{R}^2 \setminus S$, where $S = \{(x,y) : x = y\}$, then using Euler's theorem on homogeneous functions, show that $xf_x(x,y) + yf_y(x,y) = \sin(2f(x,y))$ for all $(x,y) \in \mathbb{R}^2 \setminus S$.
- 6. If $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ is a twice continuously differentiable homogeneous function of degree $n \in \mathbb{R}$, then show that

$$\left(x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2}\right)(x, y) = n(n - 1)f(x, y)$$

for all $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}.$

- 7. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuously differentiable such that $f_x(a,b) = f_y(a,b)$ for all $(a,b) \in \mathbb{R}^2$ and f(a,0) > 0 for all $a \in \mathbb{R}$. Show that f(a,b) > 0 for all $(a,b) \in \mathbb{R}^2$.
- 8. Let $\alpha > 0$ and let $f : \mathbb{R}^m \to \mathbb{R}$ satisfy $|f(x) f(y)| \le \alpha ||x y||^2$ for all $x, y \in \mathbb{R}^m$. Show that f is a constant function.
- 9. Let S be a nonempty open and convex set in \mathbb{R}^2 and let $f: S \to \mathbb{R}$ be such that $f_x(x,y) = 0 = f_y(x,y)$ for all $(x,y) \in S$. Show that f is a constant function. (A set $S \subseteq \mathbb{R}^m$ is called convex if $(1-t)x+ty \in S$ for all $x,y \in S$ and for all $t \in [0,1]$.)
- 10. Find the equations of the tangent plane and the normal line to the surface given by $z = x^2 + y^2 2xy + 3y x + 4$ at the point (2, -3, 18).
- 11. Find all points on the paraboloid $z = x^2 + y^2$ at which the tangent plane to the paraboloid is parallel to the plane x + y + z = 1. Also, determine the equations of the corresponding tangent planes.

- 12. Determine all the points of local maximum, local minimum and all the saddle points of $f: \mathbb{R}^2 \to \mathbb{R}$, if for all $(x, y) \in \mathbb{R}^2$,

 - (a) $f(x,y) = x^3 + y^3 63x 63y + 12xy$ (b) $f(x,y) = 2x^4 + 2x^2y + y^2$ (c) $f(x,y) = 4x^2 xy + 4y^2 + x^3y + xy^3 4$
- 13. If $f(x, y, z) = x^2 + y^2 + z^2 + 2xyz 4xz 2yz 2x 4y + 4z$ for all $(x, y, z) \in \mathbb{R}^3$, then find all the points of local maximum, local minimum and all the saddle points of $f: \mathbb{R}^3 \to \mathbb{R}$.
- 14. If $S = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$, then determine $\max\{x^2 + 2x + y^2 : (x,y) \in S\}$ and $\min\{x^2 + 2x + y^2 : (x,y) \in S\}$.
- 15. Find the (absolute) maximum value of $f(x, y, z) = 8xyz^2 200(x + y + z)$ subject to the constraint $x + y + z = 100, x \ge 0, y \ge 0, z \ge 0$.