
MA15010H (CSE), 2025: Multivarable Calculus, Hint/Model solution

1. (a) Whether the set {(x, y, z) ∈ R3 : |x|+ 2|y|+ 3|z|2 < 1} is bounded in R3? 1

Solution: Let A = {(x, y, z) ∈ R3 : |x|+ 2|y|+ 3|z|2 < 1}. Then
|x| < 1, |y| < 1

2
, |z|2 < 1

3
. Hence

|x|2 + |y|2 + |z|2 < 1 +
1

4
+

1

3
=

19

12
=: r.

Thus A ⊂ Br(0), and therefore A is bounded.

(b) Whether there exists an unbounded sequence (xn) in R such that ((xn, sinx
2
n))

has convergent subsequence? 1

Solution: The sequence xn = 1, 1
2
, 2, 1

3
, . . . is unbounded, while the subsequence

xnk
=

(
1
2
, 1
3
, 1
4
, . . .

)
is convergent. Since sin t is continuous,

(
xnk

, sin(x2
nk
)
)
is a

convergent subsequence.

(c) Does there exist a continuous function f : R → R2 such that f(e−n2
) = (n, 1

n
) for

each n ∈ N? 1

Solution: No. A continuous function maps bounded sets to bounded sets, which
would fail for such f since f(e−n2

) =
(
n, 1

n

)
is unbounded in the first component.

2. Show that the set {x ∈ Rm : 2 ≤ ∥x∥ < 3} is neither open nor closed set in Rm. 2

Solution: Let A = {x ∈ Rm : 2 ≤ ∥x∥ < 3}. Note that the sequence xn = (3− 1
n
)e1 ∈

A, and converges to 3e1 ̸∈ A. Hence A is not closed. Also, no ball with center 2e1
and any radius is complectly contained in A. Hence A is not open.

3. If (xn) is sequence in Rm such that the series
∞∑
n=1

n3∥xn∥2 < ∞. Show that the series

∞∑
n=1

∥xn∥2 is convergent. 2

Solution: Since
∑

n3∥xn∥2 < ∞, we have
∑

n6∥xn∥4 < ∞. Then∑
∥xn∥2 =

∑ n3∥xn∥2

n3
≤

(∑ 1

n6

)1/2(∑
n6∥xn∥4

)1/2

< ∞

by the Cauchy–Schwarz inequality.

4. Let function f : R2 → R be defined by

f(x, y) =


sin2(x− y)

|x|+ |y|
if |x|+ |y| ̸= 0,

0 otherwise.

Check the continuity of f at (0, 0). 3



Solution: For (h, k) ̸= (0, 0),

|f(h, k)−f(0, 0)| =
∣∣∣∣sin2(h− k)

|h|+ |k|

∣∣∣∣ ≤ |h− k|2

|h|+ |k|
≤ (|h|+ |k|)2

|h|+ |k|
= |h|+|k| ≤

√
2
√
h2 + k2,

where we used | sin t| ≤ |t| and the Cauchy–Schwarz inequality. Hence f is continuous
at (0, 0).

5. Let f : R2 → R be such that f ◦ g is differentiable for every function g : R → R2 with
g(0) = (0, 0). Show that all the directional derivative of f exist (0, 0). 2

Solution: By assumption, for each such g the limit

lim
t→0

f(g(t))− f(g(0))

t

exists. Taking g(t) = tv with ∥v∥ = 1 yields

lim
t→0

f(tv)− f(0, 0)

t
= Dvf(0, 0),

so every directional derivative Dvf(0, 0) exists.

6. Show that the function f defined by f(x, y) =
1

1 + x− y
is differentiable at (0, 0). 3

Solution: We have

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

1
1+h

− 1

h
= lim

h→0

1− (1 + h)

h(1 + h)
= −1, fy(0, 0) = 1.

Let

ϵ(h, k) =
f(h, k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)√

h2 + k2

=
1

1+h−k
− 1 + h− k

√
h2 + k2

=
(h− k)2

(1 + h− k)
√
h2 + k2

.

Using |h|+ |k| ≤
√
2
√
h2 + k2,

|e(h, k)| ≤ |h− k| |h− k|
(1 + h− k)

√
h2 + k2

≤
√
2(|h|+ |k|)
1 + h− k

−−−−−−→
(h,k)→(0,0)

0.

Hence f is differentiable at (0, 0).

—–End—–


