

MA15010H: Multi-variable Calculus

(Practice problem set 5: Riemann Integration, Fubini's Theorem)

September - November, 2025

(1) Let $f : D = [a, b] \times [c, d] \rightarrow \mathbb{R}$ be defined by $f(x, y) = \varphi(x)\psi(y)$, where $\varphi : [a, b] \rightarrow \mathbb{R}$ and $\psi : [c, d] \rightarrow \mathbb{R}$ are continuous. Show that

$$\iint_D f(x, y) dxdy = \left(\int_a^b \varphi(x) dx \right) \left(\int_c^d \psi(x) dx \right).$$

(2) Let $f : D = [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ be defined by

$$f(x, y) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}^c \cap [0, 1]; \\ 1 & \text{if } x \in \mathbb{Q} \cap [0, 1] \text{ and } y \in \mathbb{Q}^c \cap [0, 1]; \\ 1 - \frac{1}{q}, & \text{if } x = \frac{p}{q} \text{ in lowest term and } y \in \mathbb{Q} \cap [0, 1]. \end{cases}$$

Then f is integrable and $\iint_D f(x, y) dxdy = 1$. Does repeated integral $\int_0^1 \left(\int_0^1 f(x, y) dy \right) dx$ exist?

(3) Find the volume of the tetrahedron T bounded by the planes $x = 0$, $y = 0$, $z = 0$, and $x - y - z = -1$.

(4) Evaluate the following iterated integrals applying Fubini's Theorem.

(a) $\int_0^1 \int_{x=y}^1 \cos(x^2) dxdy.$

(b) $\int_0^1 \int_{y=\sqrt{x}}^1 e^{y^3} dydx.$

(c) $\int_0^1 \int_{y=x^2}^1 x^3 e^{y^3} dydx.$

(d) $\int_0^1 \int_{x=y}^1 \frac{1}{1+x^4} dxdy.$

(e) $\int_0^1 (\tan^{-1} \pi x - \tan^{-1} x) dx.$

(5) Let D be the region lying below the curve $y = \cos x$, $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ and above the X -axis. Evaluate $\iint_D \sin x dxdy$.

(6) Let D be the region in \mathbb{R}^2 bounded by the curves $y = 2x^2$ and $y = 1+x^2$. Evaluate the double integral $\iint_D (2x^2 + y) dxdy$.

(7) Evaluate $\iint_D x \cos \left(y - \frac{y^3}{3} \right) dxdy$, where $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1, x \geq 0, y \geq 0\}$.

(8) Find the volume of the solid enclosed by the surfaces $z = 6 - x^2 - y^2$, $z = 2x^2 + y^2 - 1$, $x = -1$, $x = 1$, $y = -1$ and $y = 1$.

(9) Let D be the solid bounded by the surfaces $y = x^2$, $y = 3x$, $z = 0$ and $z = x^2 + y^2$. Find the volume of the solid.

(10) Let D be the solid bounded by the cylinder $x^2 + y^2 = 1$ and the planes $y + z = 1$ and $z = 0$. Find the volume of the solid.