

MA15010H: Multi-variable Calculus

(Practice problem set 6 Hint/Model solutions: Change of variables, triple integral)

September - November, 2025

1. Consider the transformation $T : [0, 2\pi] \times [0, 1] \rightarrow \mathbb{R}^2$ given by $T(u, v) = (2v \cos u, v \sin u)$.
 - (a) For a fixed $v_o \in [0, 1]$, describe the set $\{T(u, v_o) : u \in [0, 2\pi]\}$.
 - (b) Describe the set $\{T(u, v) : [0, 2\pi] \times [0, 1]\}$.

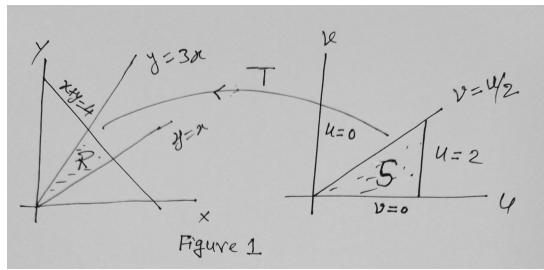
Solution: (a) If $x = 2v_o \cos u$ and $y = v_o \sin u$, then $\frac{x^2}{4} + \frac{y^2}{1} = v_o^2$. The set $\{T(u, v_o) : u \in [0, 2\pi]\}$ is an ellipse.

(b) The set is the region enclosed by $\frac{x^2}{4} + \frac{y^2}{1} = 1$.

2. Let R be the region in \mathbb{R}^2 bounded by the straight lines $y = x$, $y = 3x$ and $x + y = 4$.

Consider the transformation $T(u, v) = (u - v, u + v)$. Find the set S satisfying $T(S) = R$.

Solution: If $x = u - v$ and $y = u + v$, then $y = x$ is mapped to $v = 0$ and $y = 3x$ is mapped to $v = \frac{u}{2}$. The line $x + y = 4$ is mapped to $u = 2$. Please see Figure 1.



3. Evaluate $\iint_R x dx dy$ where R is the region $1 \leq x(1 - y) \leq 2$ and $1 \leq xy \leq 2$.

Solution: Let $u = x(1 - v)$ and $v = xy$. Since $xy \neq 0$, we can solve as $x = u + v$ and $y = \frac{v}{u+v}$. Here $J(u, v) = \frac{1}{u+v}$. The required integral is $\int_1^2 \int_1^2 (u + v) \frac{1}{|u+v|} dudv = 1$

4. Evaluate

$$(a) \int_0^{\frac{1}{\sqrt{2}}} \int_{x=y}^{\sqrt{1-y^2}} (x + y) dx dy.$$

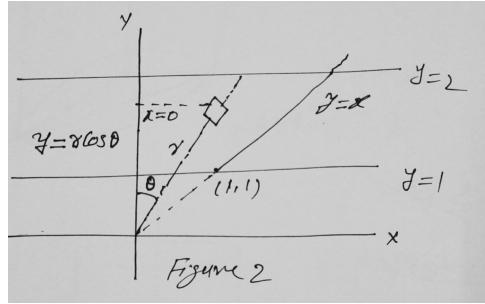
$$(b) \int_1^2 \int_{x=0}^y \frac{1}{(x^2+y^2)^{\frac{3}{2}}} dx dy.$$

$$(c) \int_0^2 \int_{y=0}^{\sqrt{2x-x^2}} \sqrt{x^2 + y^2} dy dx.$$

Solution: (a) The given integral is $\iint_D (x + y) dx dy$, where D is the region bounded by $y = 0$, $y = x$ and the circle $x^2 + y^2 = 1$. By polar coordinates

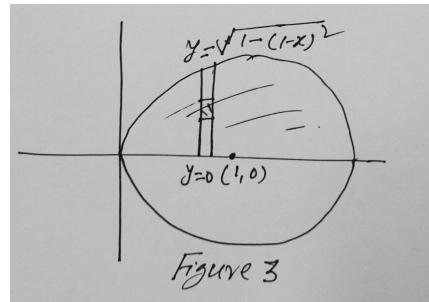
$$\iint_D (x + y) dx dy = \int_0^{\frac{\pi}{4}} \int_0^1 r(\cos \theta + \sin \theta) r dr d\theta.$$

(b) Please see Figure 2.



By polar coordinate, the given integral becomes $\int_0^{\frac{\pi}{4}} \int_{\sec \theta}^{2 \sec \theta} \frac{1}{r^3} r dr d\theta$.

(c) Please see Figure 3.



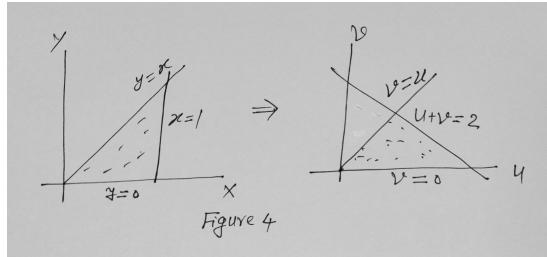
The given integral becomes $\iint_D \sqrt{x+y} dxdy$, where D is the region in the first quadrant bounded by the circle $(x-1)^2 + y^2 = 1$ and the x -axis. Using polar coordinate, the circle $(x-1)^2 + y^2 = 1$ can be represented by $r = 2 \cos \theta$. Hence the required integral is $\int_0^{\frac{\pi}{2}} \int_0^{2 \cos \theta} r^2 dr d\theta$.

5. Using change of variables $u = x + y$ and $v = x - y$, show that

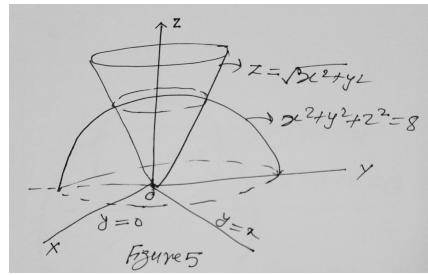
$$\int_0^1 \int_{y=0}^{y=x} (x-y) dy dx = \int_0^1 \int_{u=v}^{u=2-v} \frac{v}{2} du dv.$$

Solution: We have $u + v = 2x$ and $u - v = 2y$. The line $x = y$ is mapped to $v = 0$ and $x = 1$ to $u + v = 2$. The x -axis is mapped to $v = u$. Here $J(u, v) = \frac{1}{2}$. Please see the Figure 4.

6. Find the volume of the solid in the first octant bounded below by the surface $z = \sqrt{x^2 + y^2}$ above by $x^2 + y^2 + z^2 = 8$ as well as the planes $y = 0$ and $y = x$.



Solution: The given solid lies above the region D , where D is in the first quadrant in \mathbb{R}^2 bounded by the circle $x^2 + y^2 = 4$ and the line $y = x$ and $y = 0$. Please see Figure 5.



Therefore the required volume is given by $\iint_D (\sqrt{8 - x^2 - y^2} - \sqrt{x^2 + y^2}) dx dy = \int_0^{\pi/4} \int_0^2 (\sqrt{8 - r^2} - r) r dr d\theta$.

7. Find the volume of the solid bounded by the surfaces $z = 3(x^2 + y^2)$ and $z = 4 - (x^2 + y^2)$.

Solution: The intersection of the surfaces is the set $\{(x, y, z) : x^2 + y^2 = 1\}$. Therefore the volume is given by $\iint_D (4 - x^2 - y^2 - 3(x^2 + y^2)) dx dy$, where D is the region in \mathbb{R}^2 enclosed by the circle $x^2 + y^2 = 1$. By polar coordinate the integral becomes $\int_0^{2\pi} \int_0^1 (4 - 4r^2) r dr d\theta$.

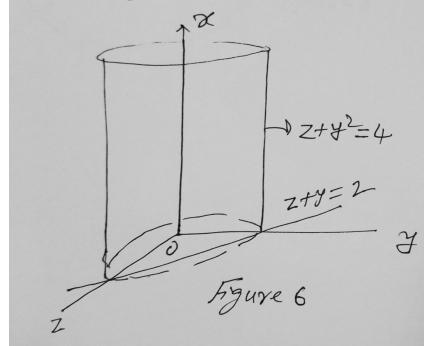
8. Let D denote the solid bounded by surfaces $y = x$, $y = x^2$, $z = x$ and $z = 0$. Evaluate $\iiint_D y dx dy dz$.

Solution: The projection of the solid D on the xy -plane is give by $R = \{(x, y) : 0 \leq x \leq 1, x^2 \leq y \leq x\}$. The solid D lies above the surface $z = f_1(x, y) = 0$ and below $z = f_2(x, y) = x$. Therefore, $\iiint_D y dx dy dz = \int_{x=0}^1 \left(\int_{y=x^2}^x \left(\int_{z=0}^x y dz \right) dy \right) dx$.

9. Let D denote the solid bounded below by the plane $z + y = 2$, above by the cylinder $z + y^2 = 4$ and on the sides $x = 0$ and $x = 2$. Evaluate $\iiint_D x dx dy dz$.

Solution: Please see Figure 6.

Solving $4 - y^2 = 2 - y$ implies $y = -1, 2$. The projection of the solid D on the xy -plane is given by $R = [0, 2] \times [-1, 2]$. The solid lies above the surface $z = f_1(x, y) = 2 - y$



and below $z = f_2(x, y) = 4 - y^2$. Therefore

$$\iiint_D x dx dy dz = \iint_R \left(\int_{z=2-y}^{4-y^2} x dz \right) dx dy = \int_{x=0}^2 \int_{y=-1}^2 \int_{z=2-y}^{4-y^2} x dz dy dx.$$

10. Let $D = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} \leq 1\}$ and $E = \{(u, v, w) \in \mathbb{R}^3 : u^2 + v^2 + w^2 \leq 1\}$. Show that $\iiint_D x dx dy dz = \iiint_E 24 du dv dw$.

Solution: Note that the transformation $T(u, v, w) = (2u, 3v, 4w) = (x, y, z)$ maps E onto D and $J(u, v, w) = 24$.

11. Let D be the solid that lies inside the cylinder $x^2 + y^2 = 1$, below the cone $z = \sqrt{4(x^2 + y^2)}$ and above the plane $z = 0$. Evaluate $\iiint_D x^2 dx dy dz$.

Solution: The projection of the solid D on the xy -plane is $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$. By changing to the cylindrical coordinates, the solid D is bounded by $z = 0$ and $z = 2r$. Therefore

$$\iiint_D x^2 dx dy dz = \int_0^{2\pi} \int_0^1 \int_0^{2r} r^2 \cos^2 \theta r dz dr d\theta.$$

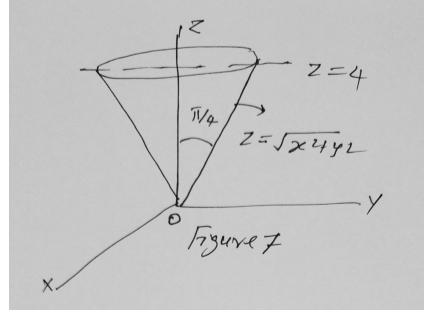
12. Evaluate $\int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^4 x dz dy dx$.

Solution: Note that $\int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^4 x dz dy dx = \iiint_D x dx dy dz$, where D is the solid bounded below by $z = x^2 + y^2$ and above by $z = 4$. The projection of the solid D on the xy -plane is given by $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 4\}$. By the cylindrical coordinates

$$\iint_D x dx dy dz = \int_0^{2\pi} \int_0^2 \int_{r^2}^4 r \cos \theta r dz dr d\theta.$$

13. Let D denote the solid bounded above by the plane $z = 4$ and below by the cone $z = \sqrt{x^2 + y^2}$. Evaluate $\iiint_D \sqrt{x^2 + y^2 + z^2} dx dy dz$.

Solution: Please see Figure 7.



We use the spherical coordinates. The equation $z = \sqrt{x^2 + y^2}$ changes to $\rho \cos \phi = \rho \sin \phi$. This implies that $\phi = \frac{\pi}{4}$. The equation $z = 4$ is written as $\rho \cos \phi = 4$. That is, $\rho = \frac{4}{\sin \phi}$. Therefore,

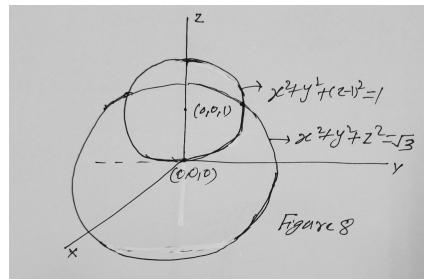
$$\iiint_D \sqrt{x^2 + y^2 + z^2} dxdydz = \int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^{4 \sec \phi} \rho \rho^2 \sin \phi d\rho d\phi d\theta = 2\pi = 4^3 \int_0^{\frac{\pi}{4}} \frac{\sin \phi}{\cos^4 \phi}.$$

14. Parametrize the part of the sphere $x^2 + y^2 + z^2 = 16$, $-2 \leq z \leq 2$ using the spherical co-ordinates.

Solution: By the spherical coordinates we can write the required surface as $S := r(\theta, \phi) = (4 \sin \phi \cos \theta, 4 \sin \phi \sin \theta, 4 \cos \phi)$, where $0 \leq \theta \leq 2\pi$, $\frac{\pi}{3} \leq \phi \leq \frac{2\pi}{3}$.

15. Let D denote the solid enclosed by the spheres $x^2 + y^2 + (z-1)^2 = 1$ and $x^2 + y^2 + z^2 = 3$. Using the spherical coordinates, set up iterated integral that gives the volume of D .

Solution: Please Figure 8.



By solving $x^2 + y^2 + (z-1)^2 = 1$ and $x^2 + y^2 + z^2 = 3$ we get $z = \frac{3}{2}$. That is, $\rho \cos \phi = \frac{3}{2}$. the equation $x^2 + y^2 + (z-1)^2 = 1$ becomes $\rho = 2 \cos \phi$ in the spherical coordinates.

The required volumes is the sum of the volume of the portion of the region $x^2 + y^2 + z^2 \leq 3$ that lies inside the cone $\rho = \frac{\pi}{6}$ and the volume of the portion of the region $x^2 + y^2 + (z-1)^2 \leq 1$ that lies inside the sphere $x^2 + y^2 + z^2 = 3$. Therefore the required

volume is given by

$$\int_0^{2\pi} \int_0^{\frac{\pi}{6}} \int_0^{\sqrt{3}} \rho^2 \sin \phi d\rho d\phi d\theta + \int_0^{2\pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \int_0^{2 \cos \phi} \rho^2 \sin \phi d\rho d\phi d\theta.$$

16. Let S be the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$.

Parametrize S by considering it as a graph and again by using the spherical coordinates.

Solution: The surface S is bounded below by $z = \sqrt{2}$ and above by $z = 2$. By spherical coordinates, we get $\sqrt{2} \leq 2 \cos \phi \leq 2$. This implies that $0 \leq \phi \leq \frac{\pi}{4}$. Hence $S := r(\theta, \phi) = (2 \sin \phi \cos \theta, 2 \sin \phi \sin \theta, 2 \cos \phi)$, where $0 \leq \theta \leq 2\pi$, $0 \leq \phi \leq \frac{\pi}{4}$.

17. Let S denote the part of the plane $2x + 5y + z = 10$ that lies inside the cylinder $x^2 + y^2 = 9$. Find the area of S .

(a) By considering S as a part of the graph $z = f(x, y)$, where $f(x, y) = 10 - 2x - 5y$.

(b) By considering S as a parametric surface $r(u, v) = (u \cos v, u \sin v, 10 - u(2 \cos v + 5 \sin v))$, $0 \leq u \leq 3$ and $0 \leq v \leq 2\pi$.

Solution: (a) The projection D of the surface on the xy -plane is $\{(x, y) : x^2 + y^2 = 9\}$.

The required area is $\iint_D \sqrt{1 + f_x^2 + f_y^2} dx dy = \iint_D \sqrt{30} dx dy = 9\sqrt{30}\pi$.

(b) The area is $\int_0^3 \int_0^{2\pi} |r_u \times r_v| dudv = \int_0^3 \int_0^{2\pi} u \sqrt{30} dudv$.

18. Find the area of the surface $x = uv, y = u + v, z = u - v$, where $(u, v) \in D = \{(s, t) \in \mathbb{R}^2 : s^2 + t^2 \leq 1\}$.

Solution: The surface is given by $r(u, v) = (uv, u + v, u - v)$ and hence $|r_u \times r_v| = \sqrt{4 + 2(u^2 + v^2)}$. Therefore the required area is

$$\iint_D \sqrt{4 + 2(u^2 + v^2)} dudv = \int_0^{2\pi} \int_0^1 \sqrt{4 + 2r^2} r dr d\theta.$$

19. Find the area of the part of the surface $z = x^2 + y^2$ that lies between the cylinders $x^2 + y^2 = 4$ and $x^2 + y^2 = 16$.

Solution: The given surface $z = x^2 + y^2$ can be parameterized as $R(r, \theta) = (r \cos \theta, r \sin \theta, r^2)$, $r \geq 0$, and $0 \leq \theta \leq 2\pi$. Hence $|R_r \times R_\theta| = r\sqrt{4r^2 + 1}$. Since the projection of the part of the surface on the xy -plane is the region between $x^2 + y^2 = 4$ and $x^2 + y^2 = 16$, we get $2 \leq r \leq 4$. Therefore the required area is $\int_0^{2\pi} \int_2^4 r\sqrt{4r^2 + 1} dr d\theta$.

20. Let S be the part of the cylinder $y^2 + z^2 = 1$ that lies between the planes $x = 0$ and $x = 3$ in the first octant. Evaluate $\iint_S (z + 2xy) d\sigma$.

Solution: The surface is $r(x, \theta) = (x, \cos \theta, \sin \theta)$, $0 \leq x \leq 3$ and $0 \leq \theta \leq \frac{\pi}{3}$. This implies $|r_x \times r_\theta| = 1$. Hence

$$\iint_S (z + 2xy) d\sigma = \int_0^{\frac{\pi}{2}} \int_0^3 (\sin \theta + 2x \cos \theta)(1) dx d\theta = \int_0^{\frac{\pi}{2}} (3 \sin \theta + 9 \cos \theta) d\theta.$$