

MA15010H: Multi-variable Calculus

(Practice problem set 6: Change of variables, triple integral)

September - November, 2025

1. Consider the transformation $T : [0, 2\pi] \times [0, 1] \rightarrow \mathbb{R}^2$ given by $T(u, v) = (2v \cos u, v \sin u)$.
 - (a) For a fixed $v_o \in [0, 1]$, describe the set $\{T(u, v_o) : u \in [0, 2\pi]\}$.
 - (b) Describe the set $\{T(u, v) : [0, 2\pi] \times [0, 1]\}$.
2. Let R be the region in \mathbb{R}^2 bounded by the straight lines $y = x$, $y = 3x$ and $x + y = 4$. Consider the transformation $T(u, v) = (u - v, u + v)$. Find the set S satisfying $T(S) = R$.
3. Evaluate $\iint_R x dx dy$ where R is the region $1 \leq x(1 - y) \leq 2$ and $1 \leq xy \leq 2$.
4. Evaluate
 - (a) $\int_0^{\frac{1}{\sqrt{2}}} \int_{x=y}^{\sqrt{1-y^2}} (x + y) dx dy$.
 - (b) $\int_0^1 \int_{x=0}^{1-y} \sqrt{x+y} (y - 2x)^2 dx dy$.
 - (c) $\int_1^2 \int_{x=0}^y \frac{1}{(x^2+y^2)^{\frac{3}{2}}} dx dy$.
 - (d) $\int_0^2 \int_{y=0}^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} dy dx$.
5. Using change of variables $u = x + y$ and $v = x - y$, show that

$$\int_0^1 \int_{y=0}^{y=x} (x - y) dy dx = \int_0^1 \int_{u=v}^{2-v} \frac{v}{2} du dv.$$

6. Find the volume of the solid in the first octant bounded below by the surface $z = \sqrt{x^2 + y^2}$ above by $x^2 + y^2 + z^2 = 8$ as well as the planes $y = 0$ and $y = x$.
7. Find the volume of the solid bounded by the surfaces $z = 3(x^2 + y^2)$ and $z = 4 - (x^2 + y^2)$.
8. Let D denote the solid bounded by surfaces $y = x$, $y = x^2$, $z = x$ and $z = 0$. Evaluate $\iiint_D y dx dy dz$.
9. Let D denote the solid bounded below by the plane $z + y = 2$, above by the cylinder $z + y^2 = 4$ and on the sides $x = 0$ and $x = 2$. Evaluate $\iiint_D x dx dy dz$.
10. Let $D = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} \leq 1\}$ and $E = \{(u, v, w) \in \mathbb{R}^3 : u^2 + v^2 + w^2 \leq 1\}$. Show that $\iiint_D dx dy dz = \iiint_E 24 du dv dw$.
11. Let D be the solid that lies inside the cylinder $x^2 + y^2 = 1$, below the cone $z = \sqrt{4(x^2 + y^2)}$ and above the plane $z = 0$. Evaluate $\iiint_D x^2 dx dy dz$.

12. Evaluate $\int_{-2}^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^4 x dz dy dx$.

13. Let D denote the solid bounded above by the plane $z = 4$ and below by the cone $z = \sqrt{x^2 + y^2}$. Evaluate $\iiint_D \sqrt{x^2 + y^2 + z^2} dx dy dz$.

14. Parametrize the part of the sphere $x^2 + y^2 + z^2 = 16$, $-2 \leq z \leq 2$ using the spherical co-ordinates.

15. Let D denote the solid enclosed by the spheres $x^2 + y^2 + (z-1)^2 = 1$ and $x^2 + y^2 + z^2 = 3$. Using the spherical coordinates, set up iterated integral that gives the volume of D .

16. Let S be the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$. Parametrize S by considering it as a graph and again by using the spherical coordinates.

17. Let S denote the part of the plane $2x + 5y + z = 10$ that lies inside the cylinder $x^2 + y^2 = 9$. Find the area of S .

- By considering S as a part of the graph $z = f(x, y)$, where $f(x, y) = 10 - 2x - 5y$.
- By considering S as a parametric surface $r(u, v) = (u \cos v, u \sin v, 10 - u(2 \cos v + 5 \sin v))$, $0 \leq u \leq 3$ and $0 \leq v \leq 2\pi$.

18. Find the area of the surface $x = uv, y = u + v, z = u - v$, where $(u, v) \in D = \{(s, t) \in \mathbb{R}^2 : s^2 + t^2 \leq 1\}$.

19. Find the area of the part of the surface $z = x^2 + y^2$ that lies between the cylinders $x^2 + y^2 = 4$ and $x^2 + y^2 = 16$.

20. Let S be the part of the cylinder $y^2 + z^2 = 1$ that lies between the planes $x = 0$ and $x = 3$ in the first octant. Evaluate $\iint_S (z + 2xy) d\sigma$.