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Introduction

Real Analysis provides the rigorous foundations of calculus and, more broadly, of modern
mathematical analysis. The guiding theme of the course is the systematic study of limiting
processes: convergence of sequences and functions, continuity and differentiability defined through
limits, and integration built upon measurable structures. Throughout, emphasis is placed on
precise definitions, correct quantifiers, and logically complete proofs, together with carefully
chosen examples and counterexamples that clarify the necessity of hypotheses and the sharpness
of conclusions.

We begin with metric spaces (X, d), the natural setting in which convergence and continuity
can be formulated beyond R. We study open and closed sets, interior and closure, limit points,
compactness, and the topological characterization of continuity. We then move to normed
linear spaces (V|| - ||), where algebraic and topological structures interact. A central concept is
completeness, which ensures that every Cauchy sequence converges and underlies fundamental
existence results such as the contraction mapping principle. Uniform convergence is treated as a
key mode of convergence for sequences of functions, since it provides control strong enough to
justify passing limits through continuous operations under appropriate assumptions. Classical
inequalities, including Young’s, Hélder’s, and Minkowski’s inequalities, are developed as essential
tools for norm estimates and convergence arguments.

The second part focuses on functions on R™. After formalizing limits and continuity in
Euclidean space, we study partial derivatives, directional derivatives, and differentiability in
the Fréchet sense, where differentiability at a point means approximation by a linear map
with a remainder term that is small compared with ||h||. From this viewpoint we develop the
multivariable chain rule and Taylor’s theorem with remainder, which describe the local structure
of smooth functions and provide quantitative error estimates. These results culminate in the
inverse mapping theorem and the implicit function theorem, which give precise conditions for
local invertibility of maps and for representing solution sets of equations F'(z,y) = 0 as graphs
of functions.

In the final part, we develop Lebesgue measure and integration to address the limitations of
Riemann integration. We construct outer measure, define measurable sets using Carathéodory’s
criterion, and obtain Lebesgue measure on R. Measurable functions are introduced via approxi-

mation by simple functions, leading to the definition of the Lebesgue integral for nonnegative

iii
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functions and then for integrable functions. The principal convergence theorems—the monotone
convergence theorem, Fatou’s lemma, and the dominated convergence theorem—are proved and
used to justify the interchange of limits and integrals in a principled way. Classical examples,
including the Cantor set, illustrate null sets, non-measurable phenomena, and the distinction
between pointwise and uniform convergences.

By the end of the course, students should be able to analyze convergence and continuity in
metric and normed spaces, apply the main structural theorems of multivariable differentiability,
and use Lebesgue measure and integration as foundational tools for further study in analysis,

probability, and partial differential equations.

iv



Chapter 1

Metric and Normed Linear Spaces

This chapter develops the basic language of analysis in abstract spaces. We introduce metrics
and norms, discuss sequences and their convergence, and study the topology induced by a
metric through open and closed sets, interior and closure. Completeness and Cauchy sequences
lead to the key notion of a complete metric space, while density and continuity clarify how
analytic structure behaves under mappings. Finally, uniform convergence and the contraction
mapping principle (Banach fized point theorem) provide powerful tools used repeatedly later;
Young’s, Hélder’s, and Minkowski’s inequalities are included as essential estimates connecting

normed spaces to LP-type analysis.

1.1 Syllabus map

This chapter is organized into three thematic parts:

(1) Metric spaces and topology: open and closed sets, interior and closure, dense subsets,

continuity, compactness, and completeness.

(2) Normed vector spaces: norms, norm-induced metrics, and standard examples, together

with basic inequalities.

(3) Uniform convergence: uniform convergence of sequences of functions and differentiation
under the limit.
1.2 Metric spaces
Let X be a non-empty set. A map d: X x X — RT = [0,00) such that
(i) d(z,y) =01if and only if x =y, =,y € X.

(ii) d(z,y) = d(y,z) (symmetric).
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(iii) d(z,z) <d(z,y) +d(y,z) (triangle inequality).
is called a metric on X, and the pair (X, d) is called a metric space.
Example 1.2.1. If X = R", then for z,y € R",
Lodi(z,y) = 3icy |z — wils

2. do(z,y) = (X0 |z — wil®) 2

N

3. doo(,y) = SuPi<i<n |z — yil;

define metrics on R™.

Example 1.2.2. Let (X, d) be a metric space. Prove that d'(z,y) = min{1, d(z,y)} defines a

metric.

Example 1.2.3. If X = C]0, 1], the space of continuous functions on [0, 1], then for f,g € X,

w(f,9) = sup [f(t) —g(t)]

0<t<1
defines a metric on X.
(Hint: f is continuous on [0,1], so f is bounded and |f(t) — h(t)| < |f(t) — g(t)| + |g(t) — h(t)].)
Example 1.2.4. If X # (), then for z,y € X,

L, z#y
dO(xay)_{
0, z=y

defines a metric on X. This is called the discrete metric on X and (X,dp) is called discrete

metric space. Thus, every non-empty set has a metric.
Note that for d(z, z) < d(x,y) + d(y, z) to hold, we need to verify three cases:
l.x =y, y# =z

2. x £y, y =z

3. all of z,y, z are distinct.

d
Example 1.2.5. Let (X, d) be a metric space, then (X, 1—i—d> is also a metric space.

For thi id tf— t € [0,00). Then f'(t) = >0. H is a strictl
or this, consider, f(t) 1+ [0, 00) en f'(t) e ence, f is a strictly
increasing function and f(0) = 0. On the other hand
t+s t s

<
1+t+s 1—|—t+1+8

2
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Put t = d(z,y), s = d(y,2). Then
t+s>d(x,z) and f is strictly increasing
= fod(,2) S J(t+5) < T+
od(x,z 5) < ——
T 1+t 1+4s
Example 1.2.6. Let (X, d) be a metric space. Suppose and f : [0, 00) — [0, 00) be an increasing

function such that f(s+t) < f(s) + f(t) and f(t) = 0 if and only if ¢ = 0. Then f od is a metric
on X.

= fod(x,y) + fod(y,z).

Example 1.2.7. Let H* (Hilbert cube) be the space of sequences x = (zy,) = (x1,22,...,Tpn,...)
such that |z,| < 1. Then

(o]
In —Y
dla.y) =Y Pl
n=1

defines a metric on H°.

(i) d(z,y) <3 & < .
(ii) |zn — 20| < |Tn — Ynl + |Yn — 2nl
i |Zn, — 20| < . |Zn — Ynl i [Yn — 2n|
= Z 2n - Z 2n + Z 2n
n=1 n=1 n=1

<d(z,y) +d(y,z) < oc.

Since the left-hand side is an increasing sequence which is bounded above, it follows that

k
tim 171l <) a2

k—o0 o

= d(z,2) < d(z,y) + d(y, 2).

Exercise 1.2.8. Prove that d(z,y) =

1_ %‘ defines a metric on (0, 00).

1.3 Normed linear spaces and fundamental inequalities

1.3.1 Normed linear spaces

Let X be a vector space over the field R or C. A map || -] : X — [0,00) is called a norm if.
(i) |l=z|| = 0 if and only if x = 0.
(ii) |azx|| = |a|||z|, for all z € X, for all « € R or C.

(iil) Jlz +yll < ll=ll + [lyl, for all 2,y € X.
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If we write d(z,y) = ||z — y||, then d is a metric on the vector space X. But all metric on a

vector space cannot be obtained by norm.

Example 1.3.1. Let X be a vector space. Then the discrete metric cannot be induced by any

norm on X.

For this, if so then do(z,y) = ||z — y||. Then for z # 0,
2]l = do(z,0) =1 = do(ax,0) = [laz| = [e|[z], Va.

However, if d is a metric on a vector space X such that d(z,y) = d(x —y,0) and d(az,ay) =
|ald(z,y). Then d(z,0) = ||z|| defines a norm on X. That is,
(i) [|z]| = 0 if and only if z = 0.
(if) [loz]| = |afl].
(iii) Jlz +yl = d(z +y,0) = d(z, —y) < d(x,0) +d(—y,0).

Example 1.3.2. Let ¢! denote the space of all the sequences of real (or complex) numbers such
that Y02, |zn| < 0o. Then,

o
lzlly =D [al
n=1
defines a norm on ¢!. The pair (El, | - [l1) is a normed linear space. For simplicity, we write o

for (¢4, - 1l1)-
(Hint: Yon_y [@n + gl < Sy |2al + Sy lyal < llzflz + llylls)

Example 1.3.3. ¢? denotes the space of all sequences on R (or C) such that >.°° ; |z, | < oco.
Define

o\
[EAPRES <Z Ixnl2>
n=1
defines a norm on £2.

. 1 1
(Hint: Yoy |20 +yal* < (o |2al)? + (Zhoy lyal)2)?)

Example 1.3.4. (*° = space of all sequences on R (or C) such that sup,cy|zn| < co. The

function
|2]|oo = sup |z
neN
defines a norm on ¢*°.

Example 1.3.5. ¢y = space of all sequences on R (or C) such that lim, o £, = 0 Then (z,)
must be bounded. Hence

|2]|co = sup |z,| < oo.
neN

4
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Thus, (co, || - |loo) is a normed linear space.

Exercise 1.3.6. If z = (z1,22,...,2,) CR" (or C"), then
12lloo < [zl < Vnllllz < nllco

1.3.2 Geometry of Spheres in (R, | -|,)

For 0 < p < oo and x € R", write

lallp = (3 feit?) 7"

Then || - [|, is a norm for 1 < p < oo, and for 0 < p < 1, ||z} = dp(0, ) with dp(z,y) = [l —yl[b
is a metric.  (We see later).

Let S7(0) = {x : dp(0,x) = 1}. Then the following figure can be plotted for different values of
p;0 < p < o00;p = 00.

p =00

Shapes for 0 < p < 1 would look like star-shaped curves (not shown).

Exercise 1.3.7. If z = (x,,) € £}, then x € *°.

[e%S) [es)
Do lzal? <Y lzllolnl = llzll2 < ll2llooll]ls-
n=1 n=1

Thus, ¢ C 2 C ¢y C €.

Exercise 1.3.8. If 1 < p < oo, then for } 77 |z,|P < 0o, one can define a norm || - ||, on 7 via
00 1/p
lllp = (Z \ifn\p) :
n=1

To prove this, we need some inequalities.
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1.3.3 Young’s inequality

Let 1 < p < oo and a,b > 0. Then for % + % =1, ab < % + %. Proof: Let y = 2P~ ! then

z =y (sincep—1 = q,% by ]—1) + % =1). Now, it is clear that

Note that equality in (*) holds if and only if a? = b9 (or a = b9~ !). For this, consider

P b 11
ab=" 4+ 2, —4+-=1
P oq poq

Replace a — a%, b— bé and % = «. Then, we get
a®b' ™ = aa + (1 —a)b
or
t“—at—(1—a)=0 if t=a/b.

Let
fO)=t*—at—(1—a), te(0,00).

Then f(1) =0 and
ffy=at* ' —a=at* 1 -1)=0 < t=1.

Since f'(t) < 0if ¢t > 1 and f/(t) > 0 for 0 < ¢t < 1. Hence, f is strictly increasing in (0,1) and
strictly decreasing in (1,00). Thus, ¢ = 1 is the point of absolute maximum of f. Therefore,
f(t) < f(1) = 0, which is another proof of the inequality. On the other hand, f(¢) = 0 if and
only if ¢t = 1. This completes the proof.

1.3.4 Holder’s inequality

Let 1 <p < oo and % + é = 1. Then for x € /P and y € ¢4, it follows that

z-y(=z1y1 ..+ Ty +...) €LY,

and
-yl < llzllpllylly - (%)
(where é = 0 adopted.) When p =1, ¢ = co. In this case (x),

[e.e]

Iz -yl =D eyl < D7 lwil - sup Jyil = [zl
i=1
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Now, let 1 < p < oo, then 1 < ¢ < co. Substitute a = a; = éﬂL and b =0b; = in the Young’s

Inequality. Then

n

|xjy] & |x3|p ly; |
2] =2 i)

2l lvlls = 2= \p e} " ]

That is,

n
Z lzjy;| < |lzllpllyllg, forall n>1

Since the left-hand side is an increasing sequence which is bounded above, hence

1z -yl < l2lpllyllq-

Notice that if ||z||, = 1 = [[yllg, then ||z - y[|; <1, and equality holds if and only if |z;?/||z|} =
|yj\q/\|y||g for all j (equivalently, a? = b?).

This follows from Young’s equality. For

a? bl
ab=— + —,
p q

we must have a? = b9.

1.3.5 Minkowski’s inequality
Let 1 < p < 0. Then for z,y € @, z+y € @, and [z +yll, < |ally + Iy, ()

Proof. For p =1 or oo, the proof is trivial. Let 1 < p < co. Then

00 1/p
Iz +ylp, = (Z |2 + in”>

=1

[e’e] 1/17
< (Z(|$i| + |yi|)p> . (1)

=1

Since
(sl + )P = (s + |wil) (s + |y )P~

By Holder’s inequality,

S ol + ol < (3ol + ) #07) 77 (3 o)

Thus,
Sl + Iyl < (el + 1)) el + gl -
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That is )
1-1
(sl + 1)) " < lally + 1yl

From (1), we get
1/p
Iz +ylly < (32l + wD?) " < lelly + lyllp-

Note that as similar to above cases, it can be shown that equality in (%) holds if and only if

]l
= py_
1Yl

Now, if x,y € P, then z +y € (P. Because a,b > 0, (a + b)? < {2max{a,b}}? that is,
(a + b)P < 2P(aP + bP), and so,

Dz + il <22 sl + Y lyilP) < oo
Thus, ¢ is closed under || - ||,. Hence (¢7,]| - ||,) is a normed linear space.

Theorem 1.3.9. If f,g € Rla,b], then for | fll, = ([ |fIP)7, we get

: 11
(@) Nfgll < W flpllglly  where gt

(@) N +gllp <[ fllp +llgllp, 1<p<oo

For p = o0,

[flloc = sup [f(¢)|, where f € R[a,b].
tela,b]

Then (Rla,b],| - ||c) s a normed linear space.
Definition 1.3.10. (Open and Closed balls):
(i) Br(zo) ={y € X : d(xo,y) < r} is called open ball.

(ii) Br(wo) ={y € X : d(zo,y) <} is called closed ball.

1.3.6 Open sets in metric spaces

Definition 1.3.11. A set O C (X, d) is said to be open if for all x € O, there exists r > 0 such
that B,(z) C O.

Proposition 1.3.12. If {O; :i € I}, I is any index set. Then
(1) User O is open (arbitrary union of open sets is open).
(7i) Nie, O; is open (finite intersection of open sets is open).

8
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Remark. Arbitrary intersection of open sets need not be open.

Example 1.3.13. X =R, u(z,y) = |z —y|. Nhe; (—l l) = {0} is not open.

n’n

Example 1.3.14. Let f: R — R be continuous. Then A = {x € R: f(x) > 0} is open.

Proof. Let x € A = f(x) > 0. For e = f(z) > 0, there exists 6 > 0 such that for all
y € (—0,0)+z=(x—dz+90),
[f(y) = f(@)| < f(a).

— 0< f(y) <2f(x), Vyée (x—20dz+)7).
Hence (x — 0,z +0) C A = A is open. O

Open Sets in R :
A countable union of open intervals is an open set.On the other hand, any open set in R can

be written as a countable union of disjoint open intervals.

Theorem 1.3.15. Let O be an open set in R, then there exists a unique disjoint family of

countably many open intervals I, such that
o
o= L
n=1

Proof. Since O is open, for x € O, there exists an open interval (a,b) such that « € (a,b) C O.
Now, we extract the largest open interval containing = and contained in O. Let a, = inf{a :
(a,z] C O}, and b, = sup{b: [x,b) C O}. Then I, = (ay,b,) will be the largest open interval
containing x and contained in O.
Note that I, = (az,b;) C O. For this, let a, < z < by, then a; < z — € for small € > 0
= ay + € < z. But by definition of infimum, Ja < a; + € and (a,2] CO = (az +¢€,2] C O.

Similarly, [z,b, —€) CO = (az +€,b, —€) C O for small e >0 = (ay,b,) C O.
Now, if 2,y € O and x # y then either I, NI, =0 or I, = I,.
If I, NI, # 0, then I, U I, is an open interval containing  and y.
Therefore, by maximality of I, for x and I, for y, it follows that I, U I, C I, = I, C I, Since
yel, = I,=1, (. I, is maximal).
Now, O = U,co I- Since I, and I, are disjoint (if « # y), we can assign a distinct rational to
each of them. That is, choose r, € I, and ry € I,. Then r, # ry.
Thus,

{I; :z €O} B o) (set of rationals) via I, — 7,

Hence,

o=U )
1=1
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The representation (1) is unique. Let O = U= In = Upr—; Jim-
Then I, = I, N O = Upo_1 (I, N Jp,). Since {I, N Jy, : m € N} is a disjoint family and I,, is
an open interval, I,, C I, N J,,, for some mgy. But then I, C J,,, and given I, is maximal,

= I, = Jp,. Thus, the representation (1) is unique upto change in order of union. O

Definition 1.3.16. (Convergent Sequence):
A sequence (z,) € (X, d) is said to be convergent if Ve > 0, IN € N and zy € X such that
n>N = d(z,,20) <€ < x, € Be(x0), Yn > N.

Definition 1.3.17. (Cauchy Sequence):
A sequence (z,,) € (X,d) is said to be a Cauchy sequence if Ve > 0, 3N € N such that
m,n>N = d(xn,Tm) <€

Example 1.3.18. Let X = (0,1) and d(z,y) = |z — y|. Then {1} is a Cauchy sequence because

1 1‘
—— —| —0asn,m — oco.

|Tn — | =
n

But limz,, = 0 ¢ X. Hence not convergent.
However, every convergent sequence is a Cauchy sequence.

Definition 1.3.19. A set A C (X,d) is said to be bounded if 3zy € X and M > 0 such that

d(a,z9) < M, Ya € A < a € By(xg),Va € A. that is, A is bounded if and only if A is

contained in a ball.

Example 1.3.20. The set {(z,y) : y = sin(1/z), = # 0} U ({0} x [—1,1]) is unbounded, since it

contains points (n,sin(1/n)) whose Euclidean norm tends to infinity as n — oc.
Proposition 1.3.21. Fvery Cauchy sequence is bounded.

Proof. Since (z,,) C (X,d) is a Cauchy sequence, for e = 1, 3N € N such that
d(m,zy) <1, VYm,n > N.

Sod(xn,zn) <1, Vn> N.Let M =max{l,d(x;,zn):i=1,2,...,N—1}. Then d(zp,zn) <
M,Vn>1 = :EnEBM(xN). OJ

But converse need not be true. For (R,u), u = usual metric. z, = {-1,1,—-1,1,...} is

bounded but not Cauchy sequence.

Proposition 1.3.22. Let (z,,) be a Cauchy sequence in (X,d). If (zp,) is a subsequence which

converges to x. Then x, — x.

10
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Proof. For € > 0, there exists N; € N such that
€
d(Tp, Tm) < 37 Yn,m > Ni.
Also, for the same ¢ > 0, there exists No € N such that
€
d(zp,,x) < 2 Vny > No.
Let N = max{Ny, Na}. Then

d(xn, Tm) < % and d(zy,,z) < for all n,m,ny > N.

| ™

= d(xn,,Tm) < g, VYng,m > N.

Thus,
d(z, zm) < d(x,2n,) + d(2n,, 2m) <e for allm > N.

Hence, z,, — . O]

Remark. If X = (0,1) and d(z,y) = |z — y|. Then z,, = L is a Cauchy sequence, but it has no

convergent subsequence.
1.3.7 Closed sets in metric spaces

Definition 1.3.23. A set F' C (X,d) is said to be closed if F° is open. that is, for all
x € F°=X\F, 3e > 0 such that Bc(z) C F°.
On the other hand, if for each € > 0, B(x) NF #(0 = z € F.

Example 1.3.24. The set A = {(z,y) : y = sin2, z # 0} is neither open nor closed set in
RZ If 2, = = # 0, (Tn,yn) = (=,0) € A, but limy, (25, yn) = (0,0) ¢ A Since any ball

nm’

B;(%,O) ¢ A = A is not open in R?.

Theorem 1.3.25. Let (X,d) be a metric space and F C X. Then the following are equivalent
(F.A.E):

1. F is a closed set (F° open).
2.Ye>0, B(x)NF #0) = z €F.
3. ¥ sequence (xy) € F such that v, > x — x € F.

Proof. (1) = (2): Suppose F is closed. Claim: Bc(z)NF #(,Ve >0 = z € F.
Notice that if x ¢ FF = z € F° and F° is open = Je¢p > 0 such that

Bey(x) C FC = Bey(x)NF =10,

11
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which is a contradiction.
(2) = (3): Let (x,,) C F and x,, — x. Then for each € > 0, z,, € B.(z) for all n > ny.

= 1, €B(x)NF #0, VYe>0 = z€F

(8) = (1): Claim: F° is open. Suppose F'° is not open. Then there exists x € F° such that for
each n € N, there will be x,, € F and d(zp,x) < % By (3), € F, which is a contradiction. [J

Example 1.3.26. Let f : R — R be continuous. Then A = {z : f(x) = 0} is closed.
Since z,, € A and x,, = z. So f(z,) =0, Vn>1 = lim f(z,) =0 = f(z) =0.

1.3.8 Interior points and interior of a set
Let A C X. Then interior(A) or Int(A) or A° is the largest open set contained in A. That is,
AO:U{OCX:Oopen,OQA}

= U{Be(:v) C A: for x € A and some € > 0}= union of all open balls contained in A.

1.3.9 Closure and limit points

Let A C (X,d). The closure of A or cl(A) or A is the smallest closed set containing A. That is,
A=(){FcX:F closed and A C F}

={zre€ X :3x, € A with x,, » z}
= collection of limits of all convergent sequences in A (limit need not be in the set A).

Example 1.3.27. A = {(n, Lyine N}. Then closure of A in (R,u) is A = A and A° = ()
(Why?).

Example 1.3.28. 1. A= {(x,y) : |z| <1,|y| <1}. Then

A={(z,y) |z < 1, |yl < 1}
2. A={(z,y) 1y =sin (%) ,x # 0}. Then
A={(z,9) :y=sin (L), 2 #0}U{0} x [-1,1]).

Example 1.3.29. Let cgg = space of all sequences having finitely many non-zero terms.
coo = {z = (x1,22,...,29,0,0,...) : x; € R}

I2loc 1= max lai] < oo.

12
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= coo C (°° (proper subspace).

Let ) .
Xn:<1,2,. ,—,0,0 )EC()()
Let . ) )
X=(1,=,...,— . e,
(727 7n7n+17 )
then
1 1

n _
|X — X"|oo = Squ+1 n+1_>

but X ¢ cop. Hence ¢ is not a closed subspace of £°°. In addition cgg is not open in £°°. For this,
let € > 0 be arbitrary and consider the sequence y = (5,5, §,-..) € £°°. Then [|y|lcc = § <€, s0
y € Bc(0), but y ¢ cop. Therefore, B.(0) Z cqop for any € > 0.

For 1 <p < 00, cgo C P and cqg is neither closed nor open in ¢P. For this, let

P \ /P
:L'n_(2n+1> , 1 <p <o,

and consider x = (x1,x9,...) € fP. Then x ¢ cop and

eP eP
Hpr = Z ‘xn‘p Z on+l = 9

n=1

so ||z, = < €. Hence x € B.(0), and therefore B.(0) Z cgp for any € > 0. Consequently, coo

21/p
is not open in /P,

To see that cgg is not closed in (P, let X™ = (x1,z2,...,2,,0,0,...) € coo. Then X™ — x in P,
since
[X™ — [ = Z SRFT —0 as n— oo
k=n+1
But = ¢ cqp.

Proposition 1.3.30. Let A C (X,d). Then x € A if and only if Be(z) N A # @, for all € > 0.

Proof. Let z € A. Suppose J¢y > 0 such that Be,(x) N A = @. Then A C (B, ())¢, a closed set.
By definition of A, A is the smallest closed set containing A. Hence, A C (B, (z)). Since x € A,
but z ¢ (Be,(z)), this is a contradiction.

Conversely, suppose B(x) N A # @ for all € > 0. By the previous result, x € A (since A is
closed). O

Proposition 1.3.31. z € A if and only if there exists a sequence (x,) with x, € A such that

Ty — .

13
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Proof. If x € A, then for all n € N, Bijn(z) N A # 2. So, Iz, € Byyp(z) N A. Thus,

1
d(xzn,z) < —,VneN = z,, — x.
n

Conversely, if there exists z, € A with z, — x. Then for ¢ > 0, Ing € N such that
d(zn, ) < € for all n > ng, = =z, € Be(x) N A # & for all € > 0. Thus z € A (by previous
result). O

1.4 Complete metric spaces

We have seen that there are Cauchy sequences whose limits need not necessarily belong to the
space.
For example, the sequence % € ((0,1),u) under the usual metric, is a Cauchy sequence but the
limit £ — 0 ¢ (0,1).

It is always possible to enlarge the space so that limits of all Cauchy sequences can be
accommodated. This process is known as the completion of metric spaces, we shall see later.

However, there are many spaces which do accommodate limits of their Cauchy sequences.

Definition 1.4.1. A metric space (X, d) is called complete if every Cauchy sequence in X has

its limit in X.

Example 1.4.2. (R,u) is a complete space.

Let (x,) be a Cauchy sequence in R. Then it is bounded. And by the Bolzano—Weierstrass
theorem, there exists a subsequence x,, — = € R. For any € > 0, there exists a natural number
ko such that

|zn, —x| <€ forall k> ko (1)

But the sequence () is Cauchy, so for all € > 0, there exists ng € N such that |z, — x| < € for

all n,m > ng. Let m > ng and m > ny,. Then
|zy, — 2p,| <€ forany n>mngand k> k. (2)
From (1) and (2), it follows that:
|zy, — x| < |xp — Tp, | + |Tn, — 2] < 2e€
for n > ng and ny > ng,. Thus, for € > 0, there exists ny € N such that
n>ny = |z, —z| <e

Notice that the above discussion can be used to prove the following result.

14
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Proposition 1.4.3. Let (z5,) be a Cauchy sequence in a metric space (X,d). If (z,) has a

convergent subsequence T, — x, then x, — x. (Proof is similar to the above.)
Example 1.4.4. (R,d) with d(z,y) = |tan~!(x) — tan~!(y)| is incomplete.
(Hint: z, = tan 5 (niﬂ) is Cauchy, but not converging to a point in R.

Example 1.4.5. Every discrete metric space is complete.
1 ifz

Let X # 0, and do(z,y) = 7Y
0 ifx=y

Suppose (x,) C X is Cauchy. Then for € > 0, 3N € N such that d(z,,z,,) < € for all n,m > N.

0 if0<e<1

0 or 1 ife>1.

But if do(zy, xm) = 1 for only finitely many n,m > N (for some € > 1), then

Now, do(zpn, Tm) = {

n}rllrgoo do(xn,zm) =1%#0 (Why?)
Thus, for all € > 0, 3N’ € N such that d(z,,zy,) = 0, for all n,m > N'.
that is, (z,) = (z1,22,...,2,2,2,...) = .

(Thus, every Cauchy sequence in (X, dp) is eventually constant.)

Example 1.4.6. (R",|| - ||,) is complete for 1 < p < oo.

Let 1 < p < oo, and 2% = (z},...,2F) be a Cauchy sequence in (R™, || - ||,). Then for e > 0,

there exists kg € N such that for all k£, > kg,

1/p
n
¥ — 2!, = (Z |z — x§-|P) <e
j=1

= |x§—x§| <e forall k,1 > ko

%) is a Cauchy sequence in (R, ).

= (:UJ

Hence xf — x; for all j. Then for € > 0, there exists m; € N such that k¥ > m; = a:;“ —xj| <€

Let mo = max;j{m;}. Then, for x = (z1,...,2y),
|2F — x|, < € for k > my.

Notice that the case p = oo is similar. We skip its proof here.

Example 1.4.7. Let 1 <p < oco. Then (¢, - ||,) is complete.

Let 1 < p < oo, and let z¥ = (2,25, ...) be a Cauchy sequence in (¢, ]| - ||,). Then for € > 0,

15
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there exists ng € N such that Vk,l > ny = ||z% —2!||, <€

n
k1
— Z |27 — aj|P < € (1)
j=1
For each fixed n, this reduces to (R",|| - ||;), which we know is complete. Hence acéC —

j=1,2,...,n. Thus, letting k — oo in (1), it follows that

n
Z|x§-—xj|p<ep, VI > ng (2)
j=1

But the left-hand side of (2) is an increasing sequence and bounded above, hence, letting n — oo,

we get
o0
Z |x§ —z;|P <€
j=1
! — x|, <€, VI>ng
where x = (z1,22,...,Ty,...). Notice that

[2llp < llz =2l + [l < e+ (2™, < oo = = e .

Proposition 1.4.8. Fvery closed subset of a complete metric space is complete.

Proof. Let F be a closed subset of a complete metric space (X, d). Then (z,) C F is a Cauchy
sequence, it follows that (x,) is a Cauchy sequence in X. Hence z,, — = € X. But F is closed,
it implies that x € F.

In fact, if (X,d) is complete, then F' is closed if and only if F' is complete. (Hint: it follows
easily.) O

Example 1.4.9. Show that (co, || - ||«) is a proper closed subspace of (£*°, || - ||oo)-
We know that ¢y C ¢*°. Now, let zF = (:c’f,,x?,) be a sequence in ¢y such that
F == (2q,... ,xj,...). That is, for every e > 0, there exists kg € N such that Vk > kg =

|2% — z||oo < € which implies
|a:£C —zj| <e foreachj>land Vk > k. (1)
Since x? €cy = limj xf = 0 for each k. For € > 0, there exists jo € N such that

2% <e Vji>jo and k> k. (2)

16



1.4. Complete metric spaces MAZ224: Real Analysis

It follows from (1) and (2) that
5] < |25 — aj] + |250] < 26 V) > Jo,

i.e., |z;| < 2e for all j > Jy, which means lim;_, x; = 0. Hence ¢ is a closed subspace of £>°.

Thus, ¢q is complete in its own right.

Example 1.4.10. The space (Cla,b], || - ||s) is a complete normed linear space.
Let (f5) be a Cauchy sequence in (Cla,b], || - ||s). Then for € > 0, there exists ng € N such
that Vn,m > ny = |[|fn — fmlleo < € which implies

|fn(t) = fuo(£)] < € Vn > ng,Vt € [a,b]. (1)

So (fn(t)) is a Cauchy sequence in (R, u) for each fixed t € [a,b]. Hence f,,(t) — f(t).

Letting n — oo in (1), we get |f(t) — fno(t)] < € Vt € [a,b]. (Notice that ng is free of choice of
t). Since f,, is continuous, for each fixed ¢ and € > 0, there exists 6 > 0 such that |s —t| < ¢
implies | fn,(s) — fn,(t)| < €. Hence,

[f(s) = SO < 1f(5) = fro ()] + | fno (8) = frug ()] + [ fng (£) — [ (2)]

< 3e

So f is continuous on [a, b].

However, the space (Cla,b], || - ||1) is not complete. For this, we consider the following: Consider
nt 0<t<i
fa(t) = "
1 1<e<t

It is easy to see that for % < %,

1/m 1/n 1
an_mel: (/0 + +/1/n> |fn(t)_fm(t)|dt

1/m
1/m 1/n 1
_ / (mt —nt)ydt + [ (1—nt)dt+ [ (1—1)dt
0 1/m 1/n

1(1 1>
=—|———=])—=0asn<m— o0

2\m n
Thus (f,) is a Cauchy sequence in (C[0, 1], || - ||1). But the pointwise limit:
Y 1 0<t<1
f(t) = lim fn(t) = 0 1o

17
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(Hint: f,(0) =0 and f,(1) =1 for all n, so f(0) =0 and f(1) =1. For 0 < ¢y < 1, we can find
large n such that 0 < 2 < ¢y < 1. Hence f,,(to) = 1 for large n. Thus f(to) = 1.) However, f is

not continuous, hence (C[0, 1], - ||1) is not complete.

1.4.1 Dense subsets and separability

A set A C (X,d) is said to be dense in X if A= X. (that is, Vo € X, 3z, € A such that z,, — ,
orVo € X, B(x)NA# 3, Ve>0.)

Example 1.4.11. Q = R with usual metric u(z,y) = |z — y|.
Let z e R,z = [z]+a, 0 < a <1 But a=0z2... with 2; € {0,1,2,...,9}, = z =
o+ {5 + g + 00 Let xp =9 + T + -+ + 1g=. Then z, € Q, and

Thus z, € Q and z, = = € R.

Example 1.4.12. If 1 < p < oo, then ¢y = /7.
Let x € P, x = (x1,22,...,%p,...). Write X" = (x1,29,...,2,,0,0,...). Then X" € cqo,
Vn > 1. Now,

|—=

& P
|z — X", = (Z ]mkH]p) —0asn— oo
k=n

Thus, X™ — x.

Example 1.4.13. ¢y = ¢p. Let x € ¢p. Then & = (x1,x9,...,2Zp,...) and lim, o z,, = 0.
For € > 0, 3N € N such that |z,| < §, ¥n > N ---(1).
Write X™ = (z1,22,...,2,,0,0,...), n > N. Then X" € ¢y and

, Vn=N (by (1))

|

[# = X"[|oo = sup |ani1| <
n>N

Thus, X" — .

Remark: ¢og = cp € £°°. That is, cgg is not dense in £°°.

1.4.2 Continuous maps between metric spaces

A function f: (X,d) — (R,u) is said to be continuous at xy € X if for all € > 0, there exist
d > 0 such that d(zo,y) <9 = |f(x0) — f(y)| <e.

= f(Bs(wo)) € (f(z0) — ¢, f(x0) +¢)

Theorem 1.4.14. Let f : (X,d) — (R,u) or (R, usual metric). Then the following are equivalent:

18
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(i) f is continuous on X (with € —§ definition).
(it) For any sequence x,, € X such that v, - = f(x,) — f(z).
(iii) f~1(O) is open in (X,d), for every open set O C R.
(iv) f~Y1(F) is closed in (X,d), for every closed set F C R.
(Proof is similar as to f : R — R when d — u, u(x,y) — d(z,y).)

Example 1.4.15. For z,y,z € (X, d), we get
|d(z,y) — d(x,2)| <d(y,z) (by triangle inequality)
Thus, for f(y) = d(xo,y)

f(y) = f(2)] <d(y,z) =0 as y—z

Hence, f is continuous on (X, d) to (R, u).

1.4.3 Uniform continuity

Definition 1.4.16. A function f : A(C (X, d)) — R is said to be uniformly continuous on A if
for each € > 0, there exists § > 0 such that for all z,y € A,

d(z,y) <6 = [f(z) = fy)l <e

Notice that ¢ is free of choice of locations of points x,y € A; it only depends on their separation.

Example 1.4.17. For oy € X, let f(z) = d(z,x¢). Then f is uniformly continuous on X. (Hint:
d(xz,z0) < d(z,y) +d(y,z0) = f(x)— f(y) < d(x,y).) Similarly, by replacing = with y, it

follows.

Example 1.4.18. For z € X, A C X, define d(z, A) = inf{d(z,a) : a € A}, which is called
the distance of A from x, and is uniformly continuous as a function of z. (Hint: d(z,a) <
d(x,y) + d(y, a).) Thus, d(z, A) < d(z,y) + d(y, A) and so,

[f(@) = fy) < d(z,y) (ozey)

Example 1.4.19. The function f : (0,1) — R given by f(z) = 1 is continuous on (0,1), but

not uniformly continuous.

Let zg € (0,1). Then for € > 0, there exists n € N such that (zo— <, 2o+ ) C (0,1). Suppose

n
L l‘ <efory € (zo— 5, o+ 5) =t Iy Then |zg —y| < exoy. Let 6 = minyer, {evoy} =

To Y n
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exo(xo —€/n) > 0. If |[zg —y| < . Then

1 1 xo — 1) exo(zg —€/n
_‘:M<§0<0/><6
Zo Yy oy oy Toy

Hence, f is continuous at each xy € (0,1).

f is not uniformly continuous: Let € = %, x = %, y= %H, n € N. Then for any § > 0, there

exists ng € N such that

but )
@)= FWl =14 5.

Hence, f is not uniformly continuous on (0,1). From the above argument, we can prove the

following result.

Theorem 1.4.20. Let f: A(C (X,d)) — R. Then f is uniformly continuous on A if and only
if for every pair of sequences xy,yn € A with d(xy,yn) — 0, implies | f(zn) — f(yn)| — 0.

Proof. Suppose f is uniformly continuous on A. Then for any € > 0, there exists § > 0 such that

d(z,y) <6 = [f(z) - fY)l <e (1)

Let x,,yn € A such that d(z,,y,) — 0. Then for § > 0, there exists ng € N such that for all
n 2 no,
d(Tn,yn) <0 = |f(zn) = f(yn)| <e. (from (1)),

That is, if d(xn,yn) — 0, then | f(z,) — f(yn)| — 0. Conversely, suppose that f is not uniformly
continuous. Then there exists ¢g > 0 such that for every § > 0 there exist =,y € A with
d(z,y) < 6 but |f(z) — f(y)| > 0. Now, let § = 1 for n € N. Then there exist z,, y, € A such
that

1
d(xnvyn) < g ,Vn € N, but |f(xn) - f(yn)‘ > €0.

That is, d(zp, yn) — 0 but lim|f(z,) — f(yn)| > €0, is a contradiction. Hence, f is uniformly

continuous. O

Exercise 1.4.21. Show that a uniformly continuous function on a metric space (X, d) sends
Cauchy sequences to Cauchy sequences. (Hint: If f: (X,d) — R is uniformly continuous, so for
d(xna$m) -0 = ‘f(xn) - f($m)| - 0')

Theorem 1.4.22. Let f : [a,b] — R be a continuous function. Then f is uniformly continuous.

Proof. On contrary, suppose f is not uniformly continuous on [a,b]. Then there exists ¢y > 0

such that for every § > 0, there exist x,y € [a,b] with |z —y| < § but |f(z) — f(y)| > €. For

§ = L, there exist @,,yn € [a,b] such that |z, — y,| < L but |f(zn) — f(yn)| > €. By the

n
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Bolzano—-Weierstrass theorem, x,,y, have convergent subsequences, say x,, — = and y,, — y.
Now,

|z —y| = klinc}o [Zn — Y| < kll)ngo nik =0,

so z =y. Since f is continuous, f(zn,) — f(yn,) = f(x) — f(y) =0, but |f(zn,) — f(yn,)| > €o,
contradiction. O

Example 1.4.23. Let f : R — R be continuous such that lim ;| f(xz) =0. Then f is uniformly

continuous.

Proof. For € > 0, there exists [—a,a] such that |f(z)| < €¢/2 if x € [—a,a]®. Hence, if z,y €
[—a,al®, then

@) -l <5+5=¢ ()

Since f is uniformly continuous on [—a,a]. For € > 0, there exists § > 0 such that

[z -yl < = |f(x) = fly)l <e  (2)

Since (1) holds true for z,y with |x — y| < 0. It follows that for e > 0, we get § > 0 such that
lx—y| <d = |f(x)— f(y)] < € (for any x,y € R). Hence, f is uniformly continuous on R. []

Notice that if f € Cy(R), that is f is continuous and lim|y_,, f(z) = 0 and hence f is
uniformly continuous. But if f is continuous and bounded, then f need not be uniformly

continuous on R.

Example 1.4.24. f(z) = sin 22, which is continuous and bounded but not uniformly continuous

on R. (Hint: Take 22 = nr and y* = nr + i7.)

Example 1.4.25. Let f: R — R be a bounded continuous function. If f is monotone, then f
is uniformly continuous on R. Since f is bounded, let inf f(x) = L, sup f(x) = M. For € > 0,
there exist zg, yo € R such that f(zg) < L + € and f(yo) > M —e.

If f is monotone increasing, then for x,y € [xg, yo]¢ and x,y > yo
fy) = f(@) <M — flyo) <M — (M —¢) =e.
Similarly, if z,y < x¢ then
f) = f@) < L+e—f(wg) <L+e—L=c.
Thus, for z,y € [xo, 0], we get [f(z) = f(y) <e (1)

Since f is continuous on [xg, yo], f is uniformly continuous on [x¢, yo]. For any € > 0, there exists
0 > 0 such that

2,y € [ro,40); [v—yl <0 = |f(z) - fly)l <e  (2)
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Notice that (1) also holds for x,y € [zg, yo]¢ with |z —y| < 6. Thus, we get single § > 0 such that

[z -yl <0 = |f(x) = fly)l <e

Exercise 1.4.26. If f : R — R is a bounded continuous function then for f monotone, it follows
that

lim f(z) = finite, lim f(x) = finite.

T—r—00 Tr—-+00

(Hint: For any sequence x,, — 00, f(x,) is bounded and lim, _,~ f(x,) = sup,, f(zy), for f is

increasing. )

Example 1.4.27. Let f : (a,b] — R and f : (b,¢) — R be uniformly continuous. Then

f: (a,¢) = R is uniformly continuous.

Proof. Since f is uniformly continuous on (a,b] and (b, c), for any € > 0, there exists § > 0 such
that if x,y € (a,b] or z,y € (b,c) with |x —y| < 0, then |f(z) — f(y)| < e. Now, let z,y € (a,c),
with |z —y| < d. Then |z —b| < and |y — b| < J. Hence,

[f (@) = f)] < [f(x) = FO)+[f(0) = Fy)] < 2.

Thus, f is uniformly continuous on (a, ). O
We see that a uniformly continuous function can be extended uniformly to the closure of the set.

Theorem 1.4.28. Let f: A(C R) — R be uniformly continuous on A. Then f can be extended

uniformly to A, and this extension is unique.

Proof. Let x € A. Then there exists x,, € A such that z,, — x. Now, f(z,,) is a bounded sequence
in R. Hence, by Bolzano-Weierstrass theorem, f(x,) has a convergent subsequence. Without
loss of generality we can assume that f(z,) is convergent. Let f(z) = lim f(z,) (. lim f(z,)
exists ). Notice that f is well defined, because f is uniformly continuous on A. If 2,y — ,
then z,, —y, = 0 = f(zn) — f(yn) — 0 ie. lim f(z,) = lim f(y,) (. lim f(x,) and lim f(y,))
both exist). Hence f : A — R is well defined. Suppose z,y € A and they are close enough to
each other. Then there exist x,,y, € A such that x,, - = and y, — y. Hence,

F@) = fly) = f(@) = f(@n) + f@n) = Fyn) + Fyn) — F(¥)
= |f(2) = fW)l < (@) = fla)] + |f(@n) = Fun)| + | f(yn) — F(»)]

Notice that |f(z) — f(zn)| < € and |f(y) — f(yn)| < € for n > ng (say). Let |z —y| < § (small
enough). Then there exists n’ € N such that |z, — y,| < ¢ for n > n’. Since f is uniformly
continuous on A, it follows that |f(x,) — f(yn)| < € for n > n’/. Thus for sufficiently large
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n > max(ng,n’).
[f(x) = f(y)| < 3¢, where |z —y| < 4.

Hence, f is uniformly continuous on A.
This extension of f is unique: If there exists § : A — R which is uniformly continuous and § = f

on A, then for € A, there is a sequence z,, € A such that z,, — x. Hence,

(". g is uniformly continuous extension). O
Next, we shall see that uniformly continuous function grows slower than a straight line.

Theorem 1.4.29. Let f: R — R be uniformly continuous,then there exist constants A, B >0
such that |f(x)| < Alz|+ B for all x € R.

Proof. For any € > 0, there exists 0 > 0 such that |z — y| < ¢ implies |f(z) — f(y)| < 1. We
divide the proof into two parts: one is near ”0” and other is away from ”0”. Let a > 0. Then
|f(x)]| < A< oo for x € [—a,a]. Now, consider f : [a,00) — R.Then for z € [a,o0), we can find
n € N such that z € [a + nd, a + (n + 1)d]. Then,

f(@) = fa) = f(x) — fla+nd) + f(a+nd) — f(a)

— 5@) - Flatnd) + 3 [f(a+0) — Flat (+1)0)

j=1
= (@) <1+n+[f(a)l

n+1)+\f(a)\<(n+1)+|f(a)|<< 1>

| f(a)]
1 _
a—+nd no +n

1
— 4+ 22 < B .
5T s SO

Notice that B is independent of n, hence B is independent of x. That is, |f(z)| < B|z| if z > a.
Hence, we can summarize that |f(z)| < Blz| + A for all x € R. O

!

- |1

Example 1.4.30. Notice that f(x) = 22 is not uniformly continuous on R, as it cannot satisfies

the conclusion of the above theorem.

Example 1.4.31. Let f : R — R be differentiable and its derivative is bounded. Then f is

uniformly continuous on R. For any z,y € R, by the Mean Value Theorem,

[f(@) = fW)l = 1) - y)| < Mz —y|

where ¢ is between x and y, and M is an upper bound for |f’(¢)|. However, f(z) = /x for

x € (0,00) is uniformly continuous, but its derivative is f'(z) = ﬁ, is not bounded.
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Example 1.4.32. Let f: (X,d) — R be uniformly continuous, then f sends Cauchy sequence
in X to Cauchy sequence in R.

Let (z,,) be a Cauchy sequence in (X, d). Since f is uniformly continuous, for € > 0, there
exists > 0 such that d(z,y) <0 = |f(z) — f(y)| < e. For § > 0, there exists N € N such
that d(zp, zym) < 6 for alln,m > N, = |f(z,) — f(zm)| <&, Vn,m > N. Therefore, (f(z,))

is a Cauchy sequence in R.

1.4.4 Compactness in metric spaces

Definition 1.4.33. Let (X, d) be a metric space. A subset K C X is called compact if every

open cover of K admits a finite subcover.

Theorem 1.4.34 (Sequential compactness). If (X,d) is a metric space and K C X, then K is

compact if and only if every sequence in K has a convergent subsequence with limit in K.

Remark 1.4.35. In R" equipped with the Euclidean metric, the Heine—Borel theorem asserts that

a set is compact if and only if it is closed and bounded.

Theorem 1.4.36. Every compact metric space is complete. Moreover, if f : X — Y is continuous,

then f(K) is compact whenever K is compact.

Proof. 1f (x,,) is a Cauchy sequence in a compact metric space, then (x,) has a convergent
subsequence (xy,) — x. The Cauchy property forces z, — z, proving completeness. The

continuous image statement follows from the open-cover definition. O

1.4.5 The contraction mapping principle

Fixed point searching is an idea to solve equation of the form ¢(z) = x. This helps solving
a range of problems, including approximation theory, differential equations etc. Fixed points
can be obtained via iterations, i.e. if the function "shrinks nicely", then we get fixed points via
iteration. That is, if ¢ is a point in the space X, then 2o — ¢! (z¢) — p?(29) — --- where "
denotes n-times composition of ¢. If the sequence (¢™(x¢)) is convergent and ¢ is continuous,
then ¢"(xg) — z and thus ¢(x) = ¢(lim, e ¢"(2¢)) = x. However, if the space is complete, we
only need to verify ¢"(zp) to be a Cauchy sequence. Nicely shrinking function, we mean here

with contraction mapping.

Definition 1.4.37. A function ¢ : (X,d) — (X, d) is called contraction if there exists
0 < a < 1 such that

d(p(z),o(y)) < ad(z,y), Vz,ye X.

Theorem 1.4.38. Let (X,d) be a complete metric space. If v : (X,d) — (X, d) is a contraction,
then ¢ has a unique fixed point.
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Proof. Let 0 < a < 1 be such that

d(e(2),¢(y)) < ad(z,y), Vz,y€eX.
For a point zg € X, let
cpo(z:g) = T, gol(xo) = ¢(xg) ete.

Then
(" (o), "™ (20)) < ad(¢™ (o), 9" (x0)) < ”d(p(x0), o).

We show that ¢"(xg) is a Cauchy sequence. Let m > n. Then

d(¢" (20), ¢ (w0)) < (0" + -+ a™ 1) d(p(0), o)

aTL

.. 1
< 7 gdelzo),x0)  (O0<a<)
—0 asn — oco.

Since (X, d) is complete, ¢"(xg) — = € X (say).
— p(z) = ¢ (lim ¢"(w0)) = lim " (ap)
= p(z) ==.

If 3y € X such that ¢(y) =y, then

d(z,y) = d(p(z), p(y)) < ad(z,y)

— =y (0<a<l)
This establishes that ¢ has unique fixed point. ]

Remark: If Q C R™ is open, then any contraction mapping f : 2 — € can have at most one
fixed point.
Notice that completeness property of the space is a sufficient condition for existence of fixed
point. For example,
¢ :(0,00) = (0,00)

1
pla) =@+,  a>0

satisfies ¢(v/a) = v/a.

Notice that ¢ above is not a contraction mapping, since

1 a
— — 21 = Z||g—
lp(x) — oY) 5 \ xy\ |z —y|
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because the function |1 — =] is not bounded near zero.

Example 1.4.39. ¢ : (0,27) — (0,27), ¢(z) = sin

[MIE

1
lo(z) — @(y)| < §|ZL‘ —y| (By Mean Value Theorem)

Thus, ¢ is a contraction mapping, but ¢ has no fixed point in (0, 27).

Exercise 1.4.40. If (X,d) is a complete metric space and f : X — X is such that f* is
a contraction, then show that f has a unique fixed point. (Hint: do for k = 2, use the

fact that f* cannot have two fixed points. If f2(zg) = zo and yo = f(xo)(say), implies that
fWo) = yo = yo = o).
Exercise 1.4.41. Let T : C[0,1] — C[0, 1] be defined by

ﬂnwzéﬂww

Show that 72 is a contraction but 7" is not a contraction.

Notice that the above fact in these example is also clear from the fact that in the convergence
of ¢"(xp), we can ignore finitely many steps.

Now, we shall try to understand the existence and uniqueness of the initial value problem:
{y’ = f(z,y)
y(0) = wo

with the help of fixed point theorem.
Suppose f is a continuous function in some rectangle containing the interval (0, yo) in its interior,

and f is Lipschitz in the second variable, i.e.,

|f(z,y1) = fz,92)| < Kly1 — ya,

where K is a fixed constant. Then the equation (*) has a unique solution in some neighborhood

of x = 0. Notice that solving () is equivalent to solve

Awﬁwzéﬂwwmw

ie.,

ym:m+Aﬂmmmw (%)

That is, we want y(¢) such that (**) holds. In other words, we want to get fixed point for the
map ¢ — F(p), where

F@n@>=yw+4xﬂu¢@»ﬁ,
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with ¢ € C[—0, ] for some § > 0, which we get very soon. Now,

[F(p)(x) = F(¥)(2)] < /Ox [f(t, (1)) — f(t,9(1))ldt,

<K [t = win)ar

Thus, F : C[—6,8] — C[—6,6] is a contraction as long as 2Kd < 1, i.e. if § < 5. Hence F has a

unique fixed point in C[—5k, 5%|. That is, (*) has a unique solution in |z| < k.

Example 1.4.42. Consider ¢’ = 2z(1 + y), y(0) = 0. Then

o(z) = /O 261+ (t))dt.

With the initial guess ¥ = 0, we get

Thus, by induction,

Ph@) =Y T e -1 ()

and p(z) = ¢ — 1 is a solution, which is same as method of separation of variables. Notice
that the series (*) converges uniformly on every interval [—a,a], or on any interval [a,b]. On
the other hand, ¢'(z) = 22(1 + ¢(x)) has unique solution in neighborhood of any point z, i.e.,
[0 — 6,20 + 6] with § < L. (Hint: Lipschitz constant = 2.)

1.5 Uniform convergence

1.5.1 Uniform convergence of sequences of functions

Notice that in the previous exercises, we have seen that (C([0,1]), ] - ||c) is complete. That is, if
|| fn = fmlloo — 0, then there exists f € C([0, 1]) such that ||f, — f|lcc = 0. But then,

’fn(t)_f(t)‘ < an—fHoo_>07 vt e [071]7
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ie., fn(t) = f(t) for each t € [0,1]. We say that f, — f uniformly if

sup | fult) — f(t)] = 0.

But there are sequence of functions which converge pointwise but not uniformly.
Example 1.5.1. Let f,,(¢t) =™, t € [0,1]. Then,

0 0<t«1
f@—g&n@—{ =

1 t=1
So,

sup|fu(t) — (1) =17 0.
Example 1.5.2. Let f, : R — R be given by

fa(t) = e—nt27 ne€N
Then,

1 t=0

£(6) = lim fu(t) =
0 [t>0

Notice that for ¢t = 0, |f,(0) — f(0)| =1 — 1] =0 < ¢,

| fn(to) — O] <€, we get

Vn € N If |to] > 0, t3 > 0. Then for

1
2 log =
e M <e = n>—73F
to
log L
Let ng = Off
0

+ 1. Then, |fn(to) — f(to)| < € for n > ny

Notice that ng = ng(e, tg) and ng is large for |tg| close to zero. Thus, ng cannot be free from
to. Therefore, f,, — f pointwise but not uniformly. Also,

—nt?
1fn = flloo = supe™" =10
teR
If f,(t) = e ™ for t € [1,0), then

sup [fn(t) =0 =" =50 = ¢
t

_nt unif.

o)
Exercise 1.5.3. Let f,,f : A(C R) — R be such that f,, — f uniformly on A. Then for
|fn(t)] < M, (i.e. fy’s are bounded), that implies f is bounded.
(Hint: |F(0)] < |faa(t) = F(8)] + [ Fao(D)] < €+ Myy <00 Vit € A)
We shall see later that uniform convergent sequences is a good carrier for many underline
properties.
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Theorem 1.5.4. Let f, f, : A(CR) — R be such that f, — f uniformly. Then f is continuous

if fn’s are continuous (i.e. the uniform limit of a sequence of continuous functions is continuous).

Proof. For € > 0, there exists ng € N such that sup;c 4 | fn,(t) — f(t)| < € Thus,
|faot) — f)] <€, Vte A

Since fy, is continuous on A, for fixed ¢t and for e > 0, there exists § > 0 such that if
[t —s| <0 = |fny(t) — fno(s)| < e. Thus,

[£(s) = fF@O <1f(8) = Fro ()] + [fno(8) = Fro(0)] + | fno (8) — f(2)] < e
O

Theorem 1.5.5. Let R[a,b] denote the space of all Riemann integrable functions on [a,b]. Let
fns f € Rla,b] and fn, — f uniformly. Then,

Kh%ff

. b b .
dm [ = [l g

that 1is,

Proof.

b b
1}n—f>sl|m—ﬂsnn—ﬂu@—w—w

O]

Corollary 1.5.6. If f,, € Rla,b] such that S, = f1+ fo+ ...+ fn converges uniformly to S, then
b 00 b
@ n=1 n=1"9

(Obvious from the previous result).

Theorem 1.5.7. Let f,, € Cla,b] be such that f, — g uniformly. If there exists xq € [a,b] such
that f,(xo) converges, then there exists f € C'la,b] such that f, — f uniformly and f' = g.

Proof. Since f], — g uniformly and f,, is continuous, g will be continuous. Define
folab] 5 R by flzo) = lim fo(xo)

and

fz) = {f(fﬂo) + f;o g(t)dt, if x>z

flxo) — [F0g(t)dt, ifx<mo
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Then f'(z) = g(z) for every z € [a,b]. Hence, f € C'[a,b]. Now,

fu(@) = fin(2) = fu(@) = fin(2)
= (z = x0)(f5(t)

(fn(xO) - fm(a70)) + (fn(xO) - fm(xO))
fin@®) + (fa(z0) = fm(@0))

Therefore,
1fn = frmlloe < (b= a)llfy = frulloo + [ fa(20) = fin(z0)| = 0,

as n,m — oo. Hence, (f,) is a Cauchy sequence in (Cla,b],|| - ||co). Therefore, f,, converges

uniformly. Again, since f;, — g = f’ uniformly, it follows that
/ fh(t)dt —>/ f(t) dt.
o o

lim [fp(z) — fu(z0)] = f(x) — f(z0)

n—oo

Jim fu(z) = f(z) (. lim fu(zo) = f(20))

Remark 1.5.8. Convergence of (f,(zp)) is necessary in the above result. Consider
fn(t): t+mn, te [0,1]

Then f,, does not converge at any point of [0, 1], but

1 nif.
" (t) = 2500
1a®) 2Vt +n

Since
1

1
sup f,’L t) — 0| = sup =
t€[0,1] [Fnlt) =0 tefoa] 2Vt +n  2y/n

Exercise 1.5.9. Let f,, : R — R. Check for uniform convergence of f,, to some f:

— 0.

L. fa(t) = 22020,
2. fn(t) = n2t(1 — 3.
3. fult) =te ™.

Also, verify for term-by-term integration and differentiation for each of the above.

Theorem 1.5.10. Let E C R, and f,, — f uniformly on E. For a limit point x of E. Suppose

lim f,(t) = Ay (finite) (*)
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Then (A,) is convergent and
lim f(t) = Jim Ay

t—x
That is,
lim lim f,(¢) = lim lim f,(¢)

t—x N—00 n—oo t—x

Proof. Since f,, — f uniformly on E. For each € > 0, there exists ng € N such that
|fn(t) — fm(t)] <€, Vn,m>mng, Vt€E (*)

By (*), it implies that |A, — A;,| <€, Vn,m >ngy. So (A,) is Cauchy, hence convergent —
A, — A (Say). Now,

|f(t) - A| = |f(t) - fn(t) + fn(t) —Ap+An — A|
< |f(t) - fn(t)| + |fn(t) - An| + ‘An - A|
<et+e+te

fort € (x — 6,2 +0)\ x and n > ng ( free of t)

lim f(t) = A= Jim Ay,

t—x

Thus, lim lim f,(¢t) = lim lim f,(¢)

t—x n—00 n—oo t—x

O]

Theorem 1.5.11. Let f, : [a,b] = R be such that (f]) converges uniformly. If there exists

xo € [a,b] such that (fn(z0)) is convergent, then (fy) is uniformly convergent, and

lim f/(z) = ( lim fn(@)l

n—oo <7’L—)OO
(i.e. limit and derivative commute).

Proof. The first part of the proof is as earlier. By the Mean Value Theorem, it follows that

(@) = fm(@)] < (b= a)llfy, = Fiull + |fn(z0) = frm(0)]

Since f], converges uniformly and f, (o) is convergent, it follows that f,, — f (say) uniformly.
Claim: lim,_ f}(z) = f'(x).
Notice that f] need not be continuous, hence Fundamental Theorem of Calculus cannot be

applied. Therefore, we need to exploit the differentiability of f. For x € [a, b], define

fn(x) = fu(t)

x—t

on(t) = ) t€la,b]\{z}
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Then

lim ¢y, (t) = = o(t)

Notice that lim;_, @, (t) = f/(z) (finite). Also,
[on(t) = om(t)] = |fa(x) — fru(@)] <€ (by MVT)

for n,m > ng and for all ¢ € [a,b] \ {z}. Thus, ¢, — ¢ uniformly on [a,b] \ {x}. Apply previous
theorem with E = [a, b]. Then,

lim f/(z) = lim lim ¢, (t) = lim lim ¢,(t) = lim ¢(t) = f'(z).

n—o00 n—oo t—x t—x Nn—00 t—x

Thus, /
lim f)(z) = (lim fn(x))

n—oo n—oo

1.5.2 Term-by-term differentiation

unif

Let S, = f1 + fa+ -+ fn, where each f; : [a,b] — R such that S|, — S and S, (z¢) — L.
Then, lim(S},) = (lim S,)’". That is,

fitfot -t ot =+ttt
This raises a very fundamental question: When does

([ swa) = [ s (%)

hold? Notice that if f’ is continuous then for
F(r) = / i
by the Fundamental Theorem of Calculus, F'(x) = f'(x).
(F—-f)=0

By the Mean Value Theorem, F' — f is constant. So F'(z) = f(z) — f(a) (.- F(a) = 0). However,
if f"is not continuous, i.e. f' € R[a,b] , then (**) need not be true.

Consider the sequence f, : A C R — R. We say f, converges to f : A C R — R pointwise if
for any t9 € A, and Ve > 0, 3N € N such that

|fu(to) — f(to)] <&, ¥Yn>N

32



1.5. Uniform convergence MAZ224: Real Analysis

Notice that N = N (e, tp).

Example 1.5.12. f, : R > R, f,(t) = e‘"t2, n € N. Then

1 t=0
-
0 [t{>0

|fn(0) = f(O)=]1-1]=0<e, Vn=>1
Now, if [to| > 0, t3 > 0. Then for

nt?

|fn(to) =0 <e = e ™Mo <e¢

log %

£

= n >

1
Let Ny = Foff-‘ + 1. Then Ny = N(e,tp) and Ny is larger when [ty| is close to 0. Thus, Ny
0

cannot be free of tg.

However, if it happens that Ny is free of choice of tyg € A. Then, we say, f, converges to f
uniformly.
Note: fp, — f uniformly if Ve > 0, AN € N such that

|fult) — f(t)| <&, ¥n>N,vteA.

Then
sup | fo(t) — f(t)] <&, Vn>N
teA
or
I fn = fllo <&, Vn>N,
So,

lfn — flloo = 0 as n — oo

If fo(t) =e ™ teR, neN, super | fn(t) — f(t)] = 1 4 0. Hence f,, — f pointwise but not

uniformly.

Example 1.5.13. If f,,, f : A C R — R be such that f,, — f uniformly. Then for |f,(t)| < M,

implies f is bounded.

fFOI < 1f(®) = In@] + )] <14+ My

Example 1.5.14. If f,, — f uniformly and f,, are continuous/uniformly continuous, then f is

continuous/uniformly continuous.
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Theorem 1.5.15. Let f,, f € Rla,b] be such that f, — f uniformly on [a,b]. Then

/abfn—>/abf (lim/abfn:/ablimfn>

L%h—ﬂ

Since f, — f uniformly = ||f, — flleo <&, for any £ > 0, for all n > N.
b b
/ fn _/ f

b b
/ fn = / f
Corollary 1.5.16. If f,, € Rla,b] and S,, = f1 + -+ + fn — S uniformly, then

[Sn=x [

(This follows immediately from the previous result.)

Proof. ,
sL|n—ﬂan—ﬂuw—@

Therefore,

<elb—a), Vn>N

Thus,

Theorem 1.5.17. Let f, € Cla,b] be such that f, — g uniformly. If there exists xo € [a,b]
such that f,(xo) converges, then there exists f € C'[a,b] such that f, — f uniformly and f' = g.

Remark 1.5.18. Convergence of (f,,(zo)) is necessary in the above result. Consider

Then f, does not converge at any point of [0, 1], but

1 nif.
()= ——— —5 0
WO =5

Since

sup |fL(t) —0] = sup 1 _ 1
tefo,1] e 2vVi+n  2yn

Exercise 1.5.19. Let f, : R — R. Check for uniform convergence of f, to some f:

— 0.

L. fn(t) = %
2. fn(t) = n?t(1 — 3.
3. fa(t) =te ™.
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Also, verify for term-by-term integration and differentiation for each of the above.
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Chapter 2

Function of Several Variables

This chapter extends one-variable calculus to functions on R™. After fixing notation and basic
limit /continuity concepts, we study partial and directional derivatives and the precise notion
of differentiability via linear approximation. The chain rule is developed in a form suitable for
compositions and coordinate changes. We then establish Taylor’s theorem as a higher-order
approzimation scheme, and conclude with two central structural results: the inverse mapping
theorem and the implicit function theorem, which explain when nonlinear maps are locally

invertible and when level sets can be described as graphs.

2.1 Syllabus map

This chapter develops multivariable calculus from a rigorous analytic viewpoint. We proceed from

limits and continuity to differentiability, and then to the inverse and implicit function theorems.

2.2 Limits and continuity

2.2.1 Notation and basic definitions in Euclidean space

Forn € {1,2,...} = N; R" = RxRx---xR. Let x € R"”, then x = (x1,x9,...,2,). Let

n copies

0 € R", represent as 0 = (0,0,...,0). For x,y e R", A € R:

Xx+y=(@1+y, x2+y2, ..., Tn+yn)
Ax = (Az1, A\za, ..., Axy)

Define the standard inner product (-,-) : R™ x R™ — R given by

n
(x,y) =Y wiyi = T1y1 + Taya + -+ + Tnn
i=1
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Then inner product (-, -) satisfies,
(i) (z,z) =af+23+---+22 >0.
(ii) (x,x) =0 if and only if z = 0.
(iii) For o, 8 € R and z,y,z € R™:

(z, ay + Bz) = alz,y) + B(z, 2)
<O‘£L' + By, Z) = OL<ZL‘, Z> + B<y7 Z>

Therefore, (-,-) is a bilinear map and is called the inner product.
Let x € R™. Define the norm:

||| = \/<x,x> = \/x%+x%+...+x%
For z,y € Rn, then

Kz, y)| < |lz| |lyll (Cauchy-Schwarz inequality).

Itz #0,y # 0, then [lz]| # 0, [y # 0.

=z y>’<1
‘<||w|!’||y|! B

But ‘ ”i—” ‘ =1 and HH%HH = 1. We need to prove the inequality when ||z|| =1, ||y|| = 1. For any
teR, (z—ty, v —ty) =|lz —ty[|* > 0.

Let P(t) = (x — ty, x — ty). Then

P(t) = (x,z) — 2t(x,y) + t*(y, y)
=1-2tx,y)+1>-1  (since ||z]| = ||ly[| = 1)
=t = 2t(z,y) +1>0

Take tg = (w,y), then P(ty) = 2 —23 +1 =1-13 >0 = # <1 = |t <
1 thatis [(z,y)| <1

Notice |(x,y)| = 1 if and only if z = ay or y = ax for some o € R. Suppose y = ax, then
(2, ax)| = |a|[(z, z)| = |af -1-1

= [lez|-lz]] = llyll-[l]

= |[(z,ax)| =1
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Suppose [(z,y)| =1---(1). Claim: y = ax, for some a.
Let p(t) = t? — 2t{x,y) + 1. If we take ty = (x,y), then

p(to) = (z,9)> = 2(z,y)* +1=0 (by (1))
But p(tg) = ||z — toy||?> = 0 if and only if & = tqy. Thus, = and y are linearly dependent.

Theorem 2.2.1. : [(z,y)| < ||z| |yll, Vx,y € R™ and |(x,y)| = ||z| [|y|| if and only if there exist
a € R such that x = ay. that is, x and y are linearly dependent. (Explain linear dependent sets
and so forth).
For z,y e R"™:

lz +yl? = (@ +y,x +y)
= |l=]1* + lylI* + 2(z, )
< lz)l® + lyll* + 2l [yl (sincel(z,y)| < [lz]llly]])
= (llz]l + llyl)?

Therefore, ||z +y|| < ||lz|| + |lyll (Triangle Inequality).

Bolzano- Weierstrass Theorem: FEvery bounded sequence (a,) C R has a convergent

subsequence.

Bolzano- Weierstrass Theorem for R?:

Let {Xn} = {(zn,yn)}. | X0l = Va2 +y2 <M, Vn>1.
|zn| < (22 +y2 <M
lynl < Vo +yn <M

By Bolzano- Weierstrass theorem xy, — x and {(zn,,Yn,)} s bounded. So yy, is bounded. So by
Bolzano-Weierstrass theorem yn, , — y. Hence, (Tn, s Yn,,) — (2, 9)-
R": Let Xy, = (2}, 25,...,2F). If {X}} is a bounded sequence in R™, then there exists a subse-

rrn

quence { Xy, } such that Xj, — X € R™.

2.2.2 Limits in Euclidean space

Suppose [ : (a,b)(C R) — R. If limy,_ f(z + h) and limy_,o f(x — h) both exist and are equal,
then we say the limit at x exists.

Suppose f : D(C R?) — R. lim(, ) (0,0) f(%,y) = finite and equal along all paths joining
(z,y) and (0,0). Let x = rcosf, y = rsinf, so (z,y) — (0,0) <= 22+y> -0 thatis 7% —

0 or r—0 (sincer >0). lim,_q f(rcos@,rsinf) = finite, we say limit at (0,0) exists.
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2.2. Limits and continuity MAZ224: Real Analysis

Let D = (aj,b1) x -+ X (an,by), and f : D(C R™") — R™, f(X) = f(z1,22,...,2y) =
(fi(z1,.. . yxn),. oy fm(x1,-..,2y)). Then f is said to be continuous at X € D, if for every € > 0,
there exists § > 0 such that Y € D with || X — Y| < ¢ implies || f(X) — f(Y)] <e

" 1/2
— (;‘fi(X)_fi(Y)F) <e

= |fi(X)—fi(Y)| <e, Vi=1,2,....,m

Thus, f continuous at X implies each component f; is continuous at X.

Conversely, if each f; for i =1,2,...,m is continuous, then for £ > 0, there exists § > 0 such
that | X - Y| <déd = |fi(X) - fi(Y)| < ﬁ = || f(X) — f(Y)]| <e. Thus, it is enough to
consider f : R? — R for questions result regarding f : R* — R™.

2.2.3 Continuity in Euclidean space

Definition 2.2.2. Let D(C R?) and f : D — R. Then f is said to be continuous at X =

(x0,90) € D, if for every € > 0, there exists ¢ > 0 such that for all X = (z,y) € D, || X — Xo|| <
d = |f(X)— f(Xo)| < e that is, limx_,x, f(X) = f(Xo)
Negation of Continuity: Je¢ > 0 such that V6 > 0, 3X € D such that || X — Xo| <

6 but [f(X) — f(Xo)| = eo-

Proposition 2.2.3. If f : D(C R?) — R is continuous at Xq if and only if for every sequence
X, — Xo, implies f(X,) — f(Xo).

Proof. Let Xo = (z0,Y0), Xn = (Tn,yn). Suppose f is continuous at Xy. Then for each ¢ > 0,
there exists § > 0 such that

X = Xo|| <0 = [f(X) - [(Xo)| <e. (1)
Let X,, — Xy. Then for § > 0, there exists ng € N such that
n>ny = [ Xn—Xo| <6 = [f(Xn) - f(Xo)|<e  (by (1)) (2)

Thus, X,, — Xo = f(X,) — f(Xo0).

Conversely, suppose (2) holds, but f is not continuous at Xg, then 3&¢ > 0 such that V4§ > 0,
there exists X € D such that [|[ X — Xo|| <4 but [f(X)— f(Xo)| > eo. Take § = = > 0, then
there exists X, € D such that || X, — Xol| <1 but [f(X,)— f(Xo)| = e0. So X;, = Xo, but
F(X0) £ F(Xo). =
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Example 2.2.4. Define

0 otherwise

1 if 0
f(z,y) :{ w7

Then lim  f(x,y) does not exist. But if xy # 0 is replaced by xy = 1, it exists.
(2,y)—(0,0)

Exercise 2.2.5. Let f : R? — R, check the continuity of f at (0,0).

Ty e 9 2
— ifr* 4y  #£0
L f(oy) = V7
0 otherwise
2 fley) = @Y r,0) =0
. flz,y) = ———=2F, ,0) = 0.
Yy $2+y2
2
x
if 22 +y#0
3. flz,y) = {22 +y
0 otherwise
oy if 2% 492 #0
4 flz,y) = v+ v
0 otherwise
sinay g £0
5. f(x,y) =
0 otherwise
Using the epsilon-delta definition: Let f(z,y) = %, f(0,0) =0. For x =y, f(z,x) = %
x Yy

Thus, |f(z,z) — f(0,0)] = 1. Take ¢ = I, then there does not exist any § > 0 such that
VaZ+y? <6 = |f(z,y) — f(0,0)] < 1.

Composition of Two Continuous Functions:
Let f: D(C R?) » R and g : I(C R) — R be continuous, where f(z) € I for each z. Then

g o f is continuous.
Proof. Since f is continuous at z € D, for € > 0, there exists § > 0 such that
[z —yll <6 = [f(z) - fy)| <e. (1)
Similarly, g is continuous at f(x), so for n > 0, there exists p > 0 such that
t—f(2)l <p = |g@t) —g(f(z))] <n.

Given € > 0, choose 7 = €. Then from (1), ||z —y| <0 = |g9(f(x)) —g(f(y))| <n. Thus, go f

is continuous at x.
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Alternatively, let x,, — z, then f(x,) — f(z) and hence g(f(z,)) — g(f(z)).

O
Example 2.2.6. .
STy if xy #0
flz,y) =
1 otherwise
int
L
f(z,y) =pog(x,y), wherep(t)=4q 1
1 t=20

2.3 Differentiation in R"

2.3.1 Partial derivatives

Let D = (a,b) x (c,d) (or in general open set in R?). Let f: D — R. Let 2o = (70, %0),

of . flxo+h,y) — flzo,y0)
(%(xowo) = }ng(l) N

If this exists, we say f has partial derivative parallel to the x-axis at (x,y), and we denote it
by %(mo, yo) = fz(x0, o). In other words, for e > 0, there exists 6 > 0 such that

f(xo 4 h,yo) — f(xo0,v0)
h

f($0 + h7 yO) - f(l‘o, yO) = hfm($0> yO) + h’?(h)

where n(h) — 0 as h — 0 (let hn(h) = v(h)). f(zo+h,yo) — f(z0,y0) = hfz(xo,yo) +(h) where
v(h) = 0as h — 0.
Similarly, f(zo,y0 + k) — f(z0,y0) = kfy(z0,y0) + (k) where v(k) — 0 as k — 0.

Note: From the accompanying graph, one sees that the existence of the partial derivative in the

|h| <6 =

- f:r(x[h yO) <€

direction parallel to the z-axis depends only on the values of f along an appropriate line segment

through (xo,yo); it does not require f to be defined on an open disk around (zg, yo).

Example 2.3.1. f(z,y) = % £(0,0) = 0. Then £,(0,0) = 0 = £,(0,0) but £ is not
Z Yy

continuous at (0,0).

2.3.2 Directional derivatives

Directional derivative is the rate of change of a function parallel to a given direction.
Let 29 € D (rectangle or open set) and f : D(C R?) — R. Let v = (v1,v2), |v| = /v? + 03 =
1. Then the directional derivative of f at xg along v is defined by

- flxo +tv) — f(w0)

va(l'o) = %L}O t
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Note: The existence of the directional derivative of f at zg in the direction v depends only on
the values of f along a line segment through x( parallel to v; it does not require f to be defined

on an open neighborhood of xg.

Example 2.3.2.
2 .
rgy = [ it £
, 0 otherwise

t2v3vy 0 v2=0

PIOOZE AT T3 weo

»—xdw‘Hew

But f is not continuous at (0,0), for y = mz and so forth.

Example 2.3.3. Let D = (a,b) x (c,d) (or open convex set in R?), that is, (z,y € D =
Az + (1 =Ny € D, VA € [0,1]). Suppose f : D(C R?) — R such that fy(z,y) =0 = f,(z,y),
Vz,y € D. Then f is constant.

Since D is convex, (a,s) x {y} C D. Thus,
[ utwyyiz =0

f(s,y) = f(avy)

Let g(y) = f(a,y). Then 0= £ f(s,9) = d'(y) = [ ¢'(y)dy =0 = g(y) = g(c). Thus,
f(s,y) = fla,y) = g(y) = g(c) for all (s,y) € D = f is constant on D.

Remark: A similar proof will work for D open and convex.

2.3.3 Differentiability

Let D be an open set in R, Let H = (h, k), Xo = (z0,0). Then f is said to be differentiable at
Xo € D if there exists L € R? such that

f(Xo+H) - f(Xo)—L-H
| H|

er(H) = —0 as |H| —0. (*)
Notice that, since we need limit in () exists in a §-neighborhood of Xy, it means f is differentiable
along all directions including parallel to z-axis and y-axis.

The vector L is unique. Suppose not, then there exist M € R? such that (*) holds. Thus,

(L—M)-H

= et (i) =0 as [H] =0,
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Set H =tV, V # 0 in R?. Then,

L—-—M)-
Lo [T = M)V

=0 = [(L-M)-V|=0, VVeR?
=0 V]|

Consider V.= L — M, then |L — M| =0 = L = M. Hence, the derivative of f at Xy is
unique and we write L = f’(Xy). Since e(H) = f(XO+H)_]c||(;I(|‘|))_H'f,(XO) — 0 as |H| — 0. Set
H=tV,|V] =1

f(Xo+tV) — f(Xo) —tV - f'(Xo)
i1

as t — 0. Thus, V- f/(Xo) = Dy f(Xo). Put V = (1,0), then Dy f(Xo) = f+(Xo). Similarly,

V' =1(0,1), Dy f(zo) = fy(Xo).

Example 2.3.4. Let D be an open set in R? and f : D(C R?) — R be such that f, and fy both

are bounded on D. Then f is continuous.

e(tV) = -0

Proof.

f(@o+h,yo + k) — f(zo,90)
= f(@o + h,yo + k) — f(@o,y0 + k) + f(z0, 90 + k) — f(0,y0)
= hfy(xo+ 01h,yo + k) + kfy(x0,yo + 62k) (By Mean Value Theorem of one variable).

where 61,02 € (0,1).

Hence, |f(zo + h,yo + k) — f(zo,90)| < |h|M1 + |k|My < VA2 + K2,/ M? + M3 where
|fo(z,y)| < My, |fy(z,y)| < M; for all (z,y) € D. Thus, |f(xo + h,yo + k) — f(x0,y0)| —
0 as +h2+ k2 — 0. Therefore, f is continuous at (zg, yo)-

]

Exercise 2.3.5. Let Vf = (f, fy), as along as f,(Xo) and f,(Xo) just exist, then f need not
be differentiable at Xj.

Note: If f is differentiable,

Dy f(Xo) = f'(Xo0) = (f2(X0), fy(X0)) = Vf(Xo)

Example 2.3.6.

0 otherwise

fl < {3V 0

Then f is continuous at (0,0) and D, f(0,0) = i =2 or 0 if wy =0. But f is not
differentiable at (0, 0).

w2+ R~k
Vh? + k2
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k k
Skl VR R
For h =mk,m,k > 0, .
emk,k)=1— —— A0 as k—0
(mk, k) —_—

Exercise 2.3.7. Prove that

(22 + y?) sin xQ}ﬂP if 22 + 92 #0

flz,y) =

0 otherwise

is differentiable at (0,0) and f’(0,0) = (0,0). But none of f, and f, is continuous at (0, 0).

Theorem 2.3.8. Let D be an open set in R%. Suppose f, and [y are continuous in a neighbourhood
of (xo,y0) € D. Then f is differentiable at (z¢, o).

Proof. Since (zg,y0) € D and D is open, 3 > 0 such that Bs(zo,y0) C D. Let (xog+h,yo+k) €
Bs(x0,y0). Then consider

f(xo 4+ h,yo + k) — f(x0,v0) — hfz(w0,y0) — kfy(x0,Y0)
VhZ + k2

Since f, and f, exist in Bs(xo, yo) (say), one can apply the Mean Value Theorem coordinate-wise.
Thus,

e(h, k) =

(h, ) = hfe(xo+ 01h,yo + k) + kfy(xo, yo + O02k) — hfz(x0, yo) — kfy(x0, yo)
R N

where 0 < 01,02 < 1.
le(h, k)| < Vh? + k2 ((fx(ﬁvo +01h,yo + k) — fu(z0,90))* + (fy(20,y0 + O2k) — fy(ﬂfoayo))2)

Since f, and f, are continuous in Bj(zo,yo0), |e(h, k)] — 0 as Vh?+k? — 0. Thus f is
differentiable at (xg,yo)- O

Geometric Interpretation of Derivative:

For function from R — R. Let y = f(x0)+ f'(zo)(x—x0) Forn =1,y = f(xo)+f'(z0)(x—2x0)
(line passing through (o, f(20))). For n =2, z = f(zo,y0) + fa(x0, yo) (x — z0) + fy(z0, y0) (¥ — %0)
(a plane passing through (xo, o, f(z0,¥0)))-

2.3.4 Chain rule

IcR-%S 7 LR
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Let FF'= fog. If f and g are both differentiable, then f o g is differentiable.
Proof. Since f is differentiable at y = g(z),
fly+k) = fly) = 'k = kn(k) (1)

when n(k) — 0 as k — 0. Since g is differentiable at x, g is continuous. Set k = g(z + h) — g(z),
then h - 0 = k — 0. Since g is differentiable,

k=g(x+h)—g(x) = hg'(x) + hu(h),

where p(h) — 0 as h — 0.

Consider
_ fog(x+h)—fog(x)— f'(g(x))g (x)h
e(h) = h
_ S+ k) = fly) = F'(y)(k = hu(h))
h
Since 1 = ¢/@tu)

e(h) =n(k)(g'(x) + n(h)) + f'(y)u(h)
Since h -0 = k—0 = n(k) = 0. So €(h) — 0. Thus f o g is differentiable and
(fog)(x) = f(9(x))d (z)
O
Chain Rule for R? — R : If f and g both are differentiable, then f o g is differentiable and
(fo9)(z) = f'(9(x))d (x)
Proof.

fly+k)— fly) - f'(yk
1

n(k) = — 0

where ||k|| — 0. Since g is continuous, set K = g(x + h) — g(x), then ||k|| — 0 as |h| — 0. Since
g is differentiable at x,
k=g(x+h)—g(z) =hg () + |hluh)
that is,
&l < [hlllg" (@)1l + [Rll|(R)]

Now,
foglx+h)— fog(x)— f(g(z))g'(x)h
Al

e(h) =
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le(m)] < In(B)I(llg" @) + 1D + [LF @) (Rl

—0ash—0, because h >0 = k — 0

Thus,

Mean Value Theorem for Convex Domain:

Let D be an open and convex set in R?. Suppose f : D — R is differentiable. Then for
any z,y € D, there exists ¢ € D such that f(z) — f(y) = (x —y) - f'(c) where ¢ € (z,y) =
{Aa+(1-Ny:0< A< 1}

Proof. Consider
p(t) = f((1 —t)z +ty)

By the chain rule, ¢ is differentiable on (0,1) and
P't) = (1 -t)z+ty)- (y— )

By the Mean Value Theorem for one variable,

that is,

O

Function from R" to R™: Let D be an open set in R™ and f : D(C R™) — R™ be differentiable.

Then (20)
/ _ dfi(xo
fmo)_( Oz; >mn

Proof. We know that f : D C R™ — R™ is differentiable at x if there exists a A, x, matrix such

that

f(zo+h) — f(xog) — Ah
il

Let {e1,...,en} and {uq,...,uy} be the free standard basis for R” and R™ respectively. If

f="(f1,.--, fm), then fi(x) = f(x) - u;. In (1) substitute h = hje;, ||h|| = |hj],

e(h) =

— 0 as ||| — 0, (1)

f(xo+ hje;) — f(xo) — hyf'(x0)e;

e(hje;) = 7]

—0 as h; —0
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f(zo + hje;) — f(wo)
— hljHO , = f'(zo)e;j
= <8fi(x0)> exists and
al'j
0 fi(xo)
/ _
mXn
Ofi(xzo) .. 9Ofi(zo)
ox1 Oxn
9 fm(xo) - 9 fm(zo0)
Oy Ozn mxn

Write J¢ (o) = (%ﬂio))mxn. Then J; is called the Jacobian matriz of f.

Note: Existence of %ﬂ;ﬁo) does not imply that f’(zg) exists.

Example 2.3.9. f:R? - R?

2 2
fony) — (7% #L5) ifa?+y2 #0
’ (0,0) otherwise

Then f = (g,h).

J5(0,0) = <zx Zy> (0,0) = <8 8)

But f is not differentiable at (0, 0).
th th O 0 h
(h2+k2’ h2+k’2) - 00 k

h, k)| =
Je(r )] T
hk
leth, k)| = =L 40 as VAZFRZ = 0

h? + k2
Therefore, f is not differentiable at (0,0).

Example 2.3.10. Let f: R? - R :

f(z,y) = (e* cosy, e’ siny)

det (Jf(z,y)) = €** #0 = Js(x,y) is non-singular matrix V(z,y) € R?, but f is not one-to-
one on R?, since f(z, 27 +y) = f(z,y).
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Norm of a matrix (or linear map):
Let A : R® — R™ be linear. Then A = (Ry, Ry,...,Ry)", where R;’s are rows of A. Let
x € R™. Then
Az = (Ryz, Rz, ..., Rpz) € R™

and

el = /3 (Rial? < (IR ) o]
4z

o = V2 IR

Therefore, {”lﬁ"ﬂ” :x # 0} is bounded in R. Hence, it has a supremum. Let

If x #0,

A
|A]| := sup | Az]] < 00
a0 |||

Then
1) Azl <[[Alll|lz]|, vz eR™
(i) Al = supjp_y || Asl].

Example 2.3.11. Let A:R? = R, A(z,y) = 42 + 3y. Then

JA| = sup |4z +3y|= sup |4z +3V1— 22|
r2+y?=1 —1<z<1

Example 2.3.12. Let A : R? —» R% A(x,y) = (3z,4y). Then

|All= sup ||(3z,4y)|| = sup /9224 16y> = sup \/9562 +16(1 — 22)

z24y2=1 z24y2=1 0<z<1

Chain rule for functions from R" — R™:
Let D be an open set in R” and f : D C R" — R™ be differentiable and g : f(D) — R! be
differentiable. Then go f : D — R! is differentiable and

(g0 f)(z) =g'(f())f(x)
(where ¢/(f(x)) is an | x m matrix and f’(z) is an m X n matrix).
Proof.
_9y+k) —gly) — g Wk
= 4]

Since y = f(z) and f is continuous at z, set k = f(x + h) — f(z). Then ||h|| = 0 = ||k| — 0.

—0 as |k|—0
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Also,
1B = [1f(z + ) = f@)]| = |[f'(2)h + [[R]le(R)]

(since f is differentiable at z )

< @RI+ (IRl

that is, ) )
Thl < m{llf @) + lle(h)[I}
Now,
u(h) = 9° fl@+h)—go f(z) — g'(f(2))f'(x)h
[
_ 9y +k) —9) — g @k — [[hlle(h)
Il
_ &ln(h) — lIhllg’ (y)e(h)
[
< IR @)+ eI} + [lg" @) Hle(R)]| — 0

as ||h]| = 0. Hence, (go f)(x) exists and (go f) (x) = ¢'(f(x)) f'(z). O

Example 2.3.13. Let f : R — R be differentiable and F : R® — R be defined by F(z) = f(||=|?).
Then F is differentiable and F’(z) = 2f/(||=||?)z.
Let g(z) = ||z||> = 23 + - + 22. ¢'(x) = (221,229, ..., 27,) Thus,

F(z) = (fog)(z)

By the chain rule, since F' is differentiable and

that is,
F'(z) = 2f'(|lz|*)a

Exercise 2.3.14. Let F(x) = f(||z|**). Prove that F'(z) = 2k||z||**72 f' (|| z||**) .

FEuler’s Formula. Let f: R" — R™ be differentiable and f(rz) = r®f(z), Vr > 0 and some
a € R. Then f'(z)z = af(x).

Proof. Since f(rz) =r®f(x), ¥r > 0, differentiate both sides with respect to r.

) re) = ar* 7 (2)

r
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Putting r =1,
= f(2)r = af(z)
For n = 2,
af of
Tor + i af(z,y)
O
Example 2.3.15. If a > 0, f is continuous at 0. If o > 1, f is differentiable at 0.
Proof. (i) If « >0, f(0+h)— f(0) = f(h). Take h = ||hljv, with |jv]| =1
1£(0+h) = FO) = [RI*[lf ()| =0 as [[A] =0
(i) If a > 1,
of f(O+ hjej) — f(0)
——(0) = lim
OJ:J h—0 hj
= lim Ihs1° 7 (es) —0ash; -0 (sincea >1)
h—0 h;j
= J;(0) = 0 (m x n matrix)
FO+h)—f(0)—=Jr(0)h h||®f(v
17l 17l
—0as|h|—=0
O
Mized Derivatives: Let D C R™ (or R?) be an open set.
afy _ 0% f
62f
Example 2.3.16.
$2_y2 2 2
S, + 0
fay) = | VmRe TV
0, ?+y? =0
af f (hv O) — fy(oa 0)
£y2(0,0) = Z12(0,0) = Jim S
o F(hE) — £(0.0)
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So,
. h—=0
fyx(oao) - }LE%T =1
Similarly, f»(0,0) = —1 # f,2(0,0).
Notations: C1(D) — set of all continuously differentiable functions on D whose derivative is
continuous (that is, f, and f, both are continuous).

C?(D) - set of all functions on D whose partial derivatives up to second order are continuous.

(that is, fz, fy, fey,fya, foa, fyy are continuous.)

Theorem 2.3.17.  If D is open and f € C*(D), then fuy(x0,y0) = fyz(z0,Y0)-

Proof. Since D is open and (zg,y0) € D, there exists an open ball Bs(zg,y0) C D or one can

draw a rectangle. Let

F(:E,y) :f(xvy)_f(x()ay)—i_f(x()ayo)_f(xvyo) (1)

Again, let A(z,y) = f(z,y) — f(zo,y). From (1), we get F(x,y) = A(z,y) — A(z,y0) By the

mean value theorem,

0A 0 0
F@wﬁ=&A%m@—m)Zgiwmﬂwi@mmX%ww where 1= yo+(y—y0)01,0 < 6 < 1

2
Fla,) = 5ot (€ — a0y — )

where £ = z¢ + (z — x9)f2, 0 < 02 < 1.

Flay)  _ &f
(x —z0)(y — o) Oy

(&n)

Since (z,y) — (xo,y0) = (&,1) — (z0,yo) and % is continuous at (zg, yo),

lim F(z,y) _0f
(z,y)—=(zo.w0) (¥ — x0)(y —yo)  Ox0y

(20,%0) (2)

Similarly, let B(z,y) = f(z,y)— f(x,y0). Then F(z,y) = B(x,y)— B(xo,y). It is straightforward

to verify that
Flz,y) _ 9*f

lim —
(z,y)—(zow0) ( — x0)(y — yo)  Oyox

(20, Yo) (3)
Thus from (2) and (3),

ﬁ( )= ﬁ( )
910y Zo,Yo) = Byd Z0, Yo
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Note that if f € C?(D),D C R", then

62f 82f
= L, k=1,2,...
al'jal'k 6xk6xj’ Vj, k T M

2.3.5 Taylor’s theorem

Theorem 2.3.18 (Taylor’s Theorem). Let D be an open set in R? and f € C%(D). Then there
exist A € (0,1) such that

f(X+H)=f(X)+ f(X)H+H'f"(C)H,

where C' = X + AH and ||H|| < 9.

Proof. Let g(t) = f(X +tH), so g(t) = f o ¢(t) where p(t) = X +tH.

= hfz(p(t)) + kfy(p(1))
g"(t) = n(f2)'(p(£)¢'(t) + k(fy) (2(£))# (2)
= h(fea(p(1)) fay (P(0)) H + E(fya(0(8)) fuy (0 (8))) H

— Ht <f$x((p(t)) fmy(‘)@(t)
fya (@) Fyy((t)

Since ¢(0) = f(X), g(1) = f(X + H), the Mean Value Theorem for one variable gives:

;) H where H'= (hk) (row vector)

9(1) = 9(0) + (0) -1+ 5" (V).
So, .
FOX 4+ H) = F(X) + f/(X)H + BT f(O)H
where C' = X + \H and ||H|| < 4. O

Theorem 2.3.19. Let f : [a,b] — R™ be differentiable on (a,b) and continuous on [a,b]. Then
there exists A € (a,b) such that ||f(b) — f(a)|| < ||f'(N)](b—a)

Proof. Let g(t) = (f(b) — f(a)) f(a+ (b—a)t). Then ¢'(t) = (f(b) — f(a)) f'(a+(b—a)t)(b—a)
(by chain rule). Since g : [a,b] — R is differentiable, by the Mean Value Theorem, there exists
A € (a,b) such that

g(b) — g(a) = g'(N)(b — a)
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1£(0) = f(@)lI* = (f(b) = f(a)) - f'(N)(b—a)
<) = @)l - 17 NI = a)
Thus,
1F(0) = f@l < [/ NI~ a)
O

Theorem 2.3.20. Let D be open in R™ and f: D C R™ — R™ be differentiable at X € D. Then
there exist X € (0,1) such that ||f(X+H)—f(X)|| < ||f(C)|||H||, where C = X+XH, |H| <e
(for some A > 0).

Note: Equality need not hold. For g : (—1,1) — R2,

g(t) = (>, 1~ %)

Suppose
9(1) —g(=1) =g (N1 - (1))

1
(2,0) = 2(3\%, —2)\) = A =0,+——

V3

Butx =13 y=1—1t2 2%=(1-y)3, has no tangent parallel to x-axis.

Proof. Let g(t) = f(X +tH). Then g : [0,1] — R™ is differentiable. By previous Mean Value
Theorem, 3 X € (0,1) such that

lg(1) = g < llg'(MII(1 - 0)
IF(X+ ) = FOOI < IO < IF@IIE], € =X +AH
where ¢'(\) = f'(X + \H)H. O
Notations:
(i) Lp(R) = space of all linear maps from R" to R"™.
(ii) GL,(R) = {A € L,(R) : AA™! = I'}= set of all invertible matrices.

Proposition 2.3.21. Let A € GL,(R) and B € L,(R) be such that |B — A|| <
(i) B € GL,(R) (that is, GL,(R) is open in L,(R)).
(ii) A A1 is continuous on GL,(R).

m. Then

Proof. Let a = ﬁ’ B =B — A|. Then 5 < a. For x € R", write

allzll = af| A7 Az|| < o A71|]| Ax]

53



2.3. Differentiation in R" MAZ224: Real Analysis

that is,
al[z| < ||Az|| = [[(A — B)z + Baz|| < |A — Bl|[|z]| + || Bz|
= (a—pB)llz]| < [|Bz| (1)

(i) If Bz = 0, then (o —p)||z|| =0 = x = 0. Since B is a one-to-one linear map from R” — R",
so B is onto.
(ii) Put 2 = B!y in (1), then

1B~ yll 1
< ; y#0.
[yl a—f
B! 1 1
sup || y” S — ”B—IH <
v20 Yl a—p a—f
Now, .
Bl Al =BYA-BA | <||[A-B|=——5 -0 as A—B
| =B~ JAT <] ||2(a e
Hence, the map A — A~! is continuous. O

Note: A+ A~!is one-to-one map, because A~ = B~ — A= B.

Example 2.3.22. Let f : R — R be one-to-one and onto, and f is continuously differentiable at
ro € R such that f/(xg) # 0. Then f~1! is differentiable at yo = f(x0) and

1y 1
(f 1) (y()) = f,($0) :
Proof. By
F N yo+k) = fHwo) = 7=
e(k') _ ’ ’ f (1‘0)

||
Let b = f~'(yo+k)—f'(w0), wo+k= f(zo+h)and k= f(xo+h)—f(xo) = h-f'(xo+06h)

for some 6.

Since f'(xg) # 0, 3§ > 0 such that f'(z) # 0 for all x € [xg — §, 29 + d]. So |f'(z)| >m >0
for all x € [xg — d,z¢ + d]. Choose h small such that zg + 0h € [xg — d, 29+ 0]. |k| > |h|m. Thus
k—0 = h—0.

F(@0) | (o) = f'(wo + )| 0

[ — Lot fe)
T @t h) — f@o)l 1o+ ) F @) [ (wo)

le(k)]

=0 (sincef’ is continuous at xq)

O

Note: If f=1 is differentiable, then f~'o f(z) = x and (f~1)(f(x0))f (z0) = 1.
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2.4 Inverse and implicit function theorems

2.4.1 Inverse function theorem

Theorem 2.4.1 (Inverse Function Theorem). Let 2 be an open set in R™. Suppose f : Q C
R™ — R™ be a C' map such that det f'(z¢) # 0. Then

(i) 3 open sets U and V C R™ such that f: U — V (= f(U)) is bijective.

(i) f~' is a C' map on V, and
(f~1) (f(w0)) = (f'(w0)) ™"
Proof. Let A = f'(x¢). For y € R", define ¢ : Q — R™ by

o) =z+ A (y— f(z)) (1)

Then p(z) = z if and only if y = f(z) (that is, x is the fixed point of ¢ if and only if y = f(x)).

Since f’ is continuous at xg, for € = m > 0, there exists 6 > 0 such that

o —aoll <8 = If'w) = @0l < g
Let U = Bs(zg) = {x € R" : ||z — x| < 0} and V = f(U).

(i) Claim: f is one-to-one on U.
Now, ¢'(z) = I+ A7 f'(x) = A7 (A — f'(x)). Thus, [|¢/(2)]| < [ATYIA - f'(2)]| < 5
If 21,29 € U, by the Mean Value Theorem for ¢,

1
le(an) = e(@2)ll < ¢ (21 + Az — z))ll|21 = z2]] < 5llz1 — 2]

So, ¢ is a contraction on U. Hence, ¢ can have only one fixed point. Hence, y = f(z) for

at most one z € U. Therefore, f is one-to-one on U.

(ii) Claim: V is open.

Let y* € V. Then y* = f(z*) for some z* € U. Then 3r > 0 such that B,(z*) = {zr € U :
|z —a*|| <r} CU.

Now, it is enough to prove that, whenever

% T
Hy—y\|<m:>y€‘/ (2)
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Suppose ||y — y*| < m. Then

lo(@®) = 2| = A7 (y =y

_ r
<[A7Mllly = v"ll < 5-
If z € B.(z%) ={z € Q: ||z —2*|| <r}, then

le(x) — 2™ < llp(x) = (el + [le(z®) — 27|
<She-atl+5 <
Slle—z 5 <7
So z € B.(z*) = ¢(x) € By(2*). ¢ : B.(2*) — B,.(z*) is a contraction mapping.
Then ¢ has a fixed point z € B,(z*) such that p(z) = x if and only if y = f(x). Now
y = f(x) C f(Br(z*)) C f(U)=V. Thus, V is open and hence f : U — V is one-to-one
and onto (with V' = f(U) open).
(iii) Claim: f~1:V — U is differentiable at f(zo).
Let y € V, then y + k € V (since V is open) for small ||k]|.
Let h=f"Y(y+k)— f~1(y). Then k = f(z + h) — f(z) (since f~1(y) = x). Now,

ox+h)—px)=h+ A (f(x)- f(x+h)=h—- A1k

— - A7 < 58]
= ||A]l < [Ih — A7 k|| + | A7 k]
< Sl + 1 4n]
that is, 1
Slnll < 4"k @)
< [l A7l
Now, B - y B
mm_f(m+m—fﬁ?—ﬁ (20)) "'k
_ (F@o)) M (f (o) — (f(wo + 1) — f(w0)))
I
"z -1 T _ z0) — f'(z
2[A—H]

—0 as h—0 (sinceck—0 = h—0)
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= (f7)'(f(z0)) = (f'(0)) ™"

(iv) f~!is continuously differentiable that is, (f~!)" is continuous. Need to prove (f~1)(yo) =
(f'(z0))~t. Since A — A~ is continuous on GL,(R), (f~1) is continuous.

Example 2.4.2. Let f : R? — R? be defined by f(z,y) = (x — e, y — €*). Then

1

f(0,0) = ( 1) . det f'(0,0)=2#0

Hence f is one-to-one in a neighborhood of (0,0) and

-1

(f7Y(£(0,0)) = (f'(0,0)~ = (_11 1)

2.4.2 Implicit function theorem
Consider f: R? = R by f(x,y) = 22 + 3% — 1. Then f'(x,y) = (2x,2y).

off  _, o

=2, =0
ox (1,0 ay

(1,0)

Then one can draw a ball centered at (1,0) such that of radius r < 1 such that f(¢(y),y) =0,

that is,
r=p), lyl<r<l, oy =1-y>

However, one cannot draw a ball of any radius around (1,0) such that f(z,v(z)) = 0, that
is, y = ¢(z) for |x| < r, even r very small. Because, for any r > 0, one cannot write
Y(z) =+v1—22 as x> 1 will be included in any ball around (1,0).
However, at any point on the circle, other than (+1,0) and (0,£1). One can solve x and y
simultaneously in a small neighborhood of the point.
Now, consider a linear map
A:R" x R™ —» R"

Then (h,k) € R" x R™, (h,k) = (h,0) + (0, k).
A(h,k) = A(h,0) + A(0,k) = Ayh + Ak (say)

Lemma 2.4.3. If A, is invertible (A, € L,(R)), then for each k € R™, there exist a unique
h € R™ such that h = —A 1A k
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Proof. A(h,k) =0 <= A,h+ Ayk = 0. Since A, is invertible, h = —A;'A, k. Now, let
Q C R” x R™ be an open set and f : Q) C R" x R™ — R" be differentiable.

f:(flw"vfn)

fi:QCR"xR™ 5 R

ofi ofi ofi of; >
/ f— .. DY ..
o) = (5o @) g ) 5 ) g0 )

ofh ... Oh 9h .. Oh

oz O0Tn oY1 OYm

ff=1: : : :
Ofn ... Ofn Ofn .. Ofn
0z Oxyn  Oy1 OYym nx(n4+m)
8xj T ayk Y1 nx(nt+m)

= (Ar Ay)

Then A, : R™ — R" is linear and A, : R"™ — R" is linear, where A, = (gi;) , Ay = (gg;) .
T Y

Theorem 2.4.4. Implicit Function Theorem: Let ) be an open subset in R™ x R™. If
f:QCR"xR™ — R" be a C* map, with f(zo,y0) = 0 and det [f'(z0,0)], # 0 for some
(xo,y0) € Q. Then

(i) There exist open sets U C R™ x R™ and W C R™ such that for ally € W there exist a
unique x € R™ with (x,y) € U and f(x,y) = 0.

(it) If x = g(y), then g : W C R" — R" is C' map, g(yo) = xo, f(9(y),y) =0 for ally € W
and ¢'(yo) = —A;'Ay, where Ay = [, Ay = f,.

that is, f will vanish on a curve x = g(y).

Proof. (i) Let F: Q — R" x R™ by F(z,y) = (f(z,v),y). Then F is a C'-map, and

{f'(xo,90)}z  {f'(zo,90)}y

F'(zo, =
(20, Y0) 0 ;

det F'(xg,y0) # 0. Therefore, by the Inverse Mapping Theorem, there exist open sets
UCR"xR™and V C R” x R™ such that F : U — V is a one-one onto C'-map.

Let W ={y € R™:(0,y) € V}. Then W is open, because V is open. Since F' is onto, for
yew,
(0,y) = F(z,y) = (z,y) € U.

= f(z,y)=0, VyeW.
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Suppose, for this y, there exist (z/,y) € U such that f(z’,y) = 0. Then

F(e',y) = (f(@,9),y) = (f(z,9),y) = F(z,y).
Since F is one-to-one on U — 2/ = z.

(ii) Define x = g(y) for y € W. Then

(9(y),y) €U and f(g(y),y) =0 (*)

= F(9(y),y) = (0,y) YyeW.

that is, F~'(0,9) = (9(y), v)-
By the Inverse Mapping Theorem, F'~! is a C''-map, hence g is a C'-map.

To compute ¢'(yo), consider f(g(y),y) =0, y € W. Differentiating with respect to y and

using the chain rule, we get

Let A := f'(z0,y0), then
/
(4: 4)) (g (y(’)) =0
1
= Aug'(yo) + Ay =0 = ¢'(yo) = A7 4,y

O
Example 2.4.5. Prove that 22 + ye® — sin(zy) = 0 can be solved for y in a neighborhood of

(0,0), but cannot be solved for z in any neighborhood of (0, 0).
F(z,y) = 2® + ye — sin(ay) (1)

(i) F(0,0) =0, %—5](070) = 1 # 0. By the implicit function theorem, there exists a ball around
(0,0) and an interval for z such that F'(x,¢(z)) =0 or y = g(x) for |z| < r.

(ii) %](0,0) = 0. Hence, the implicit function theorem cannot be applied.

On the contrary, suppose z = ¢(y), then 0 = ¢(0) and

(3(y))* + ye?™ —sin(¢(y)y) =0
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for |y| < r for some r > 0. Then
26(0)¢/(0) + 1% +0- ?0¢/(0) — cos(6(0)0) (¢/(0)0 + 6(0) - 1) =0
= 1=0 (contradiction)
Example 2.4.6. Let f: R x R? — R?
f(x,y,z) = (ze¥ + ye*, xe® + ze¥)
Then f is a C'-map.

z

f/(‘,r7y7z) = (

e¥y xe¥ + e? ye?
e zeY xe® 4 e¥
f(_la 17 1) = (070)

Let f = (f1,f2). Then

0fi 90fi
O 9y 0 e
o 8 | o= (0 0)
dy 0z

By the implicit function theorem, there exists an open ball U in R3 and open ball V' in R?, such
that
(y,2) = (¢(x),9(x)), |z| <r for somer > 0.

Exercise 2.4.7. Let f : R?> — R be a C'-map such that f(0,0) = 0, f,(0,0) = 1. Let
F(z,y) = (f(z,y),y). Prove that F is injective in some neighborhood of (0,0). Does F' remain
injective in any neighborhood of (0,0)?

Remark: Condition in implicit function theorem or inverse mapping theorem on derivatives are

sufficient.
Example 2.4.8. f:R? = R, f(z,y) = 2% — 3.
£(0,0) =0,

of

5, (0:0)=0.

but y = x2/3 is a solution of f(x,y) = 0 near (0,0).

Example 2.4.9. Let f:R? = R? f(x,y) = (23,y3). Then det f/(0,0) = 0 but f is one-to-one,

onto.
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Chapter 3

Lebesgue Measure and Integral

This chapter presents the measure-theoretic foundation of modern integration. Motivated
by limitations of the Riemann integral, we build Lebesque outer measure, deduce its main
properties, and define Lebesque measurable sets, including instructive examples such as the
Cantor set and the existence of non-measurable sets. We introduce measurable and simple
functions, define the Lebesgue integral, and develop the main convergence principles—the
monotone convergence theorem, Fatou’s lemma, the dominated convergence theorem, and the
bounded convergence theorem—together with a useful estimate (Chebyshev’s inequality) for

controlling the size of level sets.

3.1 Syllabus map

We introduce the measure-theoretic approach to integration: we build Lebesgue measure from
outer measure, define measurable functions, construct the Lebesgue integral, prove convergence

theorems, and introduce the L? spaces.

3.2 From Riemann to Lebesgue

3.2.1 Limitations of the Riemann integral

Let f : [a,b] — R and f is bounded on [a,b]. Then f € Rla,b] (that is, f is Riemann integrable)
if and only if f is almost continuous. However, there are functions which are neither almost
continuous nor bounded and so forth.
U EL N O R S

0 zeQn]o,1]
Then inf U(P, f) =1 and sup L(P, f) = 0. = f ¢ RI[0,1].
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11
(11) /0 7 dt, ft) = % is not bounded near “0”. However,

/11dt—2(1—1)<2
Ve '

Question is should we write

(111) /oo L /n L gt —tann< T

e =tan  n < —.
o 14627 0o 1+1¢2 -2
Does it suitable to rewrite

> 1 no1 m
—dt= /7dt:—?
/0 e @7 The Y T2

3.3 Measure and measurability

3.3.1 Sigma-algebras and measures

Definition 3.3.1. Let X be a nonempty set. A collection A C P(X) is called a o-algebra on X
if.

(i) X € 4
(i) if E € A, then E€ € A,
(iii) if (En)n>1 C A, then U,> En € A.
The pair (X, A) is called a measurable space. Elements of A are called measurable sets.

Definition 3.3.2. A function p : A — [0, 00] is a measure if u() = 0 and p is countably additive.
The triple (X, A, u) is called a measure space.

3.3.2 Lebesgue outer measure

For open (closed) interval I = (a,b) assign the length ¢(I) = b — a. For I = (a,00) or (—o0,b),
we assign ¢(I) = co. Now, the question is to assign an appropriate length to an arbitrary subset
of R. If O C R is open, then O =, I,, I, = (an, by) and I, N I, = @ if n # m. In this case, one
can consider ¢(O) = > 07, ¢(I,,). However, it A CR, A C O C R. Hence, A C ;2 I5,. Thus,

we have an over-estimate for length of A. that is,

0(A) <> (1), such that A C | J In.

n=1
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Therefore, we assign a number to A via
m*(A) := inf {Zﬁ([n) A C Uln}

where m*(A) denotes the outer measure of A.
Notice that we do not require disjointness in the cover {I,, : n € N} of A. Moreover, I,, could be

any type of interval, for example, (an, by) or [an,by) or [an, by or (an, by].
Since ¢ C (0,€),Ve > 0. Then m*(¢) < €,Ve > 0. Hence m*(¢) = 0.
For a € R,

€
{Q}C(Q_iga‘i‘i)
<e Ve>0

= m"({a})

= m*({a}) =0.

3.3.3 Basic properties of outer measure

(i) If A C B, then m*(A) < m*(B).
Let B C U,, In, then A C ,, I,. By definition m*(A) < > 4(1,); B C U,, In.
= m*(A) <inf{} 4(1,) : U, In D B} = m*(A) <m*(B).

(i) If {An}52, is a sequence of subsets in R, then

m* (U An> < Zm*(An)

By definition of infimum, for € > 0, 3 a cover {I,, 1}, 0f A, such that
>zt UIngk) <m*(An) + g7 (if m*(Ap) < 00).
Thus, {I,;:k=1,2,...,n=1,2,...} is a cover of ;2 Ap.

Therefore,
. oo oo 00 oo . ¢ o .
m (U An> < ZZE(IMC) < Z <m (An)+2n> < Zm (An) +€ Ve>0
n=1 n=1k=1 n=1 n=1
Thus,

Example 3.3.3. If A C R is countable, then A = {a1,a9,...} = U2 1{a;i}

m*(A) <Y m*({a;}) =0 = m*(4) =0.
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Thus m*(Q) = 0. Alternatively, one can think,
€ €
QcC U (Tn_2|”+1’ Tn+2|n|+1>
nez

€ €

x _°
— Q) <3 (g ot o) =50 VeSO
Proposition 3.3.4. If I is any interval with end points a and b. Then m*(I) =b — a.

Proof. We prove the result for each type of interval. Suppose I = [a,b] and m*(I) = b — a. Then

for I = (a,b), one can deduce that

€

€
Zp—
[a+2, 5

] C (a,b)

therefore m* ({a + %, b— ;}) <m*{(a,b)}

that is,
b—a<m™{(a,b)}

Now, (a,b) is a cover of itself, so
m*{(av b)} < g{(aa b)} =b-a

Other covering can be done in similar way. Now, consider the case of proving m*([a,b]) = b — a.

1

1
[a,b] C (a—,b+>, Vn > 1
n n

2
m*([a,b]) <b—a+—- —b—a
n

On the other hand, suppose [a,b] C U2 I,,. Then [a,b] € U¥_; I, (Exercise)

(Hint: use Bolzano—Weierstrass theorem.)

By induction,
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= b—a< ZE(IH) for {I,};2, that cover [a,b].

n

Il
—

Hence,

Example 3.3.5. Let A C R and € R. Then for A+ 2 ={a+ 2 :a € A}, we have
m*(A+x) =m*(A).
Let A c U, In. Then A+ x C U, (I + x) that is, {I, + x}5°; is a covering of A + x. Hence

m*(A+z) <Y UL, +2) =Y UI)

for all cover {I,,} of A. Therefore, m*(A+xz) < m*(A). By replacing x — —x, m*(A—z) < m*(A).
Replacing A by A+xz, m*(A) < m*(A+z). Thus, m*(A+z) = m*(A), that is, m* is translation

invariant.

Proposition 3.3.6. Let A C R and ¢ > 0. Then 3 an open set O D A such that m*(O) <
m*(A) + € that is, m*(A) = inf{m*(0) : O D A, O open}

Proof. By definition, for € > 0, 3{I,,} that cover A such that
ZE(In) <m*(A)+e (if m"(A) < 0.)

But m* (U1n) < > 4(I,) <m*(A) +e Let O=UI,. Then m*(0O) < m*(A) +e. O

Theorem 3.3.7. If A C R, then 3 a Gs-set G C R such that m*(A) = m*(G).

Proof. By the previous result for € = 1, 3 an open set O,, D A such that

n

m*(Oy) < m*(A) + %

Let G =N Oy, (a Gs-set in R). Then A C G C O,,. Thus

m*(A) < m*(GQ) < m*(On) < m*(A) + %

So m*(A) < m*(G) <m*(A)+ L, vn>1 = m*(4) = m*(G) O

Example 3.3.8. Let E = JE,, E, C R. Then m*(E) = 0 if and only if m*(E,) = 0 for all
n € N.

65



3.3. Measure and measurability MAZ224: Real Analysis

Solution: m*(E) < > m*(E,) If each of m*(E,) =0 = m*(E) =0.
Conversely, suppose m*(E) = 0 and m*(E,,) > 0 for some ng € N. Then for e = m*(E,,) >
0, 3 a cover {I;} of E such that

5" UI) < (B) + (B

But E,, CE C Ui, = m*(En,) < (1), that is,

which is a contradiction.

Example 3.3.9. Let O = {J I,,, I, open intervals. Then m*(O) = > {(I,,).
For € > 0, 3 a cover {Ji} of O such that

ZE(Ik) <m*(0)+e (1)
Now, U1, = O C U Jg. Since I,,’s are disjoint, each I, C Jj p,

U(I,) < l(Jkn)

- i E([n) < i K(Jk’n) < i K(Jk) < m*(O) +eée
n=1 n=1 n=1

= iﬁ(-’n) <m*(O)+e, Ve>0
n=1

Corollary 3.3.10. If {O;}5°, is a family of disjoint open sets in R, then

=1 i
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Question 3.3.11. What are all those sets for which m* is countably additive, that is,

m* (U En> = Z m*(E,)?
n=1 n=1

Example 3.3.12. Suppose G is an open and bounded set in R. Then for Ve > 0, there exists a
compact set K C G such that m*(K) > m*(G) —e.
Since G is bounded, G C [a, f] = m*(G) < f — a < oo. Further, G is open, therefore

G = UIn = m*(G) = ZE(In) < 00

So for € > 0, there exists NV € N such that

Sl < < (1)
n=N+1 2
Let
N €
K = n ; bn - ) In = nab
nL:Jl [a TIN 4N] (40 bn)
Then
N € €
(K) = * n 5 Un EN
m*(K) ;m{a+4N 4N}
N 3 N €
= UI,) — — | = LI,) — =
;<( )=o) PCARE
Therefore,

n=1
N o0
> Z o1,) + Z UI,) —¢
n=1 n=N-+1
=m*(G) —¢

Proposition 3.3.13. If [a,b] N [c,d] = 0 then
m*([a,b] U [¢,d]) = m*([a, b]) + m*([e, d]).

Proof. Since [a,b] N [¢,d] = 0. Then [a,b] and [c,d] will be separated by some distance ¢ > 0.
(Why?)
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Suppose [a,b] U [c,d] C UI. Then

[a,b) C | JUInN(a—eb+e))={]JI, (Say)
[e,d] C U(I" N(c—e,d+¢)) = UI,’{ (Say)

Then I}, N I]' = 0, for all n,m > 1.
= m*([a,8]) +m*([e,d]) <D (I,) + D UI})

=Y UL, uIL)=> H{I,N((a—eb+e)U(c—e,d+e))}

n

m*([a,b]) + m*([c,d]) < ZE(In)
=1
m”([a,b]) +m*([e,d]) < m*([a,b] U [c,d])

Since m* is countably subadditive, other inequality holds. O

Observation: If G is an open and bounded subset of R, then for each € > 0, there is an open
set O and a compact set K such that K € G C O and m*(O) — m*(K) < e.

In general, we fail to write
m*(B\ A) =m*(B) —m*(A)

for A C B (we shall see example later).

3.3.4 Lebesgue measurable sets

A set E C R is said to be Lebesgue measurable, if Ve > 0, there exists open set O and closed set
F' such that
FCECOand m*(O\F)<e

Note: m*(O\ E) <m*(O\ F) <ecand m*(F\ E) <m*(O\F)<e.

Thus, one can interpretate that Lebesgue measurable sets are approximately open and closed.
Proposition 3.3.14. Let M denote the class of all Lebesgue measurable subsets of R. Then
(i) If E € M, then E€ € M. O° C E° C F¢ and m*(F°¢\ O°) < ¢.

(it) If m*(E) =0. Then E € M.

For e > 0, there exist O D E such that m*(O) < 0+¢. Let F' be any closed set in E. Then
m*(F) <m*(E) =0.

therefore m*(O \ F) < m*(O) <e. Thus, E € M.

(iii) If {E,}°, C M, then E = >, E, € M.
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Write E!, = E, \ U= Ei, then J E!, = U E,, where E!, are pairwise disjoint sets (that is,
E/ NE! =0 forn#m). Thus, without loss of generality, one can assume E =Jo° | E,,
E,NEy, =0 1in+#m.

Suppose m*(E) < oo, then m* (E,) < m*(E) < co.
Fore >0, 3 F, C E, C Oy such that m*(O, \ F;,) < 57. Now,

k k k
> m*(0n) < Z m*(On \ F) + > m*(F,
n=1 = n=1
k
< Z —+m" (U Fn> [ since F,, is closed and bounded]
n=1

<e+m*(F) < oo, Yk > 1.
that is, 3021 m*(Opn) < o0. Fore >0, 3 ng € N such that 3272, .1 m*(Oy) <&,
Let O =Uy21 Oy, and F =\J,° 1 F,,. Then,

rovm=o((Goul 0,0 ()

Sm*(Lj( n\F) ( U O) (sinceAUB\C =(A\C)U(B\())

n=1 n=ng+1

< i m*(On \ Fp) + i m*(On)  (Fp C En C Oy)

n=nop+1
< Z —+t¢

< 2e.

that is, F C E C O and Ve >0, m*(O\ F) <2 = E & M.

If m*(E) = oo, write E = ez EN [k, k+ 1) = Upez Ak and can be done in similar way.

(iv) If E1,FEs € M, then E1 U Ey = Ey U (E2 \ Ey). But fore >0, 3 0; D E; D F; such that
m*(O; \ F;) < §;1=1,2.
For O=0,UQ09, F = F, U Fy,

O\F:O(Oi\Fi) — m*(O\F)<e

(E1NEy)°=E{UE; €M, since E € M
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= m"(O\F)<e, O°CE°CF*°
m*(F°\ O°) =m*(F°NO) <e
Thus, M is closed under countable union/intersection and complement.
Note: such family of sets is called a o-algebra.
Definition 3.3.15. If 7 C P(R) such that
(i) Ae J = A°e J.
(i) A, € J = U2, A; € J, then J is called a o-algebra of sets.
BR)=0c({(a,b): a,be R, a <b<oo}) (Borelo-algebra)
is the o-algebra generated by countable union and complement of sets of type (a,b) and a,b < oc.
Proposition 3.3.16. Let a,b€ R anda <b, b—a < oo. Then I = (a,b) € M.
Proof. For € >0, [a+¢,b—¢] C (a,b) and
m*{(a,b) \ [a+¢e,b—¢]} =m™{(a,a+e)U (b—¢,b)} (for small £ > 0)
<m*{(a,a+¢e)} +m*{(b—¢,b)}

= 2¢

Since I is open, it follows that (a,b) € M. Now [a,b) = {a} U (a,b) and m*({a}) = 0
= {a} € M and (a,b) e M. = [a,b) and [a,b] € M

Thus, any open set O = |J,, I, € M. Since M is closed under complement, any closed set
Fe M. O

Example 3.3.17. If A, B C R such that m*(A) = 0. Then m*(AU B) = m*(B).

since m* (AU B) < m*(A) + m*(B) =m*(B) <m*"(AU B)

Proposition 3.3.18. Let x € R and F € M. Then x + E € M.

Proof. For € > 0, there exist ' C E C O, O open, F closed such that m*(O \ F) < e.
But F' + z is closed and O + 2 = J(I, + =) is open with F' +2 C E+ 2 C O + z.
Now, m* (O +z\ (F+2z)) =m*(O\ F) <e. O

Example 3.3.19. Verify that.
(i) (F42)¢=F°+uz.
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(i) O+x)N(F+2)=0NF°~uz.

(Hint: z¢ F+o = z—2¢F = z—x € F° = z € F° and so forth).

Theorem 3.3.20. If E = ;2 E,, E, € M. Then
o0 o)
v (U ) =S
n=1 n=1

(i) Suppose E is bounded, then m*(E) < co = m*(E,) < co.
For e >0, 3F, C E, C Oy, such that m*(O, \ F},) < 5=.

Now,
k

k
Som*(Ey) < 3 (m*(Fa) +m* (05 \ F))

n=1 n=

—_

(sinceEy, = (Ey \ Fr)UF, C (O, \ Fn)UF,)

Since Fy,’s are compact (closed and bounded).

n=1
k k
— S mA(Ba) <m*(B) < Y m*(E,)
n=1 n=1

Now, suppose E is not bounded. Then, as

R=J(kk+1],
k=1
let
Ay=En(kk+1],  Enr=FE,0(kk+1].
Then
E=J 4, E,=J Enp
keZ keZ

Now,

D m (En) <D0 m (Eng)
n=1

n=1keZ

71



3.3. Measure and measurability MAZ224: Real Analysis

Since Ay, = Un—q Enk, Ak is bounded.

m*(Ax) = D m*(En) (2)
n=1
therefore im*(En) < i m*(Ag) (3)
n=1 k=—00

Zl: m*(Ag) = m* ( LlJ Ak) <m*(E), VIi>1

k=—1 k=-1

If m*(E) = oo, okay, identity holds trivially. As

m*(E) < Z m*(Ey), let m*(E) < oo,
n=1

- i m*(Ax) < m*(E) (4)

k=—0o0

[e.e] (e}

— S m*(E,) <m*(B) < 3 m*(En).

n=1 n=1

3.3.5 The Cantor set

The Cantor set is an uncountable set in [0, 1] having zero length with many peculiar properties,
answering some of the difficult questions related to topology of real line.
Let Cy = [0, 1].

=
wino

1
ES

0

Delete middle one-third open interval J; = (%, %) from Cy. Then

Delete one-third open interval from each section of C, and let

1 2 7 8
S = (9’ 9> . (9’9>
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Then,

Thus,
o Cp=10,1], one closed interval of length 1.

« C1=[0,3]U [%, 1], two closed disjoint intervals each of length %

°
&
Il
=)
Nello
C
ol
Wl

JU 2, T]U &, 1], four closed disjoint intervals each of length 3.
By induction, one can construct C;, with 2" disjoint closed intervals each of length 37".

(i) C, is a decreasing sequence of closed and bounded sets, thus C,, € M.
(ii) Let C' = ;2; Cy, then C contains all the end-points of the intervals.
(i) ¢ =01\ {(52)u(53)u(E3)u..}

(iv) Since C' C Cy, Vn > 0,
m*(C) <m*(Cy) =2"- — — 0.

Thus, m*(C) = 0.

(v) C is nowhere dense in [0, 1], that is (C)° = (C°) = @.

If not so, then C° # @ and = € C°. But C° is open, there exist (y,z) C C° C C, y < z.
Thus, m*{(y, z)} < m*(C) = 0, contradiction.

(vi) Cantor set is uncountable:

Consider the endpoint % € C. One can write

%22—1-332—1-3334-...00: (0.222...)3
end point z = % = (0.2)3. Similarly, we shall prove that each endpoint can be written as
x:%—l—%—i—--oo, a; € {0,2}.
For this, consider the set
)
F = {:1: €0,1]:z= Z; %, a; €0, 1,2}} \ {end points}
i—
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For x € F, we have

a a
1,92

TR T

Notice that a; = 1 if and only if z € (%, %) if and only if x ¢ C.

a1 # 1, ap =1 if and only if x € (%, %) L (%, %) if and only if z ¢ C.
Thus, if a; = 1 for some 4, if and only if x ¢ C.

= C={ze(0,1]:2=7372 %, a; € {0,2}}.

Define f : C' — [0, 1] by

f(@) = f (Z g) = g2
=1 =1

Then 4 € {0,1}. Thus f(z) € [0,1].

f is not one-one:

and

~ 1)+

Exercise 3.3.21. Prove that f(z) = f(y) if and only if z,y are end points of one of the deleted

open interval.

f is an onto map: Here f : C' — [0, 1] and let y € [0, 1] such that

)=y =3 ai;
=1

Let
2@1'

ED

then f(z) =y holds. Thus, f is onto. Therefore, C' is an uncountable set, having outer measure

xr =

Zero.

3.3.6 Nonmeasurable sets

For z,y € R, define x ~ y if and only if z — y € Q. Then ~ is an equivalence relation on R.
Hence, it partitions R into disjoint equivalence classes.
Let x + Q ={z+r:r € Q}. Then z + Q is an equivalence class under ~.

() @+QN[0,1]#2 (easy)
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(ii) Let E be a subset of [0,1] that contains exactly one member from each z + Q, z € R.
Let QN [-1,1] = {ry,re,...} and write E; = E + 14, 1=1,2,...
(iil) B;NE; =@, ifi#j.
Ifze B;NEj, thenz=x+7r, =y+7;
— rv-—y=r;—1,€Q
So x ~ y, contradiction to the definition of F, as E contains exactly one member from

each z + Q.

(iv) [0,1] c U2, E; C [—1,2].
Let = € [0,1]. Then x + Q must contains a point of E. That is, there exists unique
ye(x+QnNE, y—zeQn[-1,1). Thus,y —x =1, = =y —14 € Ej.

The set E is not Lebesgue measurable. On the contrary, if £ € M, then
o0
1<m* (U E) <3
i=1

o
1<> m*(E)<3
i=1
which is not possible, because either m*(E) > 0. If m*(E) = 0, then m*(E;) = 0. But
0,1] CUE; = 1< Y m*(E;) =0, which is a contradiction.
Remark 3.3.22. (i) m* is not countably additive.
Let A=2; E;. Then 1 <m*(A) < 3. But ) ;2 m*(F;) = oo. Thus,

m* (Ej Ez> <3< o00= im*(Ez)
i=1

i=1

(ii) Whether m* is finitely additive?

Suppose m* (Ui, A;) = Yoy m*(A;) for any Ay,..., A, € P(R) = power set of R. (in
other words, let m* be finitely additive).

Now,
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So,

= m*(E) = 0, contradiction.

Therefore, m* cannot be finitely additive.

(iii) Suppose A C E and A € M, then m*(A) = 0.
For this, let A; = A+r;, r, € QN [-1,1].
Then,

UA@ C UEZ C [—1,2]
=1 =1

Since A is Lebesgue measurable, each of A; € M. Thus,

i=1

So,

— m*(4) =0

We know that m* : P(R) — [0, co]. Restrict m* to M. Then for £ € M, we write m*(E) = m(E).
that is, m*|pm = m  (say).

Theorem 3.3.23. Let (E,) C M be an increasing sequence of sets. Then
o
n—=

Proof. Let E = J,, E,. If m(E) = oo, then some of m(E,,) = (. Hence (*) holds. Therefore,

suppose m(E,) < oo, Vn > 1. Since m(E,) is an increasing sequence.

lim m(E,) = sup m(E,) < m(E).

n—00
Now,
00 00
U En = El U (En+1 \En)
n=1 n=1
Thus,

m(E) = m(Ey) + 3 m(Buir \ By)
n=1
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k
=m(Ey) + lim 3 (m(Bn1) = m(En))

n=1
= lim m(Ejy41)
k—o0
O

Theorem 3.3.24. Let (E,) C M be a decreasing sequence of sets such that m(E;) < co. Then

nlgrolom(En) =m (nO1 En)
Proof. Since m(Ey,) > m(En+1) > m (e En),

7}1_)1130 m(Ey) = iInlf m(E,) >m <n01 En>

E\ () En=J(En\Eng1)  (Exercise)
n=1 n=1
m (El \ ﬁ En> = i m(E, \ Ent1)
n=1 n=1

k

m(Ey) —m (ﬂ En> = lim Z(m(En) —m(En+1))
n=1

k—o0 el

= m(El) — kll{go m(Ek+1)

= m (ﬂ En> = Hm m(Ep)

n=1

Alternative: E; \ E, is a increasing in n.

Jim m(Ey \ Ey) =m (D (£1\ En))

n=1

n=1
= m(El) —m (ﬁ En>
n=1
So,
lim m(E,) =m ( En>
1

n—oo
n=
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Exercise 3.3.25. £ € M if and only if EN (a,b) € M, for all a,b € R.

If E € M, it follows immediately that E N (a,b) € M, for any a,b € R, because (a,b) € M.
Suppose EN (a,b) € M, for all a,b € R.

Then EN (k,k+ 1) =EnN(k,k+ 1)U (EN{k+1}) € M (since m*(ENn{k+1}) = 0). But
E =Upez(EN (k, k+1]) € M.

Theorem 3.3.26. £ € M if and only if for all A C R, we have

m*(A) =m*"(ANE)+m"(A\ E) (1)
But, proving (*), it is enough to prove

m*(A) >m" (ANE)+m"(A\ E)

Proof. If m*(A) = oo, then (1) is true.
Suppose m*(A) < oo, and E € M. Then there exist G5 set G 2O A such that m*(A) = m*(G).
(since G = (o2 On)

therefore m*(ANE)+m* (A\E) < m*(GNE)+m*(G\E) = m*((GNE)U(G\E)) = m*(G) = m*(A).

Now, let (1) holds. Claim: E € M.
First consider m*(FE) < oo. Then there exist G set G such that F C G and m*(G) = m*(E) < oc.
Since (1) is true for all A C R,

m*(G) =m*(GNE)+m"(G\ E)

that is m*(G) = m*(G) + m*(G \ E)

So,m*(G\E)=0 = G\ E € M.

But G\(G\E) = F = E € M. If m*(E) = o0, then, write £ = U,,cz(EN(n,n+1]) = U,cz En-
We claim that E € M. For this, we all need to prove that if Ey, Fs satisfy (1), then E1 N Es
satisfies (1). From the bounded case (n,n + 1] € M <= (n,n + 1] satisfies (1)). Thus,

m*(A) = m*(AN Ey) +m*(A\ Ey)

Since E, = E N (n,n + 1]. Hence, by the bounded case E,, € M. Since F = E,, = EF € M.
Now,
m*(A) =m*"(E1NA)+m*(A\ Ey) (2)

M (A) = m*(Ey N A) + m*(A\ Ey) (3)
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Replace A in (3) by AN E; and A\ E; and use them in (2). Then R.H.S. of (1)
= m*(El NEsN A) + m*(A N Eq \ EQ) + m*(Eg N (A \ El)) + m*(A \ Es \ El)

> m*((ElﬁEgﬁA)U (AmEl\EQ)U(EQQ(A\EI))U(A\EQ\EI))
> m*(4) (using (1)

Thus, (E1 U Eq)¢ = E{ N ES will satisfy (1), as (1) is closed under complement. (1) is called

Carathéodory’s criterion of measurability. O

3.4 Measurable functions and integration

3.4.1 Measurable functions

Let J, = collection of all open subsets of R with respect to the usual metric © on R.

{OCR: 0= In, In=/(an,by)}
n=1

and M = class of all Lebesgue measurable subsets of R.

Ja, = collection of all open sets of R with respect to dyg — the discrete metric on R = P(R).
= Ju T M C T4, = P(R).
Since J, is not closed under countable intersections (and complements) of open sets,
= Ju C M and M C Jy,, because every subset need not be Lebesgue measurable.
Consider f : (R, J,) — (R, J,) continuous. Then f~1(0) € J,, V O € J, (from range side).
Now, if f : (R, M) — (R, J,), what happen to f~1(O)? If f is continuous on (R, J,), then
f~1(0) is open and hence f~1(0) € M.
In addition, consider f(x) = l, x € R\ {0}, then f cannot be made continuous at 0 but

8

f(z) = oo if and only if z = 0. (important!)

If we want to take f(z) = - into consideration, we here to extend the range (—o00, 00) to [—o0, c0].
Let R = (—00,00) and R = [—00, o0]. Therefore, the sets [—00,a) and (b, 00| for a,b € R should
be added to J,. That is,

Tu=TuU{[—00,a)U (b,cc] : a,b € R}

Definition 3.4.1. Let f: (R, M) — (R, J,) is said to be Lebesgue measurable if f~1(0) € M,
for all O € J,.

Since O € J,, can be expressed as the countable union/intersection of sets of the form [—o0o, a) and
(b, 0] and M is closed under countable union/intersection, it is enough to consider O = (b, co]

or [—oo,a).
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Thus, f: (R, M) — (R, J,) or R is Lebesgue measurable if f~1{(a, 0]} € M, Va € R.
Proposition 3.4.2. If f : (R, M) = R = [~o00,00|. Then the following are equivalent:
1. fH(a, ]} € M, for all a € R.

2. f~H|a, 0]} € M, for all a € R.

3. f~H[~o00,a)} € M, for all a € R.
4. fH[-00,a]} € M, for all a € R.
5. fH+oo} € M and f~{(a,b)} € M, for all a,b € R.

Proof. (i) = (ii):

o

[ar, 0] = ﬂ(a—%,oo] Sz,

n=1

let 7 ¢ [a,00] = a>x>a—1L VYn>1 = a=uz=aq, which is a contradiction.
Since M is closed under complement, so (i) = (ii).

Now, (iii) = (iv), because

[—o0,a] = ﬁ [—o0, a0 + %)

n=1
(tv) = (i) as M is closed under complements (since M® = M).

Thus, (i) to (iv) are equivalent. Hence,
FHeo) =JFH(n, 0]} € M (by (i)
fH(=o0) = U Hl-o0,—n)} € M (by (iii))
(a,b) = (a, 0] N [—o0,b)

— fY(a,b)} eM, Va,beR

Example 3.4.3. Let £ € M, define

1 zeF
f(l‘)ZXE(w)Z{
0 z¢FE

o =

T S

a>1

A =&

a<0
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Example 3.4.4. f:R — R, f(z) = k is Lebesgue measurable.

o ifa>k

f_l{(a> OO}} = { .
R ifa<k

f k-finite. If k = oo, f(x) =00, Va € R. Then f~{(a, ]} =R.

Notice that for o € R, 3r; € Q such that r; increases to o.

flx)>a = f(x)>a>r;, Vj.

So {z: f(x) > a} = ;Zy{z : f(z) > r;}. Thus, f is Lebesgue measurable if and only if
FH(rj, 00} € M, for all 7; € Q.

Example 3.4.5. If f,g: R — R be Lebesgue measurable such that f(x) + g(z) # oo — oo, for
any « € R. Then f + g is Lebesgue measurable.

Thus, we need to show the following sets to be Lebesgue measurable.
A={zeR: f(x) +g(z) = £oo}
B={zeR:00> f(z)+g(x) >a}, VaeckR

A={z eR: f(x) = £oo + g(x)} if g(x) are finite (or otherwise)

For z € B, o0 > f(x) + g(x) > a, Ir, such that f(x) >r, > a — g(x)

x € U({xf(w) >r}ﬂ{x:g(w) >a—r})

reQ

= B= U({xER:f(a:)>r}ﬂ{x€R:g(w)>a—r}) = BeM
reQ

Exercise 3.4.6. {7 : f2(z) > a} = {z: f(z) > Va}U{z : —f(z) > /a} € M.
Exercise 3.4.7. 4fg = (f + 9)? — (f — 9)* = if f, g are Lebesgue measurable, then f2, fg

are Lebesgue measurable.

Definition 3.4.8. A property P is called “holding almost everywhere” if the places (or points)

where it false have Lebesgue measure zero, that is, P is true almost everywhere.
m* ({z € R: P is false}) =0
If f = g almost everywhere on R, then
m* ({z € R: f(x) # g(x)}) =0

Example 3.4.9. If f : R — R and f(z) = 0 for almost everywhere x € R, then f is Lebesgue

measurable.
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Let E={z e R: f(z) # 0}, then m*(E) =0 = E, E° € M, and so forth.

Proposition 3.4.10. If f,g are Lebesque measurable, then

max{f,g} = f+g+2|f—g|

sup fn, inf fp,, limsup f,, liminf f,, limf, are all Lebesgue measurable.
Proposition 3.4.11. If f : R — R be such that f(x) # 0, Vz € R, then % is measurable.

Proof.

{x:f(lx)>a}:{m:f(x)>;,a<0}U{x:f(x)<i,a>0}eM

3.4.2 Simple functions

Let E; € M and o; € R. Then ¢ = > | a; X, is called a simple function.
Example 3.4.12. ¢ =1 x[01] + 2 X[2,3]

Theorem 3.4.13. Let f : R — [0,00] be a measurable function. Then there exist a sequence

(¢n) of simple functions such that:
(1) ¢n T and pn < f.
(it) on — f pointwise.
(iii) on — f uniformly on any set A where f is bounded.

Proof. We first divide the image of f in [0,2"] into 22" disjoint parts. k= 0,1,2,...,2%" — 1.

1 (Ui, k;})) =FE,, and f1 ([2", 00]) = F,

Then (i) ¢, > 0, (i) E, s are disjoint measurable sets, (i) ¢, 1 on [0, co].
Claim: pp(z) < ppi1(z).
IfxeFE,),= {96 o2 < fa) < Zlﬁﬁ} = Enr1o8U Eny1 k41

For z € En+1,2ka Spn(x) = Qin = 2721&1 = @n—l—l(x)'

For z € Eny10k+1, on(2) = 3151::—_11 = on+1(2).
If x € F,,, then z € (F, \ Ft1) U Fry1.

For x € Fy11, on(z) =27 < 2" =, 11 (2).
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For z € F,, \ F,,+1, we have

22n+1 1 22n+2
n __ n+l _
2 = St < flr)< 2 = S
. 2n+1 2n+2
that 1S, * € En+1,22"+1 U . UETL+1,22”+2—1' Then, Pn+1 (SU) S {22n+1 ey 2 LS 1 } Thus7

92n+1
op(x) =2" = ST < pnt1(x).
That is, ¢, T and ¢, < f.
(iv) ¢, — f pointwise.
Let f(x) < co. Then

{z: f(z) < o0} = fj {z: f(z) < 2"}
m=1

Therefore, f(z) < 2", for some n, and hence z € E,, ), = ¢n(z) = 2%
E+1

2’!1

1
= 0< f(z) —en(x) < o’ n>1 = ¢, — f pointwise.

()

k
therefore on < f(z) <

If f(x) = oo, for some z. Then {z: f(z) =0} =N {z: f(x) > 2"}.
So, pn(x) =2" = 0o = f(x).

(v) ¢n — f uniformly on a set where f is bounded.

Let E = {z: f(x) < M}. Then, 3ng such that f(z) < 2", Vn > ny,
Hence, from (*), 0 < f(z) — pn(z) < 57,  Vn > ng

Notice that ng is free (or unique on E) of z € E. Thus,

1

0 < sup(f(2) — pule)) < 57 = 0.

Hence, ¢, — f uniformly on F. O

Corollary 3.4.14. If f : R — R is measurable. Then there exists a sequence of simple functions
such that || 1T |f| pointwise.

Proof. f = ft — f~. Then there exist ¢;7 1+ f* and ¢,, T f~. That is,
pn=tn —n > [T fT=f

lonl = 0 + @ < FT+ 7 and  |pa| T |f]

In this case,
|f —nl=1fT—wn +f7 =] =0
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and ¢, — f uniformly on £ = {z : |f(z)| < M}. O

Note that,
f+ :max{f,O}, f_ = —min{f,O}.

Adoptions: 0-00 =0, oo-0=0.
Ezample: 0-m(R) =0, oo - m(Q) = 0.

Avoidation: 0o — 0.

3.4.3 The Lebesgue integral
Let ¢ : R — R such that

m
0= ajxg,, «aj€[0,00],
7j=1

and Ej € M and m(E;) < co. Then we write

/ pdm = Z a;m(Ej).
R s

Remark 1. [ ¢ dm =0 if and only if ¢ = 0.
Now, if £ € M, then ¢|p =3_7" ajxE;nE, hence

m
/ pdm = Z a;m(E;NE)
E s
Notice that (R, M,m) is called Lebesgue measure space. If E € M, then for
Mep={FNE:FeM}, (E,Mg,m)

is also a Lebesgue measure space on F.
Remark 2. Since Ey U Ey = (Ey \ E2) U (E1 N E2) U (E2 \ Ep), in the definition of ¢, one can
assume {F; :j =1,2,...,n} is a disjoint family, that is, F; N E; = @ if i # j.

Now, let f : R — [0, 00] be measurable, then there exists a sequence of simple functions

on 1 f pointwise. Hence [ ¢, dm 1 sequence in R.
/ fdm = sup/ ©n dm
R n>1JR

[ sam=sup{ [ oam: o< 5}

Thus, we define

or
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If f:R — R measurable, then f = f* — f=. We write

/Rfdm:/RfJ“dm—/Rf*dm,

if at least either of [p fTdm or [; f~ dm is finite.
Let
LT(R,M,m)={f:R—[0,00]: f measurable}

Proposition 3.4.15. For ¢, simple functions in L™ (R, M, m) and ¢ € R = [0, 00],
(i) Jgep=clge.
(i) Jp(p+9) = Jap + e ¥

(iii) If ¢ <, then [podm < [pydm.

Proof. (i) is trivial.

(11) Let Y = 27]71:1 anEja w = ZZL:I IBkXFk'
Notice that by assigning 0 on (U;‘L:1 Ej)c, one can assume that R = U;L:1 E;, R =L, Fy.
Then E; = ULy (B N Fy),  Fr, = Uj—1 (Ej U F).

Now,
/cpdm—i—/wdmzzz%mE N Fy) —G—ZZﬁkmE N Fy)
R R j=1k=1 k=1j=1
=3 (aj + Bp)m(E; N Fy) (1)

e
Il
—

:1]

/(«pw Ydm = /Zzag-irﬁk XE,F, dm

= [edm+ [vim by (1)

(iii) If ¢ <4, then a; < By, when Ej N Fj, # .
/gpdm ZZO@ (EjN Fy) <ZZﬁkmE N Fy) /wdm

j=1k=1 j=1k=1

Proposition 3.4.16. If f,g € LT (R, M, m), then for f < g, [z fdm < [z gdm.
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For this, let ¢ < f, p simple, then ¢ < g

= /fdmzsup wdmésup/sodTn:/gdm
R o<fJR p<gJR R

Proposition 3.4.17. If f,g € L*(R, M, m), then

/R(f%-g)dm:/Rfdm—F/Rgdm.

(We prove it later!)

3.5 Convergence theorems and L” spaces

3.5.1 Monotone convergence theorem

Theorem 3.5.1 (Monotone Convergence Theorem). Let f,, f € LT(R, M, m) be such that

fu 1 f pointwise. Then
dm = lim / L, dm.

Proof: Since f, < fp41 < f, the limit of [; f, will be bounded above by [ f. Hence,

dw [ o [ 5

In order to show the other inequality, it is enough to show that for each ¢ > 0,

Jim [ h=0-a 1
gg%[&fnZ(l—e)Aw-

Let B, ={z € R: fp(x) > (1 — €)p(x)}. Since f,, T f, En, C Ept1. Moreover, R = 72| Ep,.
For, let z € R, then f,(x) 1 f(x), and so for some n, f,(x) > (1 —€)p(x). If not, fu(zr) <
(1 —=€)p(x) for all n, so f(z) < (1 —€)p(x), ¢ < f = Contradiction. Let v(E,) = [ ¢. Then v

becomes a measure on (R, M) and E,, T R. Hence,

or for p < f,

lim v(E,) = v(R).

n—oo

(1—6/g0—h / (I-¢e)¢ < lim / fo < lim/fn.
n— n— o0 TLHOOR

Remark 3.5.2. f, T f is necessary in monotone convergence theorem.

Thus,
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1
Example 3.5.3. f, = —x[0,,) — 0.
n I’

/fndm: 1 7&0:/limfndm.
R R
Example 3.5.4. Verify MCT for f,, : R — [0, 00|, given by.

(1) Jn= X(n,;n+1)-

(ii) fon= nX(o%)-

Remark 3.5.5. Integration is a linear map on LT (R, M,m), that is, f — [ f dm is linear.
Let f,g € LT (R, M,m). Then there exists ¢, 1 f and ¢, T g. By MCT,

|+ gydm = lim [ (go+ ) dm

_ / W d +/ L d )
:/fdm+/gdm.
R R

Example 3.5.6. For E € M, and f € LT(R,M,m), if [ fdm = 0, then f = 0, provided
m(E) > 0.

/fdm:sup/gJ:O = /cp:O = p=0.
E e<fJE E

Corollary to MCT: Let f,, f € LT (R, M, m) be such that f, 1 f pointwise almost everywhere

on R. Then
dm = lim / n dm.

Proof. Let f, T f pointwise on A, then m*(A°) = 0. So, A, A° € M. That is, xgfn — x&f- By

MCT,
[xaf = Jim_ [ xat
— /fdm: lim/fndm.
A n—oo A

Now,

/fdm:/fdm—i—/ fdm= lim/fndm—i—/ fndm

R A Ac n—o0 A Ac
Thus,

dm = lim/ ndm
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Theorem 3.5.7. Let f € LT (R, M,m). Then
/Rfdm =0 < f =0 almost everywhere on R.
Proof. For f = ¢ =371 ajxg;,
/Rgodmzo <= either j =0or m(E;) =0, Vj=1,2,...,n

that is / pdm =0 <= @ =0 almost everywhere
R

Now, if f = 0 almost everywhere,

/ fdm = sup / pdm =0 (by previous case)
p<f

Suppose [p fdm = 0. Then consider

E={zeR: f(x)>0} = G{xER:f(a;)>i}: ) Bn (say).
n=1 n=1

Now, m(E,) :nfEn%dmgnfEnfdmgnfRfdm:O.
Thus, m(E) =0 = f = 0 almost everywhere O
3.5.2 Fatou’s lemma

Lemma 3.5.8 (Fatou’s Lemma). Let f, € LT (R, M, m). Then

/himfndmghQ/ Jndm
R R

Proof. Let gi, = inf,,>1 fn. Then g, < fj, for all j > k. Thus, [ gr < infj>i [p fi-

Now,

oo (1 )

k>1

By the Monotone Convergence Theorem (MCT),

/mfndm:/ lim g dm = lim /gkdm< lim 1nf/fjdm
R R k—o0 k—o00

k—oo j>k

Remark 1' Strict inequality can hold.
For fn = 7 X[0,n) = 0 uniformly, then Jplimf, dm =0 <1 =lim [ f, dm.

Remark 2: Fatou’s Lemma need not hold beyond non-negative functions.
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Example 3.5.9. let f, = —%X[mgn], Vn > 1.

Now, inf,>¢ fn(z) = inf,> {—%} =—1

sup (inf fn(x)> =0 thatis limf,(x)=0
k>1 \n2k

Jtimfy=0> -1 =lim [ f.
R R
Let f : (R,M,m) - R = [~o00,00] be measurable. Then f = f* — f~ and f*,f~ are

L-measurable.

Definition 3.5.10. If [ fTdm < co and [ f~ dm < co both hold, then we say f is integrable,

and
/Rfdm:/Rerdm—/Rffdm

Since |f] = fT 4 f~. It follows that [ fdm is finite if and only if [ |f|dm is finite.
Let
LY(R, M, m) = {f :R—R:f measurable and / If] < oo}
R

We also use the symbols L'(R) or L'(R,m) or L*(R, M, m).
Notice that L' is a linear space over R.
Since

/ |f| =0 < |f| = Oalmost everywhere <= f = Oalmost everywhere
R

If we adopt f = 0 if and only if f = 0 almost everywhere Then L!(R, M,m) is a normed linear
space with ||f||1 = [g | f| dm.

Proposition 3.5.11. If f € L'(R, M, m), then

[ gam < [ 1fldm

Proof.

fro

/Rf_dm‘:/]Rf+dm+/]Rf_dm:/]R\f|dm

O]

/Rf+dm_/ﬂ§f_dm’§ /Rf‘”'dm‘—i—

3.5.3 Chebyshev’s inequality
Let f € L'(R,M,m). Then m ({z € R: [f(2)| > a}) < L|/f]1.

Proof.

the left-hand side = 1 / adm < !
{z:|f(z)| >}

1 1
o a/{x:f(x)|>a}|f(x)|dm§a/R|f(:c)|dm:a||f||1
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O]

Corollary 3.5.12. If f € LY(R, M, m), then m{x € R : |f(z)| = oo} = 0 that is, an L'-function

is almost finite.

Proof. m{z : |f(z)| = oo} = m{{x : |f(x)| = n}}. But m{z : |f(z)| = n} < S f]1.

So, m{z : |f(z)] = oo} <m{x: |f(z)| >n} < L||f]L = 0asn — . O

3.5.4 Dominated convergence theorem

Theorem 3.5.13 (Dominated Convergence Theorem). Let f,, : (R, M, m) — R be a sequence of

measurable functions such that
(1) fn(x) — f(z) pointwise, for all x € R.
(ii) | fn] < g € LY(R, M,m).

Then

dm = lim / ndm
Proof. Since f,, — f pointwise and |f,| < g € L'(R, M, m),

= |ful 2 |f| = |fI<gel' = felLl

Now,

0<g+fn—9g+ [ pointwise
0<g—fn—9g—f pointwise

By Fatou’s Lemma,

/(g+f)dm:/ lim (g+fn>dm§m/(g+fn>dm
R RTL—)OO R

- /fdmgm/fndm (since/g<oo)
R R R

Similarly,
[(g=pydm= [ lim (g f2)dm <lim [ (g~ f) dm
—/fdmg—m/ fndm
R R
that is / fdm 2@/ fndm
R R
So,

m/fndméffdeIiQ/fndm
R R R
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:Hméhzéf

Exercise 3.5.14. Verify the Dominated Convergence Theorem for f, : (R, M, m) — R, where

O

(i> fa= nX[o% .
(11) fn = %X[n,n—i—l]-
(iil) frn = X[pn+1)-

(Hint: fn — 0, [ fn=1).

3.5.5 Bounded convergence theorem

Theorem 3.5.15 (Bounded Convergence Theorem). Let E € M and 0 < u(E) < oco. If
fos f 1 (E,Mg,m) — R be such that

(i) |fo(z)] < M, V¥n € N,Vx € E.
(it) fn — f pointwise.

Then

J =i [

t@MSAM:MME<m

So, fn are dominated by M. And by Dominated Convergence Theorem,

o=t [ g,

Proof.

O]

Theorem 3.5.16. If f is bounded. Then f € R[a,b] if and only if f is continuous on [a,b] almost

everywhere, that is, there exists g : [a,b] — R continuous such that f = g almost everywhere.

Theorem 3.5.17. Every Riemann integrable function is Lebesgue integrable, that is, R[a,b] C
Lla,b].

If f € Rla,b], then f = g almost everywhere, where g is continuous on [a,b]. Therefore, g is
measurable and hence f is measurable.

If f € Rla,b], then

b

igmﬂﬁ:/ﬂ@m

a
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b

sup L(P, f) = /a f(x) dx

both exist and are equal to f; f(x)dx. But for Lebesgue integration, we only want

SgpL(P, f) = /fd'm

Hence f € Rla,b] = f € L!]a,b].

(Note that this is just an intuition and not a proof.)

Theorem 3.5.18. Let f € R[a,b]. Then f € L[a,b] and

/[a’b] fdm = /abf(:v) dx

Proof. Let I =[a,b] and f € R(I), then there exists an increasing sequence of partitions P,, of I

such that b
lim U (Py, f) = lim L(P, f) = / f(x)de.

For a partition P of [a,b], denote

k
pYp = ZMjX(tj_l,tjp M; = sup f(x)
j=1 [ti—1,t5]
and
k
Yp = ijx(tjflvtj]’ mj = inf f(z),
j=1 [tj—1.t5]

where P={a=1t) <t <--- <tj_1 <t; <---t =b}.

Then pp | sequence and p 1 sequence. Since f € R(I), IM,m > 0 such that m < f(z) < M

but then
m < ¥p, (@) < f(@) < gp, (@) < M

(1)

For each fixed z € I, vp, () | sequence bounded below by m and ¢ p, () 1 sequence bounded

above by M. Let
lim op, () = ¢(z), lim ¢p, (z) = ¥(x)

n—oo n—oo

Then
m < Y(z) < fz) <) <M

Then 1 and ¢ being limit of simple functions are measurable.

By Bounded Convergence Theorem,

b
/dem=7};rgo/[sondm=7};rr;oU(Pn,f) :/a f(z)dx
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Similarly,
b
/wdm: lim /wndm: lim L(P,, f) :/ f(x)dx
I n—oo I n—oo a

Therefore
/(<p —YP)dm =0 <= ¢ —1 =0 almost everywhere (since ¢ —1 > 0)
I
From 9(z) < f(z) < ¢(x) almost everywhere. So f(z) = v¢(z) almost everywhere = f is

/Ifdm—/lwdm—/abf(x)da?

Note: Rla,b] € L[a,b]. Since f = X(R\Q)N[0,1]> f[o,l} fdm=1but L(P,f) =0and U(P, f) =1,
VP. ]

measurable. Thus,

3.5.6 L? spaces

Definition 3.5.19. Let (X, A, 1) be a measure space and let 1 < p < oo. The space LP(X, u)

consists of measurable functions f for which [ | f|P dp < oo, modulo equality p-almost everywhere.

170 = ( [ Iflpdu)l/p-

For p = oo, we set || f]loo :=inf{M >0: |f| < M p-almost everywhere}.

The norm is

Theorem 3.5.20. For each 1 < p < oo, the space LP(X, ) is complete.
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