DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati MA201: Mathematics-III: Hint/ model solutions

Quiz - I (Complex Analysis) Date: 24 August 2024 Maximum Marks: 10 Time: 10:00 A.M. to 11:00 A.M.

1. Prove that any non-constant harmonic function on a non-empty open set $D \subseteq \mathbb{C}$ is infinitely differentiable (partial derivatives of all orders exist and are continuous on D).

Answer: Let u be a harmonic function on $D \subseteq \mathbb{C}$. Since D is open, for $z_0 \in D$, there exists r > 0 such that $B(z_0, r) \subseteq D$. Then u is harmonic on the simply connected domain $B(z_0, r)$, there exists a harmonic conjugate v of u such that f = u + iv is analytic on $B(z_0, r)$. By Cauchy's integral formula for higher derivative, f is infinitely differentiable. Hence, u is infinitely differentiable.

2. For $z = x + iy \in \mathbb{C}$, classify all entire functions f(z) = u(x, y) + iv(x, y) that satisfy $u_y(x, y) = v_x(x, y)$.

Answer: Given that f = u + iv satisfying $u_y = v_x$. We know that $f' = u_x + iv_x$ and Cauchy-Riemann equations are $u_x = v_y$ and $u_y = v_x$. Hence we get $u_y = 0 = v_x$. This implies $f' = u_x + i0$. Hence f' = a (constant), since Imf' is constant. Define g(z) = f(z) - az. Then g'(z) = f'(z) - a = 0. Hence g'(z) = b. Thus, f(z) = az + b.

3. Let $f : \mathbb{C} \to \mathbb{C}$ be given by $f(z) = \begin{cases} z^2 \sin \frac{1}{z}, & z \neq 0; \\ 0, & z = 0. \end{cases}$ Discuss the continuity of the function f at z = 0.

Answer: For x = 0 and $y \to 0^+$, we get $\lim_{y \to 0^+} -y^2 \sin \frac{1}{iy} = \lim_{n \to \infty} \frac{1}{n^2} \sin(in) = \infty$. Hence, f is not continuous at z = 0.

4. Find all possible value(s) of $z \in \mathbb{C}$ satisfying the equation $2i = \frac{1+e^{2z}}{\cos(iz)}$. 1 **Answer:** It follows from the given equation that $(e^{2z}+1)(e^z-i) = 0$. If $e^z = i$, then

$$z = \log i = \ln |i| + i\left(\frac{\pi}{2} + 2k\pi\right) = \frac{(4k+1)\pi}{2}i; \ k \in \mathbb{Z}$$

On the other hand if $e^{2z} + 1 = 0$, then

$$z = \frac{1}{2}\log\left(-1\right) = \frac{1}{2}\ln\left|-1\right| + \frac{1}{2}i(\pi + 2k\pi) = \frac{(2k+1)\pi}{2}i; \ k \in \mathbb{Z}.$$

5. If g is an entire function satisfying $|g(z) - 2z| \le 1$ on |z| = 1, show that $|g'(0)| \le 3$.

Answer: Define f(z) = g(z) - 2z. Then f'(z) = g'(z) - 2, and f'(0) = g'(0) - 2. By Cauchy integral formula, $|f'(0)| = \left|\frac{1}{2\pi i}\int_{|z|=1}^{2\pi i}\frac{f(z)}{z^2}dz\right| \le \frac{1}{2\pi}\int_0^{2\pi}|f(e^{i\theta})|d\theta \le 1$.

Thus, $|g'(0) - 2| \le 1$. That is, $|g'(0)| \le 3$.

PAPER ENDS