DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Course: MA15010H (CSE): Multivarable Calculus Quiz

Instructor: Rajesh Srivastava

Date: October 18, 2025

Duration: 1:30 hours

Maximum Marks: 15

Note: Answers lacking rigorous justification will not be awarded marks.

- 1. (a) Whether the set $\{(x, y, z) \in \mathbb{R}^3 : |x| + 2|y| + 3|z|^2 < 1\}$ is bounded in \mathbb{R}^3 ?
 - (b) Whether there exists an unbounded sequence (x_n) in \mathbb{R} such that $((x_n, \sin x_n^2))$ has convergent subsequence?
 - (c) Does there exist a continuous function $f: \mathbb{R} \to \mathbb{R}^2$ such that $f(e^{-n^2}) = (n, \frac{1}{n})$ for each $n \in \mathbb{N}$?
- 2. Show that the set $\{x \in \mathbb{R}^m : 2 \le ||x|| < 3\}$ is neither open nor closed set in \mathbb{R}^m . 2
- 3. If (x_n) is sequence in \mathbb{R}^m such that the series $\sum_{n=1}^{\infty} n^3 ||x_n||^2 < \infty$. Show that the series $\sum_{n=1}^{\infty} ||x_n||^2$ is convergent.
- 4. Let function $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{\sin^2(x-y)}{|x|+|y|} & \text{if } |x|+|y| \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Check the continuity of f at (0,0).

5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be such that $f \circ g$ is differentiable for every function $g: \mathbb{R} \to \mathbb{R}^2$ with g(0) = (0,0). Show that all the directional derivative of f exist (0,0).

3

6. Show that the function f defined by $f(x,y) = \frac{1}{1+x-y}$ is differentiable at (0,0). 3