DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA201: Mathematics-III(2024): MidSem Solution/Hint

- 1. Prove or disprove the following statements: 5×2
	- (a) There exists a non-constant entire function f such that $f(z)$ is real for all $z \in \mathbb{R}$, satisfying $f\left(\frac{1}{2n+1}\right) = f\left(\frac{1}{2n+1}\right)$ $\frac{1}{2n}$ for all $n \in \mathbb{N}$.

Answer: Since $f(\frac{1}{2n+1}) = f(\frac{1}{2n+1})$ $\frac{1}{2n}$) for all $n \in \mathbb{N}$, by Rolle's theorem, there exists a sequence $c_n \in \left(\frac{1}{2n+1}, \frac{1}{2n}\right)$ $\frac{1}{2n}$) such that $c_n \to 0$ and hence $f'(c_n) = 0$. By uniqueness theorem, we get $f' \equiv 0$. Hence f is constant.

(b) If f is a non-constant entire function, then e^f has an essential singularity at $z = \infty$.

Answer: Note that $e^{f(1/z)}$ has singularity at $z = 0$. If not, then $e^{f(1/z)}$ is analytic at $z = 0$. Hence $\lim_{z \to 0} e^{f(1/z)}$ exists as $e^{f(1/z)}$ is continuous at $z = 0$ as well. That $|z|\rightarrow 0$ is, $\lim_{|z|\to\infty} e^{f(z)}$ exists, and hence $e^{f(z)}$ is bounded. By Liouville's theorem, it follows that f is constant. Here $z = \infty$ is not a removable singularity of $e^{f(z)}$. If $z = \infty$ is a removable singularity of $e^{f(z)}$, then $\lim_{|z| \to \infty} e^{f(z)}$ exists, and hence $e^{f(z)}$ is a bounded function. By Liouville's theorem, f is constant. Also, $z = \infty$ is not a pole of $e^{f(z)}$. For this, if $z = \infty$ is a pole of $e^{f(z)}$, then $\lim_{z \to \infty} e^{-f(z)} = 0$. This implies $e^{-f(z)}$ is bounded, $|z|$ →∞ and by Liouville's theorem, f is constant. Thus, $z = \infty$ is an essential singularity of $e^{f(z)}$.

(c) If $f: B(0,2) \to \mathbb{C}$ is an analytic function satisfying $f(0) = 1$, and $|f(e^{i\theta})| > 2$ for all $\theta \in [-\pi, \pi]$, then there exists $z_0 \in B(0, 2)$ such that $f(z_0) = 0$. (Here $B(0, 2) = \{z \in$ $\mathbb{C}: |z| < 2$.)

Answer: Suppose f has no zero in the open disc $B(0, 2)$, the $\frac{1}{f}$ will be analytic on $B(0, 2)$ and $\Big|$ 1 $\frac{1}{f}(e^{i\theta}) \leq \frac{1}{2}$ $\frac{1}{2}$. However, $\Big|$ 1 $\frac{1}{f}(0)$ $= 1$. This, in fact, contradicts the maximum modulus theorem. Thus, there is $z_0 \in B(0, 2)$ such that $f(z_0) = 0$.

Remark: $f(z_0) \neq 0$ for any $z_0 \in B(0, 2)$ does not mean that f will attain its minimum modulus at $z = 0$. The minimum and maximum will attended only on boundary $|z| = 2.$

(d) If f is analytic on the domain $D = \{z \in \mathbb{C} : 0 < |z| < 1\}$ satisfying $|f(z)| \leq \log \frac{1}{z}$ $|z|$ for all $z \in D$, then f has a removable singularity at $z = 0$.

Answer: We claim that $\lim_{z \to 0} z f(z) = 0$. Notice that $|zf(z)| \leq$ $z\log\frac{1}{|z|}$ $\Big| =$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\log t$ t $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$, if $|z|=\frac{1}{t}$ $\frac{1}{t}$. Then $\lim_{r \to \pm \infty}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\log t$ t $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $= 0$. Hence $z = 0$ is a removable singularity.

(e) $\int_{|z-1|=1} \left(\sum_{n=0}^{\infty} \right)$ $2^n z^n$ $3^n + 5^n$ \setminus $dz = 2\pi i$.

Answer: It can be shown that $f(z) = \sum_{n=0}^{\infty}$ $n=0$ $2^n z^n$ $3^n + 5^n$ has radius of convergence $\frac{5}{2}$. This means $f : B(0, 5/2) \to \mathbb{C}$ is analytic. Hence, by Cauchy's theorem, we get Z $|z-1|=1$ $f(z) dz = 0.$

Remark: Note that summation and integration can commute if convergence is uniform on the curve.

2. (a) Let
$$
C = \{3e^{it} : 0 \le t \le \frac{\pi}{2}\}
$$
. Show that $\left| \int_C \frac{e^{iz}}{\bar{z}^2 + \bar{z} + 1} dz \right| \le \frac{3\pi}{10}$. $\boxed{3+3+4}$

Answer: By repeated use of triangle inequality, we can simplify the expression

$$
|\bar{z}^2 + \bar{z} + 1| \ge ||\bar{z}^2| - |\bar{z} + 1|| \ge ||\bar{z}^2| - |\bar{z}| - 1| = 9 - 3 - 1 = 5.
$$

Also, $|e^{iz}| = e^{-y} = e^{-3\sin t} < 1$. Hence, by ML-inequality, we get the required.

(b) For $R > 1$, let $\Gamma_R = \{z \in \mathbb{C} : |z| = R\}$. Show that lim R→∞ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ Z Γ_R $\text{Log}(z^2)$ $rac{5(x)}{z^2}$ dz $\begin{picture}(20,20) \put(0,0){\vector(1,0){10}} \put(10,0){\vector(1,0){10}} \put(10,0){\vector(1$ $= 0.$

Answer: Let $z = Re^{it}$, where $t \in [-\pi, \pi]$. Then

$$
\left| \int_{\Gamma_R} \frac{\text{Log}(z^2)}{z^2} dz \right| = \left| \int_{-\pi}^{\pi} \frac{\text{Log}(R^2 e^{2it})}{R^2 e^{2it}} iRe^{it} dt \right|
$$

$$
\leq \int_{-\pi}^{\pi} \frac{|\ln(R^2) + 2it|}{R} dt
$$

$$
\leq \int_{-\pi}^{\pi} \frac{2|\ln R| + 2\pi}{R} dt \to 0 \text{ as } R \to \infty
$$

(c) Find the points on $[0, 2\pi] \times [0, 2\pi]$ where sin z attains its maximum modulus. Justify your answer.

Answer: Note that $|\sin z|^2 = \sinh^2 y + \sin^2 x$ on $[0, 2\pi]$. By the maximum modulus theorem, it is enough to analyze values of it on the boundary of the square.

$$
|\sin z|^2 = \begin{cases} \sinh^2 2\pi & \text{if } x = 0 \text{ or } x = 2\pi \\ 1 & \text{if } y = 0 \\ \sinh^2 2\pi + 1 & \text{if } y = 2\pi. \end{cases}
$$

Hence the maximum value of $|\sin z| = \sqrt{\sinh^2 2\pi + 1}$ that attended at $\frac{\pi}{2} + i2\pi$.

3. Classify the singularities (removable/pole/essential/non-isolated) of the following functions at the specified points. Find the order if the singularity is a pole. 4×1

(i)
$$
\cos\left(\frac{z}{1+z}\right)
$$
 at $z = -1$ (ii) $\left(\frac{\sin(e^z - 1)}{z \sinh z}\right)^2$ at $z = 0$
(iii) $\cot\left(\frac{1}{z}\right)$ at $z = 0$ (iv) $\exp\left(\frac{\sin z - z}{z^3}\right)$ at $z = 0$.

Answer: (i) Essential singularity, (ii) Pole of order 2, (iii) Non-isolated singularity (iv) Removable.

4. (a) Find a conformal map that takes $\{z = x + iy \in \mathbb{C} : x > 0, y > 0\}$ onto the region $\{w = u + iv \in \mathbb{C} : u < v\}.$ 2+3+3

Answer: The required conformal transformation is $w(z) = e^{\frac{i\pi}{4}}z^2$.

(b) Find the image of the region $\{z = x + iy \in \mathbb{C} : xy > 1, x > 0, y > 0\}$ under the transformation $w(z) = z^2$.

Answer: Let $w(z) = z^2 = u + iv$. Then $u(x, y) = x^2 - y^2$ and $v(x, y) = 2xy$. The curve $xy = 1$ is mapped under $w(z)$ to $\left(x^2 - \frac{1}{x^2}\right)$ $(\frac{1}{x^2}) + 2i$. Also, $w(2 + 2i) = 8i$. Hence, the image under $w(z)$ is $\{w = u + iv : u \in \mathbb{R}, v > 2\}.$

(c) Find the image of the circle $\{z \in \mathbb{C} : |z| = 3\}$ on the unit sphere under the stereographic projection.

Answer: Let $z = x + iy$, then the corresponding point on the unit sphere S^2 is given by

$$
(X, Y, Z) = \left(\frac{2x}{x^2 + y^2 + 1}, \frac{2y}{x^2 + y^2 + 1}, \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}\right).
$$

We need to find the image of the circle $|z| = 3$. That is, $z = 3\cos t + 3\sin t$, where $t \in [0, 2\pi]$. Then $(X, Y, Z) = \left(\frac{3 \cos t}{z}\right)$ 5 , $3\sin t$ 5 , 4 5), which satisfying $X^2 + Y^2 = \left(\frac{4}{5}\right)$ $(\frac{4}{5})^2$, and $Z=\frac{4}{5}$ $\frac{4}{5}$. This a circle on the sphere at the height 4/5 from the equator.

5. (a) Show that the equation $z + e^{-z} - 2 = 0$ has exactly one root in the right half-plane ${z = x + iy \in \mathbb{C} : x > 0, y \in \mathbb{R}}.$ (Hint: choose a contour as the boundary of a large semi-disc) $|3 + 5|$

Answer: Consider the curve $\Gamma_R = [-iR, iR] \cup \{Re^{i\theta} : \frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2} \}$ $\frac{\pi}{2}$ with sufficiently large R. Write $f(z) = z - 2$ and $g(z) = e^{-z}$. Then $|g(z)| = 1$ on $[-iR, iR]$. Also, $|e^{-z}| = |e^{-R\cos\theta}| < 1$ on $\{z = Re^{i\theta} : \theta \in [-\frac{\pi}{2}]$ $\frac{\pi}{2}, \frac{\pi}{2}$ $\frac{\pi}{2}$]. Hence, $|g(z)| \leq 1 < |z - 2| = |f(z)|$, since $|z - 2| = \sqrt{(R \cos \theta - 2)^2 + R^2 \sin^2 \theta} > 1$, whenever $R \ge 1$ and $|z - 2| =$ $|(it)^2 - 2| = \sqrt{4 + t^2} > 1$ on $[-iR, iR]$. Since $f(z)$ has one root inside Γ_R . By Rouché's theorem, it follows that $f(z) + g(z) = z + e^{-z} - 2$ has exactly one root inside Γ_R for all $R \geq 1$. Hence the given equation has exactly one root in the right half-plane.

(b) Use the residue theorem to find the Cauchy principal value of \int^{∞} $-\infty$ $x^3 \sin x$ $\frac{x^2+1}{(x^2+1)^2}$ dx.

Answer: Let $\Gamma_R = [-R, R] \cup \{Re^{i\theta} : 0 \le \theta \le \pi\},\$ and $f(z) = \frac{z^3 e^{iz}}{(z^2 + 1)^3}$ $\frac{z}{(z^2+1)^2}$. By the residue theorem, we have Γ_R $f(z)dz = 2\pi i \times \text{Res}(f, i)$. By the residue formula, we get Res $(f, i) = \frac{d}{dz} \left(\frac{z^3 e^{iz}}{(z^2 + 1)} \right)$ $(z^2+1)^2$ $\bigg)\,\Big|_{z=i} =$ 1 4e . Hence, $\overline{}$ Γ_R $f(z)dz = 2\pi i \times \text{Res}(f, i) = \frac{\pi i}{2}$ $2e$. Now, by Jordan's lemma, we get $\begin{array}{c} \hline \end{array}$ \int_0^π $\boldsymbol{0}$ $f(Re^{i\theta})iRe^{i\theta}d\theta$ \rightarrow 0 as $R \rightarrow 0$. Therefore, $\int_{-\infty}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)dx =$ $\int_{-\infty}^{\infty} x^3 \sin x \int_{-\infty}^{\infty}$ πi 2e . The Cauchy's principle value integral is $-\infty$ $x^3 \sin x$ $(x^2+1)^2$ $dx = \text{Im}\left(\int^{\infty}$ $-\infty$ $x^3 e^{ix}$ $(x^2+1)^2$ dx) = π $2e$.