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Introduction

Real Analysis provides the rigorous foundations of calculus and, more broadly, of modern
mathematical analysis. The guiding theme of the course is the systematic study of limiting
processes: convergence of sequences and functions, continuity and differentiability defined through
limits, and integration built upon measurable structures. Throughout, emphasis is placed on
precise definitions, correct quantifiers, and logically complete proofs, together with carefully
chosen examples and counterexamples that clarify the necessity of hypotheses and the sharpness
of conclusions.

We begin with metric spaces (X, d), the natural setting in which convergence and continuity
can be formulated beyond R. We study open and closed sets, interior and closure, limit points,
compactness, and the topological characterization of continuity. We then move to normed
linear spaces (V, ∥ · ∥), where algebraic and topological structures interact. A central concept is
completeness, which ensures that every Cauchy sequence converges and underlies fundamental
existence results such as the contraction mapping principle. Uniform convergence is treated as a
key mode of convergence for sequences of functions, since it provides control strong enough to
justify passing limits through continuous operations under appropriate assumptions. Classical
inequalities, including Young’s, Hölder’s, and Minkowski’s inequalities, are developed as essential
tools for norm estimates and convergence arguments.

The second part focuses on functions on Rn. After formalizing limits and continuity in
Euclidean space, we study partial derivatives, directional derivatives, and differentiability in
the Fréchet sense, where differentiability at a point means approximation by a linear map
with a remainder term that is small compared with ∥h∥. From this viewpoint we develop the
multivariable chain rule and Taylor’s theorem with remainder, which describe the local structure
of smooth functions and provide quantitative error estimates. These results culminate in the
inverse mapping theorem and the implicit function theorem, which give precise conditions for
local invertibility of maps and for representing solution sets of equations F (x, y) = 0 as graphs
of functions.

In the final part, we develop Lebesgue measure and integration to address the limitations of
Riemann integration. We construct outer measure, define measurable sets using Carathéodory’s
criterion, and obtain Lebesgue measure on R. Measurable functions are introduced via approxi-
mation by simple functions, leading to the definition of the Lebesgue integral for nonnegative
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functions and then for integrable functions. The principal convergence theorems—the monotone
convergence theorem, Fatou’s lemma, and the dominated convergence theorem—are proved and
used to justify the interchange of limits and integrals in a principled way. Classical examples,
including the Cantor set, illustrate null sets, non-measurable phenomena, and the distinction
between pointwise and uniform convergences.

By the end of the course, students should be able to analyze convergence and continuity in
metric and normed spaces, apply the main structural theorems of multivariable differentiability,
and use Lebesgue measure and integration as foundational tools for further study in analysis,
probability, and partial differential equations.

iv



Chapter 1

Metric and Normed Linear Spaces

This chapter develops the basic language of analysis in abstract spaces. We introduce metrics
and norms, discuss sequences and their convergence, and study the topology induced by a
metric through open and closed sets, interior and closure. Completeness and Cauchy sequences
lead to the key notion of a complete metric space, while density and continuity clarify how
analytic structure behaves under mappings. Finally, uniform convergence and the contraction
mapping principle (Banach fixed point theorem) provide powerful tools used repeatedly later;
Young’s, Hölder’s, and Minkowski’s inequalities are included as essential estimates connecting
normed spaces to Lp-type analysis.

1.1 Syllabus map

This chapter is organized into three thematic parts:

(1) Metric spaces and topology: open and closed sets, interior and closure, dense subsets,
continuity, compactness, and completeness.

(2) Normed vector spaces: norms, norm-induced metrics, and standard examples, together
with basic inequalities.

(3) Uniform convergence: uniform convergence of sequences of functions and differentiation
under the limit.

1.2 Metric spaces

Let X be a non-empty set. A map d : X ×X → R+ = [0,∞) such that

(i) d(x, y) = 0 if and only if x = y, x, y ∈ X.

(ii) d(x, y) = d(y, x) (symmetric).

1



1.2. Metric spaces MA224: Real Analysis

(iii) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

is called a metric on X, and the pair (X, d) is called a metric space.

Example 1.2.1. If X = Rn, then for x, y ∈ Rn,

1. d1(x, y) = ∑n
i=1 |xi − yi|;

2. d2(x, y) =
(∑n

i=1 |xi − yi|2
) 1

2 ;

3. d∞(x, y) = sup1≤i≤n |xi − yi|;

define metrics on Rn.

Example 1.2.2. Let (X, d) be a metric space. Prove that d′(x, y) = min{1, d(x, y)} defines a
metric.

Example 1.2.3. If X = C[0, 1], the space of continuous functions on [0, 1], then for f, g ∈ X,

d∞(f, g) = sup
0≤t≤1

|f(t) − g(t)|

defines a metric on X.

(Hint: f is continuous on [0, 1], so f is bounded and |f(t) − h(t)| ≤ |f(t) − g(t)| + |g(t) − h(t)|.)

Example 1.2.4. If X ̸= ∅, then for x, y ∈ X,

d0(x, y) =

1, x ̸= y

0, x = y

defines a metric on X. This is called the discrete metric on X and (X, d0) is called discrete
metric space. Thus, every non-empty set has a metric.

Note that for d(x, z) ≤ d(x, y) + d(y, z) to hold, we need to verify three cases:

1. x = y, y ̸= z.

2. x ̸= y, y = z.

3. all of x, y, z are distinct.

Example 1.2.5. Let (X, d) be a metric space, then
(
X,

d

1 + d

)
is also a metric space.

For this, consider, f(t) = t

1 + t
, t ∈ [0,∞). Then f ′(t) = 1

(1 + t)2 > 0. Hence, f is a strictly

increasing function and f(0) = 0. On the other hand

t+ s

1 + t+ s
<

t

1 + t
+ s

1 + s

2



1.3. Normed linear spaces and fundamental inequalities MA224: Real Analysis

Put t = d(x, y), s = d(y, z). Then

t+ s ≥ d(x, z) and f is strictly increasing

=⇒ f ◦ d(x, z) ≤ f(t+ s) < t

1 + t
+ s

1 + s
= f ◦ d(x, y) + f ◦ d(y, z).

Example 1.2.6. Let (X, d) be a metric space. Suppose and f : [0,∞) → [0,∞) be an increasing
function such that f(s+ t) ≤ f(s) + f(t) and f(t) = 0 if and only if t = 0. Then f ◦ d is a metric
on X.

Example 1.2.7. Let H∞ (Hilbert cube) be the space of sequences x = (xn) = (x1, x2, . . . , xn, . . .)
such that |xn| ≤ 1. Then

d(x, y) =
∞∑

n=1

|xn − yn|
2n

defines a metric on H∞.

(i) d(x, y) ≤
∑ 2

2n < ∞.

(ii) |xn − zn| ≤ |xn − yn| + |yn − zn|

=⇒
k∑

n=1

|xn − zn|
2n

≤
k∑

n=1

|xn − yn|
2n

+
k∑

n=1

|yn − zn|
2n

≤ d(x, y) + d(y, z) < ∞.

Since the left-hand side is an increasing sequence which is bounded above, it follows that

lim
k→∞

k∑
n=1

|xn − zn|
2n

≤ d(x, y) + d(y, z)

=⇒ d(x, z) ≤ d(x, y) + d(y, z).

Exercise 1.2.8. Prove that d(x, y) =
∣∣∣ 1

x − 1
y

∣∣∣ defines a metric on (0,∞).

1.3 Normed linear spaces and fundamental inequalities

1.3.1 Normed linear spaces

Let X be a vector space over the field R or C. A map ∥ · ∥ : X → [0,∞) is called a norm if.

(i) ∥x∥ = 0 if and only if x = 0.

(ii) ∥αx∥ = |α|∥x∥, for all x ∈ X, for all α ∈ R or C.

(iii) ∥x+ y∥ ≤ ∥x∥ + ∥y∥, for all x, y ∈ X.

3



1.3. Normed linear spaces and fundamental inequalities MA224: Real Analysis

If we write d(x, y) = ∥x − y∥, then d is a metric on the vector space X. But all metric on a
vector space cannot be obtained by norm.

Example 1.3.1. Let X be a vector space. Then the discrete metric cannot be induced by any
norm on X.

For this, if so then d0(x, y) = ∥x− y∥. Then for x ̸= 0,

∥x∥ = d0(x, 0) = 1 = d0(αx, 0) = ∥αx∥ = |α|∥x∥, ∀α.

However, if d is a metric on a vector space X such that d(x, y) = d(x− y, 0) and d(αx, αy) =
|α|d(x, y). Then d(x, 0) = ∥x∥ defines a norm on X. That is,

(i) ∥x∥ = 0 if and only if x = 0.

(ii) ∥αx∥ = |α|∥x∥.

(iii) ∥x+ y∥ = d(x+ y, 0) = d(x,−y) ≤ d(x, 0) + d(−y, 0).

Example 1.3.2. Let ℓ1 denote the space of all the sequences of real (or complex) numbers such
that ∑∞

n=1 |xn| < ∞. Then,

∥x∥1 =
∞∑

n=1
|xn|

defines a norm on ℓ1. The pair
(
ℓ1, ∥ · ∥1

)
is a normed linear space. For simplicity, we write ℓ1

for
(
ℓ1, ∥ · ∥1

)
.

(Hint:
∑k

n=1 |xn + yn| ≤
∑k

n=1 |xn| +∑k
n=1 |yn| ≤ ∥x∥1 + ∥y∥1.)

Example 1.3.3. ℓ2 denotes the space of all sequences on R (or C) such that ∑∞
n=1 |xn|2 < ∞.

Define

∥x∥2 :=
( ∞∑

n=1
|xn|2

) 1
2

defines a norm on ℓ2.

(Hint:
∑k

n=1 |xn + yn|2 ≤ ((∑k
n=1 |xn|) 1

2 + (∑k
n=1 |yn|) 1

2 )2.)

Example 1.3.4. ℓ∞ = space of all sequences on R (or C) such that supn∈N |xn| < ∞. The
function

∥x∥∞ = sup
n∈N

|xn|

defines a norm on ℓ∞.

Example 1.3.5. c0 = space of all sequences on R (or C) such that limn→∞ xn = 0 Then (xn)
must be bounded. Hence

∥x∥∞ = sup
n∈N

|xn| < ∞.

4



1.3. Normed linear spaces and fundamental inequalities MA224: Real Analysis

Thus, (c0, ∥ · ∥∞) is a normed linear space.

Exercise 1.3.6. If x = (x1, x2, . . . , xn) ⊆ Rn (or Cn), then

∥x∥∞ ≤ ∥x∥1 ≤
√
n∥x∥2 ≤ n∥x∥∞.

1.3.2 Geometry of Spheres in (Rn, ∥ · ∥p)

For 0 ≤ p ≤ ∞ and x ∈ Rn, write

∥x∥p =
(∑

|xi|p
)1/p

.

Then ∥ · ∥p is a norm for 1 ≤ p < ∞, and for 0 < p < 1, ∥x∥p
p = dp(0, x) with dp(x, y) = ∥x− y∥p

p

is a metric. (We see later).
Let Sp

1(0) = {x : dp(0, x) = 1}. Then the following figure can be plotted for different values of
p; 0 < p < ∞; p = ∞.

y

x

p > 1

p = 2

p = 1 p = ∞

Shapes for 0 < p < 1 would look like star-shaped curves (not shown).

Exercise 1.3.7. If x = (xn) ∈ ℓ1, then x ∈ ℓ∞.

∞∑
n=1

|xn|2 <
∞∑

n=1
∥x∥∞|xn| =⇒ ∥x∥2 ≤ ∥x∥∞∥x∥1.

Thus, ℓ1 ⊊ ℓ2 ⊊ c0 ⊊ ℓ∞.

Exercise 1.3.8. If 1 < p < ∞, then for ∑∞
n=1 |xn|p < ∞, one can define a norm ∥ · ∥p on ℓp via

∥x∥p =
( ∞∑

n=1
|xn|p

)1/p

.

To prove this, we need some inequalities.

5



1.3. Normed linear spaces and fundamental inequalities MA224: Real Analysis

1.3.3 Young’s inequality

Let 1 < p < ∞ and a, b > 0. Then for 1
p + 1

q = 1, ab ≤ ap

p + bq

q . Proof: Let y = xp−1,then
x = yq−1 (since p− 1 = 1

q−1 by 1
p + 1

q = 1). Now, it is clear that

ab ≤
∫ a

0
xp−1 dx+

∫ b

0
yq−1 dy = ap

p
+ bq

q
.

Note that equality in (∗) holds if and only if ap = bq (or a = bq−1). For this, consider

ab = ap

p
+ bq

q
,

1
p

+ 1
q

= 1.

Replace a → a
1
p , b → b

1
q and 1

p = α. Then, we get

aαb1−α = αa+ (1 − α)b

or
tα − αt− (1 − α) = 0 if t = a/b.

Let
f(t) = tα − αt− (1 − α), t ∈ (0,∞).

Then f(1) = 0 and

f ′(t) = αtα−1 − α = α(tα−1 − 1) = 0 ⇐⇒ t = 1.

Since f ′(t) < 0 if t > 1 and f ′(t) > 0 for 0 < t < 1. Hence, f is strictly increasing in (0, 1) and
strictly decreasing in (1,∞). Thus, t = 1 is the point of absolute maximum of f . Therefore,
f(t) ≤ f(1) = 0, which is another proof of the inequality. On the other hand, f(t) = 0 if and
only if t = 1. This completes the proof.

1.3.4 Hölder’s inequality

Let 1 ≤ p ≤ ∞ and 1
p + 1

q = 1. Then for x ∈ ℓp and y ∈ ℓq, it follows that

x · y(= x1y1 + . . .+ xnyn + . . .) ∈ ℓ1,

and
∥x · y∥1 ≤ ∥x∥p∥y∥q · · · (∗)

(where 1
∞ = 0 adopted.) When p = 1, q = ∞. In this case (∗),

∥x · y∥1 =
∞∑

i=1
|xiyi| ≤

∑
|xi| · sup |yi| = ∥x∥1∥y∥∞.

6



1.3. Normed linear spaces and fundamental inequalities MA224: Real Analysis

Now, let 1 < p < ∞, then 1 < q < ∞. Substitute a = aj = |xj |
∥x∥p

and b = bj = |yj |
∥y∥q

in the Young’s
Inequality. Then

n∑
j=1

|xjyj |
∥x∥p ∥y∥q

≤
n∑

j=1

( |xj |p

p ∥x∥p
p

+ |yj |q

q ∥y∥q
q

)
= 1
p

n∑
j=1

|xj |p

∥x∥p
p

+ 1
q

n∑
j=1

|yj |q

∥y∥q
q

≤ 1
p

+ 1
q

= 1.

That is,
n∑

j=1
|xjyj | ≤ ∥x∥p∥y∥q, for all n ≥ 1

Since the left-hand side is an increasing sequence which is bounded above, hence

∥x · y∥1 ≤ ∥x∥p∥y∥q.

Notice that if ∥x∥p = 1 = ∥y∥q, then ∥x · y∥1 ≤ 1, and equality holds if and only if |xj |p/∥x∥p
p =

|yj |q/∥y∥q
q for all j (equivalently, ap

j = bq
j).

This follows from Young’s equality. For

ab = ap

p
+ bq

q
,

we must have ap = bq.

1.3.5 Minkowski’s inequality

Let 1 ≤ p ≤ ∞. Then for x, y ∈ ℓp, x+ y ∈ ℓp, and ∥x+ y∥p ≤ ∥x∥p + ∥y∥p (∗)

Proof. For p = 1 or ∞, the proof is trivial. Let 1 < p < ∞. Then

∥x+ y∥p =
( ∞∑

i=1
|xi + yi|p

)1/p

≤
( ∞∑

i=1
(|xi| + |yi|)p

)1/p

. (1)

Since
(|xi| + |yi|)p = (|xi| + |yi|)(|xi| + |yi|)p−1.

By Hölder’s inequality,

∑
(|xi| + |yi|)p−1|xi| ≤

(∑
(|xi| + |yi|)(p−1)q

)1/q (∑
|xi|p

)1/p
.

Thus, ∑
(|xi| + |yi|)p ≤

(∑
(|xi| + |yi|)p

)1/q
(∥x∥p + ∥y∥p) .

7



1.3. Normed linear spaces and fundamental inequalities MA224: Real Analysis

That is (∑
(|xi| + |yi|)p

)1− 1
q ≤ ∥x∥p + ∥y∥p.

From (1), we get
∥x+ y∥p ≤

(∑
(|xi| + |yi|)p

)1/p
≤ ∥x∥p + ∥y∥p.

Note that as similar to above cases, it can be shown that equality in (∗) holds if and only if

x = ∥x∥p

∥y∥p
y.

Now, if x, y ∈ ℓp, then x + y ∈ ℓp. Because a, b > 0, (a + b)p ≤ {2 max{a, b}}p that is,
(a+ b)p ≤ 2p(ap + bp), and so,

∑
|xj + yj |p ≤ 2p(

∑
|xj |p +

∑
|yj |p) < ∞.

Thus, ℓp is closed under ∥ · ∥p. Hence (ℓp, ∥ · ∥p) is a normed linear space.

Theorem 1.3.9. If f, g ∈ R[a, b], then for ∥f∥p = (
∫

|f |p)
1
p , we get

(i) ∥fg∥1 ≤ ∥f∥p∥g∥q where 1
p

+ 1
q

= 1

(ii) ∥f + g∥p ≤ ∥f∥p + ∥g∥p, 1 ≤ p < ∞

For p = ∞,
∥f∥∞ = sup

t∈[a,b]
|f(t)|, where f ∈ R[a, b].

Then (R[a, b], ∥ · ∥∞) is a normed linear space.

Definition 1.3.10. (Open and Closed balls):

(i) Br(x0) = {y ∈ X : d(x0, y) < r} is called open ball.

(ii) Br(x0) = {y ∈ X : d(x0, y) ≤ r} is called closed ball.

1.3.6 Open sets in metric spaces

Definition 1.3.11. A set O ⊂ (X, d) is said to be open if for all x ∈ O, there exists r > 0 such
that Br(x) ⊂ O.

Proposition 1.3.12. If {Oi : i ∈ I}, I is any index set. Then

(i)
⋃

i∈I Oi is open (arbitrary union of open sets is open).

(ii)
⋂n

i=1Oi is open (finite intersection of open sets is open).

8
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Remark. Arbitrary intersection of open sets need not be open.

Example 1.3.13. X = R, u(x, y) = |x− y|. ⋂∞
n=1

(
− 1

n ,
1
n

)
= {0} is not open.

Example 1.3.14. Let f : R → R be continuous. Then A = {x ∈ R : f(x) > 0} is open.

Proof. Let x ∈ A =⇒ f(x) > 0. For ε = f(x) > 0, there exists δ > 0 such that for all
y ∈ (−δ, δ) + x = (x− δ, x+ δ),

|f(y) − f(x)| < f(x).

=⇒ 0 < f(y) < 2f(x), ∀ y ∈ (x− δ, x+ δ).

Hence (x− δ, x+ δ) ⊂ A =⇒ A is open.

Open Sets in R :
A countable union of open intervals is an open set.On the other hand, any open set in R can

be written as a countable union of disjoint open intervals.

Theorem 1.3.15. Let O be an open set in R, then there exists a unique disjoint family of
countably many open intervals In such that

O =
∞⋃

n=1
In

Proof. Since O is open, for x ∈ O, there exists an open interval (a, b) such that x ∈ (a, b) ⊂ O.
Now, we extract the largest open interval containing x and contained in O. Let ax = inf{a :
(a, x] ⊂ O}, and bx = sup{b : [x, b) ⊂ O}. Then Ix = (ax, bx) will be the largest open interval
containing x and contained in O.
Note that Ix = (ax, bx) ⊂ O. For this, let ax < z < bx, then ax < z − ϵ for small ϵ > 0
=⇒ ax + ϵ < z. But by definition of infimum, ∃ a < ax + ϵ and (a, x] ⊂ O =⇒ (ax + ϵ, x] ⊂ O.

Similarly, [x, bx − ϵ) ⊂ O =⇒ (ax + ϵ, bx − ϵ) ⊂ O for small ϵ > 0 =⇒ (ax, bx) ⊂ O.
Now, if x, y ∈ O and x ̸= y then either Ix ∩ Iy = ∅ or Ix = Iy.
If Ix ∩ Iy ̸= ∅, then Ix ∪ Iy is an open interval containing x and y.
Therefore, by maximality of Ix for x and Iy for y, it follows that Ix ∪ Iy ⊆ Ix =⇒ Iy ⊆ Ix Since
y ∈ Iy =⇒ Iy = Ix (∵ Iy is maximal).
Now, O = ⋃

x∈O Ix. Since Ix and Iy are disjoint (if x ≠ y), we can assign a distinct rational to
each of them. That is, choose rx ∈ Ix and ry ∈ Iy. Then rx ̸= ry.
Thus,

{Ix : x ∈ O} 1−1−→ Q (set of rationals) via Ix 7→ rx

Hence,

O =
∞⋃

i=1
Iri (1)

9
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The representation (1) is unique. Let O = ⋃∞
n=1 In = ⋃∞

m=1 Jm.
Then In = In ∩ O = ⋃∞

m=1(In ∩ Jm). Since {In ∩ Jm : m ∈ N} is a disjoint family and In is
an open interval, In ⊂ In ∩ Jm0 for some m0. But then In ⊂ Jm0 , and given In is maximal,
=⇒ In = Jm0 . Thus, the representation (1) is unique upto change in order of union.

Definition 1.3.16. (Convergent Sequence):
A sequence (xn) ∈ (X, d) is said to be convergent if ∀ϵ > 0, ∃N ∈ N and x0 ∈ X such that

n ≥ N =⇒ d(xn, x0) < ϵ ⇐⇒ xn ∈ Bϵ(x0), ∀n ≥ N .

Definition 1.3.17. (Cauchy Sequence):
A sequence (xn) ∈ (X, d) is said to be a Cauchy sequence if ∀ϵ > 0, ∃N ∈ N such that

m,n ≥ N =⇒ d(xn, xm) < ϵ

Example 1.3.18. Let X = (0, 1) and d(x, y) = |x− y|. Then { 1
n} is a Cauchy sequence because

|xn − xm| =
∣∣∣∣ 1n − 1

m

∣∣∣∣ → 0 as n,m → ∞.

But lim xn = 0 /∈ X. Hence not convergent.

However, every convergent sequence is a Cauchy sequence.

Definition 1.3.19. A set A ⊆ (X, d) is said to be bounded if ∃x0 ∈ X and M > 0 such that
d(a, x0) ≤ M, ∀a ∈ A ⇐⇒ a ∈ BM (x0), ∀a ∈ A. that is, A is bounded if and only if A is
contained in a ball.

Example 1.3.20. The set {(x, y) : y = sin(1/x), x ≠ 0} ∪ ({0} × [−1, 1]) is unbounded, since it
contains points (n, sin(1/n)) whose Euclidean norm tends to infinity as n → ∞.

Proposition 1.3.21. Every Cauchy sequence is bounded.

Proof. Since (xn) ⊂ (X, d) is a Cauchy sequence, for ϵ = 1, ∃N ∈ N such that

d(xm, xn) < 1, ∀m,n ≥ N.

So d(xn, xN ) < 1, ∀n ≥ N . Let M = max{1, d(xi, xN ) : i = 1, 2, . . . , N−1}. Then d(xn, xN ) ≤
M,∀n ≥ 1 =⇒ xn ∈ BM (xN ).

But converse need not be true. For (R, u), u = usual metric. xn = {−1, 1,−1, 1, . . .} is
bounded but not Cauchy sequence.

Proposition 1.3.22. Let (xn) be a Cauchy sequence in (X, d). If (xnk
) is a subsequence which

converges to x. Then xn → x.

10
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Proof. For ε > 0, there exists N1 ∈ N such that

d(xn, xm) < ε

2 , ∀n,m ≥ N1.

Also, for the same ε > 0, there exists N2 ∈ N such that

d(xnk
, x) < ε

2 , ∀nk ≥ N2.

Let N = max{N1, N2}. Then

d(xn, xm) < ε

2 and d(xnk
, x) < ε

2 for all n,m, nk ≥ N.

=⇒ d(xnk
, xm) < ε

2 , ∀nk,m ≥ N.

Thus,
d(x, xm) ≤ d(x, xnk

) + d(xnk
, xm) < ε for all m ≥ N.

Hence, xm → x.

Remark. If X = (0, 1) and d(x, y) = |x− y|. Then xn = 1
n is a Cauchy sequence, but it has no

convergent subsequence.

1.3.7 Closed sets in metric spaces

Definition 1.3.23. A set F ⊂ (X, d) is said to be closed if F c is open. that is, for all
x ∈ F c = X \ F , ∃ ϵ > 0 such that Bϵ(x) ⊆ F c.
On the other hand, if for each ϵ > 0, Bϵ(x) ∩ F ̸= ∅ =⇒ x ∈ F.

Example 1.3.24. The set A = {(x, y) : y = sin 1
x , x ̸= 0} is neither open nor closed set in

R2. If xn = 1
nπ ̸= 0, (xn, yn) = ( 1

nπ , 0) ∈ A, but limn→∞(xn, yn) = (0, 0) /∈ A Since any ball
B 1

n
( 1

π , 0) ̸⊆ A =⇒ A is not open in R2.

Theorem 1.3.25. Let (X, d) be a metric space and F ⊂ X. Then the following are equivalent
(F.A.E):

1. F is a closed set (F c open).

2. ∀ϵ > 0, Bϵ(x) ∩ F ̸= ∅ =⇒ x ∈ F .

3. ∀ sequence (xn) ∈ F such that xn → x =⇒ x ∈ F .

Proof. (1) =⇒ (2): Suppose F is closed. Claim: Bϵ(x) ∩ F ̸= ∅, ∀ϵ > 0 =⇒ x ∈ F .
Notice that if x /∈ F =⇒ x ∈ F c and F c is open =⇒ ∃ϵ0 > 0 such that

Bϵ0(x) ⊂ F c =⇒ Bϵ0(x) ∩ F = ∅,

11
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which is a contradiction.
(2) =⇒ (3): Let (xn) ⊂ F and xn → x. Then for each ϵ > 0, xn ∈ Bϵ(x) for all n ≥ n0.

=⇒ xn ∈ Bϵ(x) ∩ F ̸= ∅, ∀ϵ > 0 =⇒ x ∈ F

(3) =⇒ (1): Claim: F c is open. Suppose F c is not open. Then there exists x ∈ F c such that for
each n ∈ N, there will be xn ∈ F and d(xn, x) < 1

n . By (3), x ∈ F, which is a contradiction.

Example 1.3.26. Let f : R → R be continuous. Then A = {x : f(x) = 0} is closed.
Since xn ∈ A and xn → x. So f(xn) = 0, ∀n ≥ 1 =⇒ lim f(xn) = 0 =⇒ f(x) = 0.

1.3.8 Interior points and interior of a set

Let A ⊂ X. Then interior(A) or Int(A) or A◦ is the largest open set contained in A. That is,

A◦ =
⋃

{O ⊂ X : O open, O ⊆ A}

=
⋃

{Bϵ(x) ⊂ A : for x ∈ A and some ϵ > 0}= union of all open balls contained in A.

1.3.9 Closure and limit points

Let A ⊂ (X, d). The closure of A or cl(A) or A is the smallest closed set containing A. That is,

A =
⋂

{F ⊂ X : F closed and A ⊂ F}

= {x ∈ X : ∃xn ∈ A with xn → x}

= collection of limits of all convergent sequences in A (limit need not be in the set A).

Example 1.3.27. A =
{

(n, 1
n) : n ∈ N

}
. Then closure of A in (R, u) is A = A and A◦ = ∅

(Why?).

Example 1.3.28. 1. A = {(x, y) : |x| < 1, |y| < 1}. Then

A = {(x, y) : |x| ≤ 1, |y| ≤ 1}.

2. A = {(x, y) : y = sin
(

1
x

)
, x ̸= 0}. Then

A = {(x, y) : y = sin
(

1
x

)
, x ̸= 0} ∪ ({0} × [−1, 1]).

Example 1.3.29. Let c00 = space of all sequences having finitely many non-zero terms.

c00 = {x = (x1, x2, . . . , xn, 0, 0, . . .) : xi ∈ R}

∥x∥∞ := max
1≤i≤n

|xi| < ∞.

12
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=⇒ c00 ⊊ ℓ∞ (proper subspace).

Let
Xn =

(
1, 1

2 , . . . ,
1
n
, 0, 0, . . .

)
∈ c00.

Let
X =

(
1, 1

2 , . . . ,
1
n
,

1
n+ 1 , . . .

)
∈ ℓ∞.

then
∥X −Xn∥∞ = sup

k≥n

1
k + 1 = 1

n+ 1 → 0.

but X /∈ c00. Hence c00 is not a closed subspace of ℓ∞. In addition c00 is not open in ℓ∞. For this,
let ϵ > 0 be arbitrary and consider the sequence y =

(
ϵ
2 ,

ϵ
4 ,

ϵ
8 , . . .

)
∈ ℓ∞. Then ∥y∥∞ = ϵ

2 < ϵ, so
y ∈ Bϵ(0), but y /∈ c00. Therefore, Bϵ(0) ̸⊆ c00 for any ϵ > 0.
For 1 ≤ p < ∞, c00 ⊊ ℓp and c00 is neither closed nor open in ℓp. For this, let

xn =
(

ϵp

2n+1

)1/p

, 1 ≤ p < ∞,

and consider x = (x1, x2, . . .) ∈ ℓp. Then x /∈ c00 and

∥x∥p
p =

∞∑
n=1

|xn|p =
∞∑

n=1

ϵp

2n+1 = ϵp

2 ,

so ∥x∥p = ϵ
21/p < ϵ. Hence x ∈ Bϵ(0), and therefore Bϵ(0) ̸⊆ c00 for any ϵ > 0. Consequently, c00

is not open in ℓp.
To see that c00 is not closed in ℓp, let Xn = (x1, x2, . . . , xn, 0, 0, . . .) ∈ c00. Then Xn → x in ℓp,
since

∥Xn − x∥p
p =

∞∑
k=n+1

ϵp

2k+1 → 0 as n → ∞.

But x /∈ c00.

Proposition 1.3.30. Let A ⊂ (X, d). Then x ∈ A if and only if Bϵ(x) ∩A ̸= ∅, for all ϵ > 0.

Proof. Let x ∈ A. Suppose ∃ ϵ0 > 0 such that Bϵ0(x) ∩A = ∅. Then A ⊂ (Bϵ0(x))c, a closed set.
By definition of A, A is the smallest closed set containing A. Hence, A ⊂ (Bϵ0(x))c. Since x ∈ A,
but x /∈ (Bϵ0(x))c, this is a contradiction.

Conversely, suppose Bϵ(x) ∩A ≠ ∅ for all ϵ > 0. By the previous result, x ∈ A (since A is
closed).

Proposition 1.3.31. x ∈ A if and only if there exists a sequence (xn) with xn ∈ A such that
xn → x.

13
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Proof. If x ∈ A, then for all n ∈ N, B1/n(x) ∩A ̸= ∅. So, ∃xn ∈ B1/n(x) ∩A. Thus,

d(xn, x) < 1
n
, ∀n ∈ N =⇒ xn → x.

Conversely, if there exists xn ∈ A with xn → x. Then for ϵ > 0, ∃n0 ∈ N such that
d(xn, x) < ϵ for all n ≥ n0, =⇒ xn ∈ Bϵ(x) ∩ A ̸= ∅ for all ϵ > 0. Thus x ∈ A (by previous
result).

1.4 Complete metric spaces

We have seen that there are Cauchy sequences whose limits need not necessarily belong to the
space.
For example, the sequence 1

n ∈ ((0, 1), u) under the usual metric, is a Cauchy sequence but the
limit 1

n → 0 /∈ (0, 1).
It is always possible to enlarge the space so that limits of all Cauchy sequences can be

accommodated. This process is known as the completion of metric spaces, we shall see later.
However, there are many spaces which do accommodate limits of their Cauchy sequences.

Definition 1.4.1. A metric space (X, d) is called complete if every Cauchy sequence in X has
its limit in X.

Example 1.4.2. (R, u) is a complete space.
Let (xn) be a Cauchy sequence in R. Then it is bounded. And by the Bolzano–Weierstrass

theorem, there exists a subsequence xnk
→ x ∈ R. For any ϵ > 0, there exists a natural number

k0 such that
|xnk

− x| < ϵ for all k ≥ k0 (1)

But the sequence (xn) is Cauchy, so for all ϵ > 0, there exists n0 ∈ N such that |xn − xm| < ϵ for
all n,m ≥ n0. Let m ≥ n0 and m ≥ nk0 . Then

|xn − xnk
| < ϵ for any n ≥ n0 and k ≥ k0. (2)

From (1) and (2), it follows that:

|xn − x| ≤ |xn − xnk
| + |xnk

− x| < 2ϵ

for n ≥ n0 and nk ≥ nk0 . Thus, for ϵ > 0, there exists n0 ∈ N such that

n ≥ n0 =⇒ |xn − x| < ϵ.

Notice that the above discussion can be used to prove the following result.

14
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Proposition 1.4.3. Let (xn) be a Cauchy sequence in a metric space (X, d). If (xn) has a
convergent subsequence xnk

→ x, then xn → x. (Proof is similar to the above.)

Example 1.4.4. (R, d) with d(x, y) = | tan−1(x) − tan−1(y)| is incomplete.

(Hint: xn = tan π
2

(
n

n+1

)
is Cauchy, but not converging to a point in R.

Example 1.4.5. Every discrete metric space is complete.

Let X ̸= ∅, and d0(x, y) =

1 if x ̸= y

0 if x = y

Suppose (xn) ⊂ X is Cauchy. Then for ϵ > 0, ∃N ∈ N such that d(xn, xm) < ϵ for all n,m ≥ N .

Now, d0(xn, xm) =

0 if 0 < ϵ ≤ 1

0 or 1 if ϵ > 1.
But if d0(xn, xm) = 1 for only finitely many n,m > N (for some ϵ > 1), then

lim
n,m→∞

d0(xn, xm) = 1 ̸= 0 (Why?)

Thus, for all ϵ > 0, ∃N ′ ∈ N such that d(xn, xm) = 0, for all n,m ≥ N ′.
that is, (xn) = (x1, x2, . . . , x

′
N , x, x, . . .) → x.

(Thus, every Cauchy sequence in (X, d0) is eventually constant.)

Example 1.4.6. (Rn, ∥ · ∥p) is complete for 1 ≤ p ≤ ∞.
Let 1 ≤ p < ∞, and xk = (xk

1, . . . , x
k
n) be a Cauchy sequence in (Rn, ∥ · ∥p). Then for ϵ > 0,

there exists k0 ∈ N such that for all k, l ≥ k0,

∥xk − xl∥p =

 n∑
j=1

|xk
j − xl

j |p
1/p

< ϵ

=⇒ |xk
j − xl

j | < ϵ for all k, l ≥ k0

=⇒ (xk
j ) is a Cauchy sequence in (R, u).

Hence xk
j → xj for all j. Then for ϵ > 0, there exists mj ∈ N such that k ≥ mj =⇒ |xk

j −xj | < ϵ.
Let m0 = maxj{mj}. Then, for x = (x1, . . . , xn),

∥xk − x∥p < ϵ for k ≥ m0.

Notice that the case p = ∞ is similar. We skip its proof here.

Example 1.4.7. Let 1 ≤ p ≤ ∞. Then (ℓp, ∥ · ∥p) is complete.
Let 1 ≤ p < ∞, and let xk = (xk

1, x
k
2, . . .) be a Cauchy sequence in (ℓp, ∥ · ∥p). Then for ϵ > 0,
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there exists n0 ∈ N such that ∀k, l ≥ n0 =⇒ ∥xk − xl∥p < ϵ

=⇒
n∑

j=1
|xk

j − xl
j |p < ϵp (1)

For each fixed n, this reduces to (Rn, ∥ · ∥p), which we know is complete. Hence xk
j → xj ;

j = 1, 2, . . . , n. Thus, letting k → ∞ in (1), it follows that

n∑
j=1

|xl
j − xj |p < ϵp, ∀l ≥ n0 (2)

But the left-hand side of (2) is an increasing sequence and bounded above, hence, letting n → ∞,
we get

∞∑
j=1

|xl
j − xj |p < ϵp

∥xl − x∥p ≤ ϵ, ∀l ≥ n0

where x = (x1, x2, . . . , xn, . . .). Notice that

∥x∥p ≤ ∥x− xn0∥p + ∥xn0∥p < ϵ+ ∥xn0∥p < ∞ =⇒ x ∈ ℓp.

Proposition 1.4.8. Every closed subset of a complete metric space is complete.

Proof. Let F be a closed subset of a complete metric space (X, d). Then (xn) ⊂ F is a Cauchy
sequence, it follows that (xn) is a Cauchy sequence in X. Hence xn → x ∈ X. But F is closed,
it implies that x ∈ F .
In fact, if (X, d) is complete, then F is closed if and only if F is complete. (Hint: it follows
easily.)

Example 1.4.9. Show that (c0, ∥ · ∥∞) is a proper closed subspace of (ℓ∞, ∥ · ∥∞).
We know that c0 ⊊ ℓ∞. Now, let xk = (xk

1, . . . , x
k
j , . . . ) be a sequence in c0 such that

xk → x = (x1, . . . , xj , . . . ). That is, for every ϵ > 0, there exists k0 ∈ N such that ∀k > k0 =⇒
∥xk − x∥∞ < ϵ which implies

|xk
j − xj | < ϵ for each j ≥ 1and ∀k > k0. (1)

Since xk
j ∈ c0 =⇒ limj→∞ xk

j = 0 for each k. For ϵ > 0, there exists j0 ∈ N such that

|xk
j | < ϵ ∀j ≥ j0 and k ≥ k0. (2)
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It follows from (1) and (2) that

|xj | < |xk0
j − xj | + |xk0

j | < 2ϵ ∀j > J0,

i.e., |xj | < 2ϵ for all j > J0, which means limj→∞ xj = 0. Hence c0 is a closed subspace of ℓ∞.
Thus, c0 is complete in its own right.

Example 1.4.10. The space (C[a, b], ∥ · ∥∞) is a complete normed linear space.
Let (fn) be a Cauchy sequence in (C[a, b], ∥ · ∥∞). Then for ϵ > 0, there exists n0 ∈ N such

that ∀n,m ≥ n0 =⇒ ∥fn − fm∥∞ < ϵ which implies

|fn(t) − fn0(t)| < ϵ ∀n ≥ n0, ∀t ∈ [a, b]. (1)

So (fn(t)) is a Cauchy sequence in (R, u) for each fixed t ∈ [a, b]. Hence fn(t) → f(t).
Letting n → ∞ in (1), we get |f(t) − fn0(t)| ≤ ϵ ∀t ∈ [a, b]. (Notice that n0 is free of choice of
t). Since fn0 is continuous, for each fixed t and ϵ > 0, there exists δ > 0 such that |s − t| < δ

implies |fn0(s) − fn0(t)| < ϵ. Hence,

|f(s) − f(t)| < |f(s) − fn0(s)| + |fn0(s) − fn0(t)| + |fn0(t) − f(t)|

< 3ϵ

So f is continuous on [a, b].
However, the space (C[a, b], ∥ · ∥1) is not complete. For this, we consider the following: Consider

fn(t) =

nt 0 ≤ t < 1
n

1 1
n ≤ t ≤ 1

It is easy to see that for 1
m < 1

n ,

∥fn − fm∥1 =
(∫ 1/m

0
+
∫ 1/n

1/m
+
∫ 1

1/n

)
|fn(t) − fm(t)|dt

=
∫ 1/m

0
(mt− nt)dt+

∫ 1/n

1/m
(1 − nt)dt+

∫ 1

1/n
(1 − 1)dt

= 1
2

( 1
m

− 1
n

)
→ 0 as n < m → ∞

Thus (fn) is a Cauchy sequence in (C[0, 1], ∥ · ∥1). But the pointwise limit:

f(t) = lim
n→∞

fn(t) =

1 0 < t ≤ 1

0 t = 0

17



1.4. Complete metric spaces MA224: Real Analysis

(Hint: fn(0) = 0 and fn(1) = 1 for all n, so f(0) = 0 and f(1) = 1. For 0 < t0 < 1, we can find
large n such that 0 < 1

n < t0 < 1. Hence fn(t0) = 1 for large n. Thus f(t0) = 1.) However, f is
not continuous, hence (C[0, 1], ∥ · ∥1) is not complete.

1.4.1 Dense subsets and separability

A set A ⊂ (X, d) is said to be dense in X if Ā = X. (that is, ∀x ∈ X, ∃xn ∈ A such that xn → x,
or ∀x ∈ X, Bϵ(x) ∩A ̸= ∅, ∀ϵ > 0.)

Example 1.4.11. Q = R with usual metric u(x, y) = |x− y|.
Let x ∈ R, x = [x] + α, 0 < α < 1. But α = 0.x1x2 . . . with xi ∈ {0, 1, 2, . . . , 9}. =⇒ x =
x0 + x1

10 + x2
102 + · · · ∞. Let xn = x0 + x1

10 + · · · + xn
10n . Then xn ∈ Q, and

|x− xn| = xn+1
10n+1 + · · · → 0.

Thus xn ∈ Q and xn → x ∈ R.

Example 1.4.12. If 1 ≤ p < ∞, then c00 = ℓp.
Let x ∈ ℓp, x = (x1, x2, . . . , xn, . . .). Write Xn = (x1, x2, . . . , xn, 0, 0, . . .). Then Xn ∈ c00,

∀n ≥ 1. Now,

∥x−Xn∥p =
( ∞∑

k=n

|xk+1|p
) 1

p

→ 0 as n → ∞

Thus, Xn → x.

Example 1.4.13. c00 = c0. Let x ∈ c0. Then x = (x1, x2, . . . , xn, . . .) and limn→∞ xn = 0.
For ϵ > 0, ∃N ∈ N such that |xn| < ϵ

2 , ∀n ≥ N · · · (1).
Write Xn = (x1, x2, . . . , xn, 0, 0, . . .), n ≥ N . Then Xn ∈ c00 and

∥x−Xn∥∞ = sup
n≥N

|xn+1| ≤ ϵ

2 , ∀n ≥ N (by (1))

Thus, Xn → x.

Remark: c00 = c0 ⊊ ℓ∞. That is, c00 is not dense in ℓ∞.

1.4.2 Continuous maps between metric spaces

A function f : (X, d) → (R, u) is said to be continuous at x0 ∈ X if for all ϵ > 0, there exist
δ > 0 such that d(x0, y) < δ =⇒ |f(x0) − f(y)| < ε.

=⇒ f(Bδ(x0)) ⊆ (f(x0) − ε, f(x0) + ε)

Theorem 1.4.14. Let f : (X, d) → (R, u) or (R, usual metric). Then the following are equivalent:

18
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(i) f is continuous on X (with ε− δ definition).

(ii) For any sequence xn ∈ X such that xn → x =⇒ f(xn) → f(x).

(iii) f−1(O) is open in (X, d), for every open set O ⊆ R.

(iv) f−1(F ) is closed in (X, d), for every closed set F ⊆ R.

(Proof is similar as to f : R → R when d → u, u(x, y) → d(x, y).)

Example 1.4.15. For x, y, z ∈ (X, d), we get

|d(x, y) − d(x, z)| ≤ d(y, z) (by triangle inequality)

Thus, for f(y) = d(x0, y)

|f(y) − f(x)| < d(y, z) → 0 as y → z

Hence, f is continuous on (X, d) to (R, u).

1.4.3 Uniform continuity

Definition 1.4.16. A function f : A(⊂ (X, d)) → R is said to be uniformly continuous on A if
for each ϵ > 0, there exists δ > 0 such that for all x, y ∈ A,

d(x, y) < δ =⇒ |f(x) − f(y)| < ϵ

Notice that δ is free of choice of locations of points x, y ∈ A; it only depends on their separation.

Example 1.4.17. For x0 ∈ X, let f(x) = d(x, x0). Then f is uniformly continuous on X. (Hint:
d(x, x0) ≤ d(x, y) + d(y, x0) =⇒ f(x) − f(y) < d(x, y).) Similarly, by replacing x with y, it
follows.

Example 1.4.18. For x ∈ X, A ⊂ X, define d(x,A) = inf{d(x, a) : a ∈ A}, which is called
the distance of A from x, and is uniformly continuous as a function of x. (Hint: d(x, a) ≤
d(x, y) + d(y, a).) Thus, d(x,A) ≤ d(x, y) + d(y,A) and so,

|f(x) − f(y)| ≤ d(x, y) (∵ x ↔ y)

Example 1.4.19. The function f : (0, 1) → R given by f(x) = 1
x is continuous on (0, 1), but

not uniformly continuous.

Let x0 ∈ (0, 1). Then for ϵ > 0, there exists n ∈ N such that (x0 − ϵ
n , x0 + ϵ

n) ⊂ (0, 1). Suppose∣∣∣ 1
x0

− 1
y

∣∣∣ < ϵ for y ∈ (x0 − ϵ
n , x0 + ϵ

n) =: Ix0 . Then |x0 − y| < ϵx0y. Let δ = miny∈Ix0
{ϵx0y} =

19
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ϵx0(x0 − ϵ/n) > 0. If |x0 − y| < δ. Then∣∣∣∣ 1
x0

− 1
y

∣∣∣∣ = |x0 − y|
x0y

<
δ

x0y
≤ ϵx0(x0 − ϵ/n)

x0y
< ϵ.

Hence, f is continuous at each x0 ∈ (0, 1).
f is not uniformly continuous: Let ϵ = 1

2 , x = 1
n , y = 1

n+1 , n ∈ N. Then for any δ > 0, there
exists n0 ∈ N such that

|x− y| =
∣∣∣∣ 1n − 1

n+ 1

∣∣∣∣ < δ

but
|f(x) − f(y)| = 1 ≮

1
2 .

Hence, f is not uniformly continuous on (0, 1). From the above argument, we can prove the
following result.

Theorem 1.4.20. Let f : A(⊂ (X, d)) → R. Then f is uniformly continuous on A if and only
if for every pair of sequences xn, yn ∈ A with d(xn, yn) → 0, implies |f(xn) − f(yn)| → 0.

Proof. Suppose f is uniformly continuous on A. Then for any ϵ > 0, there exists δ > 0 such that

d(x, y) < δ =⇒ |f(x) − f(y)| < ϵ. (1)

Let xn, yn ∈ A such that d(xn, yn) → 0. Then for δ > 0, there exists n0 ∈ N such that for all
n ≥ n0,

d(xn, yn) < δ =⇒ |f(xn) − f(yn)| < ϵ. (from (1)),

That is, if d(xn, yn) → 0, then |f(xn) − f(yn)| → 0. Conversely, suppose that f is not uniformly
continuous. Then there exists ϵ0 > 0 such that for every δ > 0 there exist x, y ∈ A with
d(x, y) < δ but |f(x) − f(y)| ≥ ϵ0. Now, let δ = 1

n for n ∈ N. Then there exist xn, yn ∈ A such
that

d(xn, yn) < 1
n
, ∀n ∈ N, but |f(xn) − f(yn)| ≥ ϵ0.

That is, d(xn, yn) → 0 but lim|f(xn) − f(yn)| ≥ ϵ0, is a contradiction. Hence, f is uniformly
continuous.

Exercise 1.4.21. Show that a uniformly continuous function on a metric space (X, d) sends
Cauchy sequences to Cauchy sequences. (Hint: If f : (X, d) → R is uniformly continuous, so for
d(xn, xm) → 0 =⇒ |f(xn) − f(xm)| → 0.)

Theorem 1.4.22. Let f : [a, b] → R be a continuous function. Then f is uniformly continuous.

Proof. On contrary, suppose f is not uniformly continuous on [a, b]. Then there exists ϵ0 > 0
such that for every δ > 0, there exist x, y ∈ [a, b] with |x − y| < δ but |f(x) − f(y)| ≥ ϵ0. For
δ = 1

n , there exist xn, yn ∈ [a, b] such that |xn − yn| < 1
n but |f(xn) − f(yn)| ≥ ϵ0. By the
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Bolzano–Weierstrass theorem, xn, yn have convergent subsequences, say xnk
→ x and ynk

→ y.
Now,

|x− y| = lim
k→∞

|xnk
− ynk

| ≤ lim
k→∞

1
nk

= 0,

so x = y. Since f is continuous, f(xnk
) − f(ynk

) → f(x) − f(y) = 0, but |f(xnk
) − f(ynk

)| ≥ ϵ0,
contradiction.

Example 1.4.23. Let f : R → R be continuous such that lim|x|→∞ f(x) = 0. Then f is uniformly
continuous.

Proof. For ϵ > 0, there exists [−a, a] such that |f(x)| < ϵ/2 if x ∈ [−a, a]c. Hence, if x, y ∈
[−a, a]c, then

|f(x) − f(y)| < ϵ

2 + ϵ

2 = ϵ (1)

Since f is uniformly continuous on [−a, a]. For ϵ > 0, there exists δ > 0 such that

|x− y| < δ =⇒ |f(x) − f(y)| < ϵ (2)

Since (1) holds true for x, y with |x− y| < δ. It follows that for ϵ > 0, we get δ > 0 such that
|x− y| < δ =⇒ |f(x) − f(y)| < ϵ (for any x, y ∈ R). Hence, f is uniformly continuous on R.

Notice that if f ∈ C0(R), that is f is continuous and lim|x|→∞ f(x) = 0 and hence f is
uniformly continuous. But if f is continuous and bounded, then f need not be uniformly
continuous on R.

Example 1.4.24. f(x) = sin x2, which is continuous and bounded but not uniformly continuous
on R. (Hint: Take x2 = nπ and y2 = nπ + 1

2π.)

Example 1.4.25. Let f : R → R be a bounded continuous function. If f is monotone, then f

is uniformly continuous on R. Since f is bounded, let inf f(x) = L, sup f(x) = M. For ϵ > 0,
there exist x0, y0 ∈ R such that f(x0) < L+ ϵ and f(y0) > M − ϵ.
If f is monotone increasing, then for x, y ∈ [x0, y0]c and x, y ≥ y0

f(y) − f(x) ≤ M − f(y0) < M − (M − ε) = ε.

Similarly, if x, y ≤ x0 then

f(y) − f(x) ≤ L+ ε− f(x0) < L+ ε− L = ε.

Thus, for x, y ∈ [x0, y0]c, we get |f(x) − f(y)| < ε (1).
Since f is continuous on [x0, y0], f is uniformly continuous on [x0, y0]. For any ε > 0, there exists
δ > 0 such that

x, y ∈ [x0, y0], |x− y| < δ =⇒ |f(x) − f(y)| < ε (2)
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Notice that (1) also holds for x, y ∈ [x0, y0]c with |x− y| < δ. Thus, we get single δ > 0 such that

|x− y| < δ =⇒ |f(x) − f(y)| < ε

Exercise 1.4.26. If f : R → R is a bounded continuous function then for f monotone, it follows
that

lim
x→−∞

f(x) = finite, lim
x→+∞

f(x) = finite.

(Hint: For any sequence xn → ∞, f(xn) is bounded and limn→∞ f(xn) = supn f(xn), for f is
increasing.)

Example 1.4.27. Let f : (a, b] → R and f : (b, c) → R be uniformly continuous. Then
f : (a, c) → R is uniformly continuous.

Proof. Since f is uniformly continuous on (a, b] and (b, c), for any ε > 0, there exists δ > 0 such
that if x, y ∈ (a, b] or x, y ∈ (b, c) with |x− y| < δ, then |f(x) − f(y)| < ε. Now, let x, y ∈ (a, c),
with |x− y| < δ. Then |x− b| < δ and |y − b| < δ. Hence,

|f(x) − f(y)| < |f(x) − f(b)| + |f(b) − f(y)| < 2ε.

Thus, f is uniformly continuous on (a, c).

We see that a uniformly continuous function can be extended uniformly to the closure of the set.

Theorem 1.4.28. Let f : A(⊂ R) → R be uniformly continuous on A. Then f can be extended
uniformly to A, and this extension is unique.

Proof. Let x ∈ A. Then there exists xn ∈ A such that xn → x. Now, f(xn) is a bounded sequence
in R. Hence, by Bolzano-Weierstrass theorem, f(xn) has a convergent subsequence. Without
loss of generality we can assume that f(xn) is convergent. Let f̃(x) = lim f(xn) (∵ lim f(xn)
exists ). Notice that f̃ is well defined, because f is uniformly continuous on A. If xn, yn → x,
then xn − yn → 0 =⇒ f(xn) − f(yn) → 0 i.e. lim f(xn) = lim f(yn) (∵ lim f(xn) and lim f(yn))
both exist). Hence f̃ : A → R is well defined. Suppose x, y ∈ A and they are close enough to
each other. Then there exist xn, yn ∈ A such that xn → x and yn → y. Hence,

f̃(x) − f̃(y) = f̃(x) − f(xn) + f(xn) − f(yn) + f(yn) − f̃(y)

=⇒ |f̃(x) − f̃(y)| ≤ |f̃(x) − f(xn)| + |f(xn) − f(yn)| + |f(yn) − f̃(y)|

Notice that |f̃(x) − f(xn)| < ε and |f̃(y) − f(yn)| < ε for n ≥ n0 (say). Let |x− y| < δ (small
enough). Then there exists n′ ∈ N such that |xn − yn| < δ for n ≥ n′. Since f is uniformly
continuous on A, it follows that |f(xn) − f(yn)| < ϵ for n ≥ n′. Thus for sufficiently large
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n ≥ max(n0, n
′).

|f̃(x) − f(y)| ≤ 3ϵ, where |x− y| < δ.

Hence, f̃ is uniformly continuous on A.
This extension of f is unique: If there exists g̃ : A → R which is uniformly continuous and g̃ = f

on A, then for x ∈ A, there is a sequence xn ∈ A such that xn → x. Hence,

f̃(x) = lim
n→∞

f(xn) = lim
n→∞

g(xn) = g̃(x)

(∵ g is uniformly continuous extension).

Next, we shall see that uniformly continuous function grows slower than a straight line.

Theorem 1.4.29. Let f : R → R be uniformly continuous,then there exist constants A,B ≥ 0
such that |f(x)| ≤ A|x| +B for all x ∈ R.

Proof. For any ϵ > 0, there exists δ > 0 such that |x − y| < δ implies |f(x) − f(y)| < 1. We
divide the proof into two parts: one is near ”0” and other is away from ”0”. Let a > 0. Then
|f(x)| ≤ A < ∞ for x ∈ [−a, a]. Now, consider f : [a,∞) → R.Then for x ∈ [a,∞), we can find
n ∈ N such that x ∈ [a+ nδ, a+ (n+ 1)δ]. Then,

f(x) − f(a) = f(x) − f(a+ nδ) + f(a+ nδ) − f(a)

= f(x) − f(a+ nδ) +
n∑

j=1
[f(a+ jδ) − f(a+ (j + 1)δ)]

⇒ |f(x)| < 1 + n+ |f(a)|

⇒
∣∣∣∣f(x)
x

∣∣∣∣ < (n+ 1) + |f(a)|
a+ nδ

<
(n+ 1) + |f(a)|

nδ
<

(
1 + 1

n

) 1
δ

+ |f(a)|
nδ

≤ B < ∞.

Notice that B is independent of n, hence B is independent of x. That is, |f(x)| ≤ B|x| if x > a.
Hence, we can summarize that |f(x)| ≤ B|x| +A for all x ∈ R.

Example 1.4.30. Notice that f(x) = x2 is not uniformly continuous on R, as it cannot satisfies
the conclusion of the above theorem.

Example 1.4.31. Let f : R → R be differentiable and its derivative is bounded. Then f is
uniformly continuous on R. For any x, y ∈ R, by the Mean Value Theorem,

|f(x) − f(y)| = |f ′(t)(x− y)| ≤ M |x− y|

where t is between x and y, and M is an upper bound for |f ′(t)|. However, f(x) =
√
x for

x ∈ (0,∞) is uniformly continuous, but its derivative is f ′(x) = 1
2
√

x
, is not bounded.
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Example 1.4.32. Let f : (X, d) → R be uniformly continuous, then f sends Cauchy sequence
in X to Cauchy sequence in R.

Let (xn) be a Cauchy sequence in (X, d). Since f is uniformly continuous, for ε > 0, there
exists δ > 0 such that d(x, y) < δ =⇒ |f(x) − f(y)| < ε. For δ > 0, there exists N ∈ N such
that d(xn, xm) < δ for all n,m ≥ N , =⇒ |f(xn) − f(xm)| < ε, ∀n,m ≥ N . Therefore, (f(xn))
is a Cauchy sequence in R.

1.4.4 Compactness in metric spaces

Definition 1.4.33. Let (X, d) be a metric space. A subset K ⊂ X is called compact if every
open cover of K admits a finite subcover.

Theorem 1.4.34 (Sequential compactness). If (X, d) is a metric space and K ⊂ X, then K is
compact if and only if every sequence in K has a convergent subsequence with limit in K.

Remark 1.4.35. In Rn equipped with the Euclidean metric, the Heine–Borel theorem asserts that
a set is compact if and only if it is closed and bounded.

Theorem 1.4.36. Every compact metric space is complete. Moreover, if f : X → Y is continuous,
then f(K) is compact whenever K is compact.

Proof. If (xn) is a Cauchy sequence in a compact metric space, then (xn) has a convergent
subsequence (xnk

) → x. The Cauchy property forces xn → x, proving completeness. The
continuous image statement follows from the open-cover definition.

1.4.5 The contraction mapping principle

Fixed point searching is an idea to solve equation of the form φ(x) = x. This helps solving
a range of problems, including approximation theory, differential equations etc. Fixed points
can be obtained via iterations, i.e. if the function "shrinks nicely", then we get fixed points via
iteration. That is, if x0 is a point in the space X, then x0 → φ1(x0) → φ2(x0) → · · · where φn

denotes n-times composition of φ. If the sequence (φn(x0)) is convergent and φ is continuous,
then φn(x0) → x and thus φ(x) = φ(limn→∞ φn(x0)) = x. However, if the space is complete, we
only need to verify φn(x0) to be a Cauchy sequence. Nicely shrinking function, we mean here
with contraction mapping.

Definition 1.4.37. A function φ : (X, d) → (X, d) is called contraction if there exists
0 < α < 1 such that

d(φ(x), φ(y)) ≤ αd(x, y), ∀x, y ∈ X.

Theorem 1.4.38. Let (X, d) be a complete metric space. If φ : (X, d) → (X, d) is a contraction,
then φ has a unique fixed point.
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Proof. Let 0 < α < 1 be such that

d(φ(x), φ(y)) ≤ αd(x, y), ∀x, y ∈ X.

For a point x0 ∈ X, let
φ0(x0) = x0, φ1(x0) = φ(x0) etc.

Then
d(φn+1(x0), φn(x0)) ≤ αd(φn(x0), φn−1(x0)) ≤ αnd(φ(x0), x0).

We show that φn(x0) is a Cauchy sequence. Let m > n. Then

d(φn(x0), φm(x0)) ≤ (αn + · · · + αm−1) d(φ(x0), x0)

≤ αn

1 − α
d(φ(x0), x0) (∵ 0 < α < 1)

→ 0 as n → ∞.

Since (X, d) is complete, φn(x0) → x ∈ X (say).

=⇒ φ(x) = φ
(

lim
n→∞

φn(x0)
)

= lim
n→∞

φn+1(x0)

=⇒ φ(x) = x.

If ∃y ∈ X such that φ(y) = y, then

d(x, y) = d(φ(x), φ(y)) ≤ αd(x, y)

⇐⇒ x = y (∵ 0 < α < 1)

This establishes that φ has unique fixed point.

Remark: If Ω ⊂ Rn is open, then any contraction mapping f : Ω → Ω can have at most one
fixed point.

Notice that completeness property of the space is a sufficient condition for existence of fixed
point. For example,

φ : (0,∞) → (0,∞)

φ(x) = 1
2(x+ a

x
), a > 0

satisfies φ(
√
a) =

√
a.

Notice that φ above is not a contraction mapping, since

|φ(x) − φ(y)| = 1
2 |1 − a

xy
| |x− y|
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because the function |1 − a
xy | is not bounded near zero.

Example 1.4.39. φ : (0, 2π) → (0, 2π), φ(x) = sin x
2 .

|φ(x) − φ(y)| ≤ 1
2 |x− y| (By Mean Value Theorem)

Thus, φ is a contraction mapping, but φ has no fixed point in (0, 2π).

Exercise 1.4.40. If (X, d) is a complete metric space and f : X → X is such that fk is
a contraction, then show that f has a unique fixed point. (Hint: do for k = 2, use the
fact that fk cannot have two fixed points. If f2(x0) = x0 and y0 = f(x0)(say), implies that
f(y0) = y0 =⇒ y0 = x0).

Exercise 1.4.41. Let T : C[0, 1] → C[0, 1] be defined by

T (f)(x) =
∫ x

0
f(t)dt.

Show that T 2 is a contraction but T is not a contraction.

Notice that the above fact in these example is also clear from the fact that in the convergence
of φn(x0), we can ignore finitely many steps.
Now, we shall try to understand the existence and uniqueness of the initial value problem:y

′ = f(x, y)

y(0) = y0
(*)

with the help of fixed point theorem.
Suppose f is a continuous function in some rectangle containing the interval (0, y0) in its interior,
and f is Lipschitz in the second variable, i.e.,

|f(x, y1) − f(x, y2)| ≤ K|y1 − y2|,

where K is a fixed constant. Then the equation (*) has a unique solution in some neighborhood
of x = 0. Notice that solving (∗) is equivalent to solve∫ x

0
y′(t)dt =

∫ x

0
f(t, y(t))dt

i.e.,
y(x) = y0 +

∫ x

0
f(t, y(t))dt (**)

That is, we want y(t) such that (**) holds. In other words, we want to get fixed point for the
map φ 7→ F (φ), where

F (φ)(x) = y0 +
∫ x

0
f(t, φ(t))dt,
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with φ ∈ C[−δ, δ] for some δ > 0, which we get very soon. Now,

|F (φ)(x) − F (ψ)(x)| ≤
∫ x

0
|f(t, φ(t)) − f(t, ψ(t))|dt,

≤ K

∫ x

0
|φ(t) − ψ(t)|dt

≤ K · 2δ · ∥φ− ψ∥∞.

Thus, F : C[−δ, δ] → C[−δ, δ] is a contraction as long as 2Kδ < 1, i.e. if δ < 1
2K . Hence F has a

unique fixed point in C[− 1
2K ,

1
2K ]. That is, (*) has a unique solution in |x| < 1

2K .

Example 1.4.42. Consider y′ = 2x(1 + y), y(0) = 0. Then

φ(x) =
∫ x

0
2t(1 + φ(t))dt.

With the initial guess φ0 ≡ 0, we get

φ1(x) =
∫ x

0
2t(1 + 0) dt = x2,

φ2(x) =
∫ x

0
2t(1 + t2) dt = x2 + x4

2 ,

φ3(x) = x2 + x4

2 + x6

6 .

Thus, by induction,

φn(x) =
n∑

k=1

x2k

k! −→ ex2 − 1, (*)

and φ(x) = ex2 − 1 is a solution, which is same as method of separation of variables. Notice
that the series (*) converges uniformly on every interval [−a, a], or on any interval [a, b]. On
the other hand, φ′(x) = 2x(1 + φ(x)) has unique solution in neighborhood of any point x0, i.e.,
[x0 − δ, x0 + δ] with δ < 1

4 . (Hint: Lipschitz constant = 2.)

1.5 Uniform convergence

1.5.1 Uniform convergence of sequences of functions

Notice that in the previous exercises, we have seen that (C([0, 1]), ∥ · ∥∞) is complete. That is, if
∥fn − fm∥∞ → 0, then there exists f ∈ C([0, 1]) such that ∥fn − f∥∞ → 0. But then,

|fn(t) − f(t)| < ∥fn − f∥∞ → 0, ∀t ∈ [0, 1],
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i.e., fn(t) → f(t) for each t ∈ [0, 1]. We say that fn → f uniformly if

sup
t

|fn(t) − f(t)| → 0.

But there are sequence of functions which converge pointwise but not uniformly.

Example 1.5.1. Let fn(t) = tn, t ∈ [0, 1]. Then,

f(t) = lim
n→∞

fn(t) =

0 0 ≤ t < 1

1 t = 1

So,
sup

t
|fn(t) − f(t)| = 1 ̸→ 0.

Example 1.5.2. Let fn : R → R be given by

fn(t) = e−nt2
, n ∈ N

Then,

f(t) = lim
n→∞

fn(t) =

1 t = 0

0 |t| > 0

Notice that for t = 0, |fn(0) − f(0)| = |1 − 1| = 0 < ϵ, ∀n ∈ N If |t0| > 0, t20 > 0. Then for
|fn(t0) − 0| < ϵ, we get

e−nt2
0 < ϵ =⇒ n >

log 1
ϵ

t20

Let n0 =
⌈

log 1
ϵ

t2
0

⌉
+ 1. Then, |fn(t0) − f(t0)| < ϵ for n ≥ n0

Notice that n0 = n0(ϵ, t0) and n0 is large for |t0| close to zero. Thus, n0 cannot be free from
t0. Therefore, fn → f pointwise but not uniformly. Also,

∥fn − f∥∞ = sup
t∈R

e−nt2 = 1 ̸→ 0

If fn(t) = e−nt for t ∈ [1,∞), then

sup
t

|fn(t) − 0| = e−n → 0 =⇒ e−nt unif.−−−−→
[1,∞)

0

Exercise 1.5.3. Let fn, f : A(⊆ R) → R be such that fn → f uniformly on A. Then for
|fn(t)| ≤ Mn (i.e. fn’s are bounded), that implies f is bounded.
(Hint: |f(t)| ≤ |fn0(t) − f(t)| + |fn0(t)| < ϵ+Mn0 < ∞ ∀t ∈ A)

We shall see later that uniform convergent sequences is a good carrier for many underline
properties.
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Theorem 1.5.4. Let f, fn : A(⊂ R) → R be such that fn → f uniformly. Then f is continuous
if fn’s are continuous (i.e. the uniform limit of a sequence of continuous functions is continuous).

Proof. For ϵ > 0, there exists n0 ∈ N such that supt∈A |fn0(t) − f(t)| < ϵ Thus,

|fn0(t) − f(t)| < ϵ, ∀t ∈ A

Since fn0 is continuous on A, for fixed t and for ϵ > 0, there exists δ > 0 such that if
|t− s| < δ =⇒ |fn0(t) − fn0(s)| < ϵ. Thus,

|f(s) − f(t)| < |f(s) − fn0(s)| + |fn0(s) − fn0(t)| + |fn0(t) − f(t)| < 3ϵ

Theorem 1.5.5. Let R[a, b] denote the space of all Riemann integrable functions on [a, b]. Let
fn, f ∈ R[a, b] and fn → f uniformly. Then,

∫ b

a
fn →

∫ b

a
f

that is,

lim
n→∞

∫ b

a
fn =

∫ b

a
lim

n→∞
fn

Proof. ∣∣∣∣∣
∫ b

a
(fn − f)

∣∣∣∣∣ ≤
∫ b

a
|fn − f | ≤ ∥fn − f∥∞(b− a) → 0

Corollary 1.5.6. If fn ∈ R[a, b] such that Sn = f1 +f2 + . . .+fn converges uniformly to S, then

∫ b

a

∞∑
n=1

fn =
∞∑

n=1

∫ b

a
fn

(Obvious from the previous result).

Theorem 1.5.7. Let fn ∈ C1[a, b] be such that f ′
n → g uniformly. If there exists x0 ∈ [a, b] such

that fn(x0) converges, then there exists f ∈ C1[a, b] such that fn → f uniformly and f ′ = g.

Proof. Since f ′
n → g uniformly and fn is continuous, g will be continuous. Define

f : [a, b] → R by f(x0) = lim
n→∞

fn(x0)

and

f(x) =

f(x0) +
∫ x

x0
g(t) dt, if x > x0

f(x0) −
∫ x0

x g(t) dt, if x < x0
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Then f ′(x) = g(x) for every x ∈ [a, b]. Hence, f ∈ C1[a, b]. Now,

fn(x) − fm(x) = fn(x) − fm(x) − (fn(x0) − fm(x0)) + (fn(x0) − fm(x0))

= (x− x0)(f ′
n(t) − f ′

m(t)) + (fn(x0) − fm(x0))

Therefore,
∥fn − fm∥∞ ≤ (b− a)∥f ′

n − f ′
m∥∞ + |fn(x0) − fm(x0)| → 0,

as n,m → ∞. Hence, (fn) is a Cauchy sequence in (C[a, b], || · ||∞). Therefore, fn converges
uniformly. Again, since f ′

n → g = f ′ uniformly, it follows that∫ x

x0
f ′

n(t) dt →
∫ x

x0
f ′(t) dt.

lim
n→∞

[fn(x) − fn(x0)] = f(x) − f(x0)

lim
n→∞

fn(x) = f(x) (∵ lim
n→∞

fn(x0) = f(x0))

Remark 1.5.8. Convergence of (fn(x0)) is necessary in the above result. Consider

fn(t) =
√
t+ n, t ∈ [0, 1]

Then fn does not converge at any point of [0, 1], but

f ′
n(t) = 1

2
√
t+ n

unif.−−−→ 0

Since
sup

t∈[0,1]
|f ′

n(t) − 0| = sup
t∈[0,1]

1
2
√
t+ n

= 1
2
√
n

→ 0.

Exercise 1.5.9. Let fn : R → R. Check for uniform convergence of fn to some f :

1. fn(t) = sin(nt)√
n

.

2. fn(t) = n2t(1 − t2)n.

3. fn(t) = te−nt.

Also, verify for term-by-term integration and differentiation for each of the above.

Theorem 1.5.10. Let E ⊆ R, and fn → f uniformly on E. For a limit point x of E. Suppose

lim
t→x

fn(t) = An (finite) (*)
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Then (An) is convergent and
lim
t→x

f(t) = lim
n→∞

An.

That is,
lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t)

Proof. Since fn → f uniformly on E. For each ϵ > 0, there exists n0 ∈ N such that

|fn(t) − fm(t)| < ϵ, ∀n,m ≥ n0, ∀t ∈ E (*)

By (*), it implies that |An −Am| < ϵ, ∀n,m ≥ n0. So (An) is Cauchy, hence convergent =⇒
An → A (Say). Now,

|f(t) −A| = |f(t) − fn(t) + fn(t) −An +An −A|

≤ |f(t) − fn(t)| + |fn(t) −An| + |An −A|

< ϵ+ ϵ+ ϵ

for t ∈ (x− δ, x+ δ) \ x and n ≥ n0 ( free of t)

lim
t→x

f(t) = A = lim
n→∞

An

Thus, lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t)

Theorem 1.5.11. Let fn : [a, b] → R be such that (f ′
n) converges uniformly. If there exists

x0 ∈ [a, b] such that (fn(x0)) is convergent, then (fn) is uniformly convergent, and

lim
n→∞

f ′
n(x) =

(
lim

n→∞
fn(x)

)′

(i.e. limit and derivative commute).

Proof. The first part of the proof is as earlier. By the Mean Value Theorem, it follows that

|fn(x) − fm(x)| ≤ (b− a)∥f ′
n − f ′

m∥ + |fn(x0) − fm(x0)|

Since f ′
n converges uniformly and fn(x0) is convergent, it follows that fn → f (say) uniformly.

Claim: limn→∞ f ′
n(x) = f ′(x).

Notice that f ′
n need not be continuous, hence Fundamental Theorem of Calculus cannot be

applied. Therefore, we need to exploit the differentiability of f . For x ∈ [a, b], define

φn(t) = fn(x) − fn(t)
x− t

, t ∈ [a, b] \ {x}
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Then
limφn(t) = f(x) − f(t)

x− t
=: φ(t)

Notice that limt→x φn(t) = f ′
n(x) (finite). Also,

|φn(t) − φm(t)| = |f ′
n(x) − f ′

m(x)| < ϵ (by MVT)

for n,m ≥ n0 and for all t ∈ [a, b] \ {x}. Thus, φn → φ uniformly on [a, b] \ {x}. Apply previous
theorem with E = [a, b]. Then,

lim
n→∞

f ′
n(x) = lim

n→∞
lim
t→x

φn(t) = lim
t→x

lim
n→∞

φn(t) = lim
t→x

φ(t) = f ′(x).

Thus,
lim

n→∞
f ′

n(x) =
(

lim
n→∞

fn(x)
)′

1.5.2 Term-by-term differentiation

Let Sn = f1 + f2 + · · · + fn, where each fi : [a, b] → R such that S′
n

unif−−→ S and Sn(x0) → L.
Then, lim(S′

n) = (limSn)′. That is,

f ′
1 + f ′

2 + · · · + f ′
n + · · · = (f1 + f2 + · · · + fn + · · · )′.

This raises a very fundamental question: When does(∫ x

a
f(t) dt

)′
=
∫ x

a
f ′(t)dt (**)

hold? Notice that if f ′ is continuous then for

F (x) =
∫ x

a
f ′(t) dt,

by the Fundamental Theorem of Calculus, F ′(x) = f ′(x).

(F − f)′ = 0

By the Mean Value Theorem, F − f is constant. So F (x) = f(x) − f(a) (∵ F (a) = 0). However,
if f ′ is not continuous, i.e. f ′ ∈ R[a, b] , then (∗∗) need not be true.

Consider the sequence fn : A ⊂ R → R. We say fn converges to f : A ⊂ R → R pointwise if
for any t0 ∈ A, and ∀ε > 0, ∃N ∈ N such that

|fn(t0) − f(t0)| < ε, ∀n ≥ N
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Notice that N = N(ε, t0).

Example 1.5.12. fn : R → R, fn(t) = e−nt2
, n ∈ N. Then

f(t) =

1 t = 0

0 |t| > 0

|fn(0) − f(0)| = |1 − 1| = 0 < ε, ∀n ≥ 1

Now, if |t0| > 0, t20 > 0. Then for

|fn(t0) − 0| < ε =⇒ e−nt2
0 < ε

=⇒ n >
log 1

ε

t20

Let N0 =
⌈

log 1
ε

t2
0

⌉
+ 1. Then N0 = N(ε, t0) and N0 is larger when |t0| is close to 0. Thus, N0

cannot be free of t0.

However, if it happens that N0 is free of choice of t0 ∈ A. Then, we say, fn converges to f

uniformly.
Note: fn → f uniformly if ∀ε > 0, ∃N ∈ N such that

|fn(t) − f(t)| < ε, ∀n ≥ N, ∀t ∈ A.

Then
sup
t∈A

|fn(t) − f(t)| ≤ ε, ∀n ≥ N

or
∥fn − f∥∞ ≤ ε, ∀n ≥ N,

So,
∥fn − f∥∞ → 0 as n → ∞

If fn(t) = e−nt2 , t ∈ R, n ∈ N, supt∈R |fn(t) − f(t)| = 1 ̸→ 0. Hence fn → f pointwise but not
uniformly.

Example 1.5.13. If fn, f : A ⊂ R → R be such that fn → f uniformly. Then for |fn(t)| ≤ Mn

implies f is bounded.

|f(t)| ≤ |f(t) − fN (t)| + |fN (t)| < 1 +MN

Example 1.5.14. If fn → f uniformly and fn are continuous/uniformly continuous, then f is
continuous/uniformly continuous.

33



1.5. Uniform convergence MA224: Real Analysis

Theorem 1.5.15. Let fn, f ∈ R[a, b] be such that fn → f uniformly on [a, b]. Then

∫ b

a
fn →

∫ b

a
f

(
lim

∫ b

a
fn =

∫ b

a
lim fn

)

Proof. ∣∣∣∣∣
∫ b

a
(fn − f)

∣∣∣∣∣ ≤
∫ b

a
|fn − f | ≤ ∥fn − f∥∞(b− a)

Since fn → f uniformly =⇒ ∥fn − f∥∞ < ε, for any ε > 0, for all n ≥ N .
Therefore, ∣∣∣∣∣

∫ b

a
fn −

∫ b

a
f

∣∣∣∣∣ < ε(b− a), ∀n ≥ N

Thus, ∫ b

a
fn →

∫ b

a
f

Corollary 1.5.16. If fn ∈ R[a, b] and Sn = f1 + · · · + fn → S uniformly, then

∫ b

a

∑
fn =

∑∫ b

a
fn

(This follows immediately from the previous result.)

Theorem 1.5.17. Let fn ∈ C1[a, b] be such that f ′
n → g uniformly. If there exists x0 ∈ [a, b]

such that fn(x0) converges, then there exists f ∈ C1[a, b] such that fn → f uniformly and f ′ = g.

Remark 1.5.18. Convergence of (fn(x0)) is necessary in the above result. Consider

fn(t) =
√
t+ n, t ∈ [0, 1]

Then fn does not converge at any point of [0, 1], but

f ′
n(t) = 1

2
√
t+ n

unif.−−−→ 0

Since
sup

t∈[0,1]
|f ′

n(t) − 0| = sup
t∈[0,1]

1
2
√
t+ n

= 1
2
√
n

→ 0.

Exercise 1.5.19. Let fn : R → R. Check for uniform convergence of fn to some f :

1. fn(t) = sin(nt)√
n

.

2. fn(t) = n2t(1 − t2)n.

3. fn(t) = te−nt.

34



1.5. Uniform convergence MA224: Real Analysis

Also, verify for term-by-term integration and differentiation for each of the above.
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Chapter 2

Function of Several Variables

This chapter extends one-variable calculus to functions on Rn. After fixing notation and basic
limit/continuity concepts, we study partial and directional derivatives and the precise notion
of differentiability via linear approximation. The chain rule is developed in a form suitable for
compositions and coordinate changes. We then establish Taylor’s theorem as a higher-order
approximation scheme, and conclude with two central structural results: the inverse mapping
theorem and the implicit function theorem, which explain when nonlinear maps are locally
invertible and when level sets can be described as graphs.

2.1 Syllabus map

This chapter develops multivariable calculus from a rigorous analytic viewpoint. We proceed from
limits and continuity to differentiability, and then to the inverse and implicit function theorems.

2.2 Limits and continuity

2.2.1 Notation and basic definitions in Euclidean space

For n ∈ {1, 2, . . .} = N; Rn = R × R × · · · × R︸ ︷︷ ︸
n copies

. Let x ∈ Rn, then x = (x1, x2, . . . , xn). Let

0 ∈ Rn, represent as 0 = (0, 0, . . . , 0). For x,y ∈ Rn, λ ∈ R:

x + y = (x1 + y1, x2 + y2, . . . , xn + yn)

λx = (λx1, λx2, . . . , λxn)

Define the standard inner product ⟨·, ·⟩ : Rn × Rn → R given by

⟨x, y⟩ =
n∑

i=1
xiyi = x1y1 + x2y2 + · · · + xnyn
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Then inner product ⟨·, ·⟩ satisfies,

(i) ⟨x, x⟩ = x2
1 + x2

2 + · · · + x2
n ≥ 0.

(ii) ⟨x, x⟩ = 0 if and only if x = 0.

(iii) For α, β ∈ R and x, y, z ∈ Rn:

⟨x, αy + βz⟩ = α⟨x, y⟩ + β⟨x, z⟩

⟨αx+ βy, z⟩ = α⟨x, z⟩ + β⟨y, z⟩

Therefore, ⟨·, ·⟩ is a bilinear map and is called the inner product.
Let x ∈ Rn. Define the norm:

∥x∥ =
√

⟨x, x⟩ =
√
x2

1 + x2
2 + · · · + x2

n

For x, y ∈ Rn, then

|⟨x, y⟩| ≤ ∥x∥ ∥y∥ (Cauchy-Schwarz inequality).

If x ̸= 0, y ̸= 0, then ∥x∥ ̸= 0, ∥y∥ ̸= 0.∣∣∣∣〈 x

∥x∥
,
y

∥y∥

〉∣∣∣∣ ≤ 1

But
∥∥∥ x

∥x∥

∥∥∥ = 1 and
∥∥∥ y

∥y∥

∥∥∥ = 1. We need to prove the inequality when ∥x∥ = 1, ∥y∥ = 1. For any
t ∈ R, ⟨x− ty, x− ty⟩ = ∥x− ty∥2 ≥ 0.
Let P (t) = ⟨x− ty, x− ty⟩. Then

P (t) = ⟨x, x⟩ − 2t⟨x, y⟩ + t2⟨y, y⟩

= 1 − 2t⟨x, y⟩ + t2 · 1 (since ∥x∥ = ∥y∥ = 1)

= t2 − 2t⟨x, y⟩ + 1 ≥ 0

Take t0 = ⟨x, y⟩, then P (t0) = t20 − 2t20 + 1 = 1 − t20 ≥ 0 =⇒ t20 ≤ 1 =⇒ |t0| ≤
1 that is |⟨x, y⟩| ≤ 1.
Notice |⟨x, y⟩| = 1 if and only if x = αy or y = αx for some α ∈ R. Suppose y = αx, then

|⟨x, αx⟩| = |α||⟨x, x⟩| = |α| · 1 · 1

= ∥αx∥.∥x∥ = ∥y∥.∥x∥

=⇒ |⟨x, αx⟩| = 1
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Suppose |⟨x, y⟩| = 1 · · · (1). Claim: y = αx, for some α.
Let p(t) = t2 − 2t⟨x, y⟩ + 1. If we take t0 = ⟨x, y⟩, then

p(t0) = ⟨x, y⟩2 − 2⟨x, y⟩2 + 1 = 0 (by (1))

But p(t0) = ∥x− t0y∥2 = 0 if and only if x = t0y. Thus, x and y are linearly dependent.

Theorem 2.2.1. : |⟨x, y⟩| ≤ ∥x∥ ∥y∥,∀x, y ∈ Rn and |⟨x, y⟩| = ∥x∥ ∥y∥ if and only if there exist
α ∈ R such that x = αy. that is, x and y are linearly dependent. (Explain linear dependent sets
and so forth).
For x, y ∈ Rn:

∥x+ y∥2 = ⟨x+ y, x+ y⟩

= ∥x∥2 + ∥y∥2 + 2⟨x, y⟩

≤ ∥x∥2 + ∥y∥2 + 2∥x∥ ∥y∥ (since|⟨x, y⟩| < ∥x∥∥y∥)

= (∥x∥ + ∥y∥)2

Therefore, ∥x+ y∥ ≤ ∥x∥ + ∥y∥ (Triangle Inequality).

Bolzano-Weierstrass Theorem: Every bounded sequence (an) ⊂ R has a convergent
subsequence.

Bolzano-Weierstrass Theorem for R2:
Let {Xn} = {(xn, yn)}. ∥Xn∥ =

√
x2

n + y2
n ≤ M, ∀n ≥ 1.

|xn| ≤
√
x2

n + y2
n ≤ M

|yn| ≤
√
x2

n + y2
n ≤ M

By Bolzano-Weierstrass theorem xnk
→ x and {(xnk

, ynk
)} is bounded. So ynk

is bounded. So by
Bolzano-Weierstrass theorem ynk,l

→ y. Hence, (xnk,l
, ynk,l

) → (x, y).
Rn: Let Xk = (xk

1, x
k
2, . . . , x

k
n). If {Xk} is a bounded sequence in Rn, then there exists a subse-

quence {Xkl
} such that Xkl

→ X ∈ Rn.

2.2.2 Limits in Euclidean space

Suppose f : (a, b)(⊂ R) → R. If limh→0 f(x+ h) and limh→0 f(x− h) both exist and are equal,
then we say the limit at x exists.

Suppose f : D(⊆ R2) → R. lim(x,y)→(0,0) f(x, y) = finite and equal along all paths joining
(x, y) and (0, 0). Let x = r cos θ, y = r sin θ, so (x, y) → (0, 0) ⇐⇒ x2 + y2 → 0 that is r2 →
0 or r → 0 (sincer > 0). limr→0 f(r cos θ, r sin θ) = finite, we say limit at (0, 0) exists.
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Let D = (a1, b1) × · · · × (an, bn), and f : D(⊆ Rn) → Rm, f(X) = f(x1, x2, . . . , xn) =
(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)). Then f is said to be continuous at X ∈ D, if for every ε > 0,
there exists δ > 0 such that Y ∈ D with ∥X − Y ∥ < δ implies ∥f(X) − f(Y )∥ < ε

=⇒
(

m∑
i=1

|fi(X) − fi(Y )|2
)1/2

< ε

=⇒ |fi(X) − fi(Y )| < ε, ∀i = 1, 2, . . . ,m

Thus, f continuous at X implies each component fi is continuous at X.
Conversely, if each fi for i = 1, 2, . . . ,m is continuous, then for ε > 0, there exists δ > 0 such

that ∥X − Y ∥ < δ =⇒ |fi(X) − fi(Y )| < ε√
m

=⇒ ∥f(X) − f(Y )∥ < ε. Thus, it is enough to
consider f : R2 → R for questions result regarding f : Rn → Rm.

2.2.3 Continuity in Euclidean space

Definition 2.2.2. Let D(⊆ R2) and f : D → R. Then f is said to be continuous at X0 =
(x0, y0) ∈ D, if for every ε > 0, there exists δ > 0 such that for all X = (x, y) ∈ D, ∥X −X0∥ <
δ =⇒ |f(X) − f(X0)| < ε that is, limX→X0 f(X) = f(X0)

Negation of Continuity: ∃ε0 > 0 such that ∀δ > 0, ∃X ∈ D such that ∥X − X0∥ <

δ but |f(X) − f(X0)| ≥ ε0.

Proposition 2.2.3. If f : D(⊂ R2) → R is continuous at X0 if and only if for every sequence
Xn → X0, implies f(Xn) → f(X0).

Proof. Let X0 = (x0, y0), Xn = (xn, yn). Suppose f is continuous at X0. Then for each ε > 0,
there exists δ > 0 such that

∥X −X0∥ < δ =⇒ |f(X) − f(X0)| < ε. (1)

Let Xn → X0. Then for δ > 0, there exists n0 ∈ N such that

n ≥ n0 =⇒ ∥Xn −X0∥ < δ =⇒ |f(Xn) − f(X0)| < ε (by (1)) (2)

Thus, Xn → X0 =⇒ f(Xn) → f(X0).
Conversely, suppose (2) holds, but f is not continuous at X0, then ∃ ε0 > 0 such that ∀ δ > 0,

there exists X ∈ D such that ∥X −X0∥ < δ but |f(X) − f(X0)| ≥ ε0. Take δ = 1
n > 0, then

there exists Xn ∈ D such that ∥Xn −X0∥ < 1
n but |f(Xn) − f(X0)| ≥ ε0. So Xn → X0, but

f(Xn) ̸→ f(X0).
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Example 2.2.4. Define

f(x, y) =

1 if xy ̸= 0

0 otherwise

Then lim
(x,y)→(0,0)

f(x, y) does not exist. But if xy ̸= 0 is replaced by xy = 1, it exists.

Exercise 2.2.5. Let f : R2 → R, check the continuity of f at (0, 0).

1. f(x, y) =


xy√
x2 + y2 if x2 + y2 ̸= 0

0 otherwise

2. f(x, y) = sin2(x− y)√
x2 + y2 , f(0, 0) = 0.

3. f(x, y) =


x2y

x2 + y
if x2 + y ̸= 0

0 otherwise

4. f(x, y) =


x2y

x4 + y2 if x4 + y2 ̸= 0

0 otherwise

5. f(x, y) =


sin xy
xy

if xy ̸= 0

0 otherwise

Using the epsilon-delta definition: Let f(x, y) = xy

x2 + y2 , f(0, 0) = 0. For x = y, f(x, x) = 1
2 .

Thus, |f(x, x) − f(0, 0)| = 1
2 . Take ε = 1

4 , then there does not exist any δ > 0 such that√
x2 + y2 < δ =⇒ |f(x, y) − f(0, 0)| < 1

4 .

Composition of Two Continuous Functions:
Let f : D(⊂ R2) → R and g : I(⊂ R) → R be continuous, where f(x) ∈ I for each x. Then

g ◦ f is continuous.

Proof. Since f is continuous at x ∈ D, for ε > 0, there exists δ > 0 such that

∥x− y∥ < δ =⇒ |f(x) − f(y)| < ε. (1)

Similarly, g is continuous at f(x), so for η > 0, there exists µ > 0 such that

|t− f(x)| < µ =⇒ |g(t) − g(f(x))| < η.

Given ε > 0, choose η = ε. Then from (1), ∥x− y∥ < δ =⇒ |g(f(x)) − g(f(y))| < η. Thus, g ◦ f
is continuous at x.
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Alternatively, let xn → x, then f(xn) → f(x) and hence g(f(xn)) → g(f(x)).

Example 2.2.6.

f(x, y) =


sin xy
xy

if xy ̸= 0

1 otherwise

f(x, y) = p ◦ g(x, y), where p(t) =


sin t
t

t ̸= 0

1 t = 0

2.3 Differentiation in Rn

2.3.1 Partial derivatives

Let D = (a, b) × (c, d) (or in general open set in R2). Let f : D → R. Let x0 = (x0, y0),

∂f

∂x
(x0, y0) = lim

h→0

f(x0 + h, y0) − f(x0, y0)
h

If this exists, we say f has partial derivative parallel to the x-axis at (x0, y0), and we denote it
by ∂f

∂x (x0, y0) = fx(x0, y0). In other words, for ϵ > 0, there exists δ > 0 such that

|h| < δ =⇒
∣∣∣∣f(x0 + h, y0) − f(x0, y0)

h
− fx(x0, y0)

∣∣∣∣ < ϵ

f(x0 + h, y0) − f(x0, y0) = hfx(x0, y0) + hη(h)

where η(h) → 0 as h → 0 (let hη(h) = γ(h)). f(x0 +h, y0) − f(x0, y0) = hfx(x0, y0) +γ(h) where
γ(h) → 0 as h → 0.

Similarly, f(x0, y0 + k) − f(x0, y0) = kfy(x0, y0) + γ(k) where γ(k) → 0 as k → 0.
Note: From the accompanying graph, one sees that the existence of the partial derivative in the
direction parallel to the x-axis depends only on the values of f along an appropriate line segment
through (x0, y0); it does not require f to be defined on an open disk around (x0, y0).

Example 2.3.1. f(x, y) = xy

x2 + y2 , f(0, 0) = 0. Then fx(0, 0) = 0 = fy(0, 0) but f is not
continuous at (0, 0).

2.3.2 Directional derivatives

Directional derivative is the rate of change of a function parallel to a given direction.
Let x0 ∈ D (rectangle or open set) and f : D(⊂ R2) → R. Let v = (v1, v2), |v| =

√
v2

1 + v2
2 =

1. Then the directional derivative of f at x0 along v is defined by

Dvf(x0) = lim
t→0

f(x0 + tv) − f(x0)
t

41



2.3. Differentiation in Rn MA224: Real Analysis

Note: The existence of the directional derivative of f at x0 in the direction v depends only on
the values of f along a line segment through x0 parallel to v; it does not require f to be defined
on an open neighborhood of x0.

Example 2.3.2.

f(x, y) =


x2y

x4+y2 if x4 + y2 ̸= 0

0 otherwise

Dvf(0, 0) = lim
t→0

t2v2
1v2

t4v4
1 + t2v2

2
=

0 v2 = 0
v2

1
v2

1
v2 ̸= 0

But f is not continuous at (0, 0), for y = mx and so forth.

Example 2.3.3. Let D = (a, b) × (c, d) (or open convex set in R2), that is, (x, y ∈ D =⇒
λx + (1 − λ)y ∈ D, ∀λ ∈ [0, 1]). Suppose f : D(⊂ R2) → R such that fx(x, y) = 0 = fy(x, y),
∀x, y ∈ D. Then f is constant.

Since D is convex, (a, s) × {y} ⊂ D. Thus,∫ s

a
fx(x, y)dx = 0

f(s, y) = f(a, y)

Let g(y) = f(a, y). Then 0 = ∂
∂yf(s, y) = g′(y) =⇒

∫ t
c g

′(y)dy = 0 =⇒ g(y) = g(c). Thus,
f(s, y) = f(a, y) = g(y) = g(c) for all (s, y) ∈ D =⇒ f is constant on D.
Remark: A similar proof will work for D open and convex.

2.3.3 Differentiability

Let D be an open set in R2. Let H = (h, k), X0 = (x0, y0). Then f is said to be differentiable at
X0 ∈ D if there exists L ∈ R2 such that

ϵL(H) = f(X0 +H) − f(X0) − L ·H
∥H∥

→ 0 as ∥H∥ → 0. (*)

Notice that, since we need limit in (∗) exists in a δ-neighborhood of X0, it means f is differentiable
along all directions including parallel to x-axis and y-axis.
The vector L is unique. Suppose not, then there exist M ∈ R2 such that (*) holds. Thus,

(L−M) ·H
∥H∥

= ϵL(H) − ϵM (H) → 0 as ∥H∥ → 0.
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Set H = tV , V ̸= 0 in R2. Then,

lim
t→0

|t| |(L−M) · V |
|t|∥V ∥

= 0 =⇒ |(L−M) · V | = 0, ∀V ∈ R2

Consider V = L − M , then ∥L − M∥ = 0 =⇒ L = M . Hence, the derivative of f at X0 is
unique and we write L = f ′(X0). Since ϵ(H) = f(X0+H)−f(X0)−H·f ′(X0)

∥H∥ → 0 as ∥H∥ → 0. Set
H = tV , ∥V ∥ = 1.

ϵ(tV ) = f(X0 + tV ) − f(X0) − tV · f ′(X0)
|t|

→ 0

as t → 0. Thus, V · f ′(X0) = DV f(X0). Put V = (1, 0), then DV f(X0) = fx(X0). Similarly,
V = (0, 1), DV f(x0) = fy(X0).

Example 2.3.4. Let D be an open set in R2 and f : D(⊂ R2) → R be such that fx and fy both
are bounded on D. Then f is continuous.

Proof.

f(x0 + h, y0 + k) − f(x0, y0)

= f(x0 + h, y0 + k) − f(x0, y0 + k) + f(x0, y0 + k) − f(x0, y0)

= hfx(x0 + θ1h, y0 + k) + kfy(x0, y0 + θ2k) (By Mean Value Theorem of one variable).

where θ1, θ2 ∈ (0, 1).
Hence, |f(x0 + h, y0 + k) − f(x0, y0)| ≤ |h|M1 + |k|M2 ≤

√
h2 + k2

√
M2

1 +M2
2 where

|fx(x, y)| ≤ M1, |fy(x, y)| ≤ M2 for all (x, y) ∈ D. Thus, |f(x0 + h, y0 + k) − f(x0, y0)| →
0 as

√
h2 + k2 → 0. Therefore, f is continuous at (x0, y0).

Exercise 2.3.5. Let ∇f = (fx, fy), as along as fx(X0) and fy(X0) just exist, then f need not
be differentiable at X0.

Note: If f is differentiable,

DV f(X0) = f ′(X0) = (fx(X0), fy(X0)) = ∇f(X0)

Example 2.3.6.

f(x, y) =


y

|y|
√
x2 + y2 if y ̸= 0

0 otherwise

Then f is continuous at (0, 0) and Dvf(0, 0) = v2
|v2| = 2 or 0 if v2 = 0. But f is not

differentiable at (0, 0).

ϵ(h, k) =
k

|k|
√
h2 + k2 − k

√
h2 + k2

43



2.3. Differentiation in Rn MA224: Real Analysis

= k

|k|
− k√

h2 + k2

For h = mk,m, k > 0,
ϵ(mk, k) = 1 − 1√

1 +m2
̸→ 0 as k → 0

Exercise 2.3.7. Prove that

f(x, y) =


(x2 + y2) sin 1

x2+y2 if x2 + y2 ̸= 0

0 otherwise

is differentiable at (0, 0) and f ′(0, 0) = (0, 0). But none of fx and fy is continuous at (0, 0).

Theorem 2.3.8. Let D be an open set in R2. Suppose fx and fy are continuous in a neighbourhood
of (x0, y0) ∈ D. Then f is differentiable at (x0, y0).

Proof. Since (x0, y0) ∈ D and D is open, ∃ δ > 0 such that Bδ(x0, y0) ⊂ D. Let (x0 +h, y0 +k) ∈
Bδ(x0, y0). Then consider

ϵ(h, k) = f(x0 + h, y0 + k) − f(x0, y0) − hfx(x0, y0) − kfy(x0, y0)√
h2 + k2

Since fx and fy exist in Bδ(x0, y0) (say), one can apply the Mean Value Theorem coordinate-wise.
Thus,

ϵ(h, k) = hfx(x0 + θ1h, y0 + k) + kfy(x0, y0 + θ2k) − hfx(x0, y0) − kfy(x0, y0)√
h2 + k2

where 0 < θ1, θ2 < 1.

|ϵ(h, k)| <
√
h2 + k2

(
(fx(x0 + θ1h, y0 + k) − fx(x0, y0))2 + (fy(x0, y0 + θ2k) − fy(x0, y0))2

)
Since fx and fy are continuous in Bδ(x0, y0), |ϵ(h, k)| → 0 as

√
h2 + k2 → 0. Thus f is

differentiable at (x0, y0).

Geometric Interpretation of Derivative:
For function from Rn → R. Let y = f(x0)+f ′(x0)(x−x0) For n = 1, y = f(x0)+f ′(x0)(x−x0)

(line passing through (x0, f(x0))). For n = 2, z = f(x0, y0)+fx(x0, y0)(x−x0)+fy(x0, y0)(y−y0)
(a plane passing through (x0, y0, f(x0, y0))).

2.3.4 Chain rule

I ⊂ R g−→ J
f−→ R.

44



2.3. Differentiation in Rn MA224: Real Analysis

Let F = f ◦ g. If f and g are both differentiable, then f ◦ g is differentiable.

Proof. Since f is differentiable at y = g(x),

f(y + k) − f(y) − f ′(y)k = kη(k) (1)

when η(k) → 0 as k → 0. Since g is differentiable at x, g is continuous. Set k = g(x+ h) − g(x),
then h → 0 =⇒ k → 0. Since g is differentiable,

k = g(x+ h) − g(x) = hg′(x) + hµ(h),

where µ(h) → 0 as h → 0.
Consider

ϵ(h) = f ◦ g(x+ h) − f ◦ g(x) − f ′(g(x))g′(x)h
h

= f(y + k) − f(y) − f ′(y)(k − hµ(h))
h

Since 1
h = g′(x)+µ(h)

k ,
ϵ(h) = η(k)(g′(x) + µ(h)) + f ′(y)µ(h)

Since h → 0 =⇒ k → 0 =⇒ η(k) → 0. So ϵ(h) → 0. Thus f ◦ g is differentiable and

(f ◦ g)′(x) = f ′(g(x))g′(x)

Chain Rule for R2 → R : If f and g both are differentiable, then f ◦ g is differentiable and

(f ◦ g)′(x) = f ′(g(x))g′(x)

Proof.

η(k) = f(y + k) − f(y) − f ′(y)k
∥k∥

→ 0

where ∥k∥ → 0. Since g is continuous, set K = g(x+ h) − g(x), then ∥k∥ → 0 as |h| → 0. Since
g is differentiable at x,

k = g(x+ h) − g(x) = hg′(x) + |h|µ(h)

that is,
∥k∥ ≤ |h|∥g′(x)∥ + |h|∥µ(h)∥

Now,
ϵ(h) = f ◦ g(x+ h) − f ◦ g(x) − f ′(g(x))g′(x)h

|h|
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|ϵ(h)| ≤ |η(k)|(∥g′(x)∥ + ∥µ(h)∥) + ∥f ′(y)∥∥µ(h)∥

→ 0 as h → 0, because h → 0 =⇒ k → 0

Thus,
(f ◦ g)′(x) = f ′(g(x))︸ ︷︷ ︸

1×2

g′(x)︸ ︷︷ ︸
2×1

Mean Value Theorem for Convex Domain:
Let D be an open and convex set in R2. Suppose f : D → R is differentiable. Then for

any x, y ∈ D, there exists c ∈ D such that f(x) − f(y) = (x − y) · f ′(c) where c ∈ (x, y) =
{λx+ (1 − λ)y : 0 < λ < 1}.

Proof. Consider
φ(t) = f((1 − t)x+ ty)

By the chain rule, φ is differentiable on (0, 1) and

φ′(t) = f ′((1 − t)x+ ty) · (y − x)

By the Mean Value Theorem for one variable,

φ(1) − φ(0) = φ′(λ)(1 − 0)

that is,
f(y) − f(x) = f ′((1 − λ)x+ λy))(y − x)

Function from Rn to Rm: Let D be an open set in Rn and f : D(⊂ Rn) → Rm be differentiable.
Then

f ′(x0) =
(
∂fi(x0)
∂xj

)
m×n

Proof. We know that f : D ⊂ Rn → Rm is differentiable at x0 if there exists a Am×n matrix such
that

ϵ(h) = f(x0 + h) − f(x0) −Ah

∥h∥
→ 0 as ∥h∥ → 0, (1)

Let {e1, . . . , en} and {u1, . . . , um} be the free standard basis for Rn and Rm respectively. If
f = (f1, . . . , fm), then fi(x) = f(x) · ui. In (1) substitute h = hjej , ∥h∥ = |hj |,

ϵ(hjej) = f(x0 + hjej) − f(x0) − hjf
′(x0)ej

|hj |
→ 0 as hj → 0
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⇐⇒ lim
hj→0

f(x0 + hjej) − f(x0)
hj

= f ′(x0)ej

=⇒
(
∂fi(x0)
∂xj

)
exists and

f ′(x0) =
(
∂fi(x0)
∂xj

)
m×n

=


∂f1(x0)

∂x1
· · · ∂f1(x0)

∂xn... . . . ...
∂fm(x0)

∂x1
· · · ∂fm(x0)

∂xn


m×n

Write Jf (x0) =
(

∂fi(x0)
∂xj

)
m×n

. Then Jf is called the Jacobian matrix of f .

Note: Existence of ∂fi(x0)
∂xj

does not imply that f ′(x0) exists.

Example 2.3.9. f : R2 → R2

f(x, y) =


(

x2y
x2+y2 ,

xy2

x2+y2

)
if x2 + y2 ̸= 0

(0, 0) otherwise

Then f = (g, h).

Jf (0, 0) =
(
gx gy

hx hy

)
(0, 0) =

(
0 0
0 0

)

But f is not differentiable at (0, 0).

∥ϵ(h, k)∥ =

∥∥∥∥∥( h2k
h2+k2 ,

hk2

h2+k2

)
−
(

0 0
0 0

)(
h

k

)∥∥∥∥∥
√
h2 + k2

∥ϵ(h, k)∥ = |hk|
h2 + k2 ̸→ 0 as

√
h2 + k2 → 0

Therefore, f is not differentiable at (0, 0).

Example 2.3.10. Let f : R2 → R :

f(x, y) = (ex cos y, ex sin y)

det (Jf (x, y)) = e2x ̸= 0 =⇒ Jf (x, y) is non-singular matrix ∀(x, y) ∈ R2, but f is not one-to-
one on R2, since f(x, 2π + y) = f(x, y).
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Norm of a matrix (or linear map):
Let A : Rn → Rm be linear. Then A = (R1, R2, . . . , Rm)T , where Ri’s are rows of A. Let

x ∈ Rn. Then
Ax = (R1x,R2x, . . . , Rmx) ∈ Rm

and
∥Ax∥ =

√∑
|Rix|2 ≤

(√∑
∥Ri∥2

)
∥x∥

If x ̸= 0,
∥Ax∥
∥x∥

≤
√∑

∥Ri∥2

Therefore, {∥Ax∥
∥x∥ : x ̸= 0} is bounded in R. Hence, it has a supremum. Let

∥A∥ := sup
x̸=0

∥Ax∥
∥x∥

< ∞.

Then

(i) ∥Ax∥ ≤ ∥A∥∥x∥, ∀x ∈ Rn.

(ii) ∥A∥ = sup∥x∥=1 ∥Ax∥.

Example 2.3.11. Let A : R2 → R, A(x, y) = 4x+ 3y. Then

∥A∥ = sup
x2+y2=1

|4x+ 3y| = sup
−1≤x≤1

|4x+ 3
√

1 − x2|

Example 2.3.12. Let A : R2 → R2, A(x, y) = (3x, 4y). Then

∥A∥ = sup
x2+y2=1

∥(3x, 4y)∥ = sup
x2+y2=1

√
9x2 + 16y2 = sup

0≤x≤1

√
9x2 + 16(1 − x2)

Chain rule for functions from Rn → Rm:
Let D be an open set in Rn and f : D ⊂ Rn → Rm be differentiable and g : f(D) → Rl be

differentiable. Then g ◦ f : D → Rl is differentiable and

(g ◦ f)′(x) = g′(f(x))f ′(x)

(where g′(f(x)) is an l ×m matrix and f ′(x) is an m× n matrix).

Proof.

η(k) =
g
(
y + k

)
− g

(
y
)

− g′(y)k
∥k∥

→ 0 as ∥k∥ → 0

Since y = f(x) and f is continuous at x, set k = f(x+ h) − f(x). Then ∥h∥ → 0 =⇒ ∥k∥ → 0.
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Also,
∥k∥ = ∥f(x+ h) − f(x)∥ = ∥f ′(x)h+ ∥h∥ϵ(h)∥

(since f is differentiable at x )

≤ ∥f ′(x)∥∥h∥ + ∥h∥∥ϵ(h)∥

that is,
1

∥h∥
≤ 1

∥k∥
{∥f ′(x)∥ + ∥ϵ(h)∥}

Now,

µ(h) = g ◦ f(x+ h) − g ◦ f(x) − g′(f(x))f ′(x)h
∥h∥

= g(y + k) − g(y) − g′(y)(k − ∥h∥ϵ(h))
∥h∥

= ∥k∥η(h) − ∥h∥g′(y)ϵ(h)
∥h∥

∥µ(h)∥ ≤ ∥η(h)∥{∥f ′(x)∥ + ∥ϵ(h)∥} + ∥g′(y)∥∥ϵ(h)∥ → 0

as ∥h∥ → 0. Hence, (g ◦ f)′(x) exists and (g ◦ f)′(x) = g′(f(x)) f ′(x).

Example 2.3.13. Let f : R → R be differentiable and F : Rn → R be defined by F (x) = f(∥x∥2).
Then F is differentiable and F ′(x) = 2f ′(∥x∥2)x.
Let g(x) = ∥x∥2 = x2

1 + · · · + x2
n. g′(x) = (2x1, 2x2, . . . , 2xn) Thus,

F (x) = (f ◦ g)(x)

By the chain rule, since F is differentiable and

F ′(x) = f ′(g(x)) g′(x)

that is,
F ′(x) = 2f ′(∥x∥2)x

Exercise 2.3.14. Let F (x) = f
(
∥x∥2k

)
. Prove that F ′(x) = 2k∥x∥2k−2f ′(∥x∥2k

)
x.

Euler’s Formula. Let f : Rn → Rm be differentiable and f(rx) = rαf(x), ∀r > 0 and some
α ∈ R. Then f ′(x)x = αf(x).

Proof. Since f(rx) = rαf(x), ∀r > 0, differentiate both sides with respect to r.

f ′(rx) d
dr

(rx) = αrα−1f(x)
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f ′(rx)x = αrα−1f(x)

Putting r = 1,
=⇒ f ′(x)x = αf(x)

For n = 2,
x
∂f

∂x
+ y

∂f

∂y
= αf(x, y)

Example 2.3.15. If α > 0, f is continuous at 0. If α > 1, f is differentiable at 0.

Proof. (i) If α > 0, f(0 + h) − f(0) = f(h). Take h = ∥h∥v, with ∥v∥ = 1

∥f(0 + h) − f(0)∥ = ∥h∥α∥f(v)∥ → 0 as ∥h∥ → 0

(ii) If α > 1,
∂f

∂xj
(0) = lim

h→0

f(0 + hjej) − f(0)
hj

= lim
h→0

|hj |αf(ej)
hj

→ 0 as hj → 0 (sinceα > 1)

=⇒ Jf (0) = 0 (m× n matrix)

ϵ(h) = f(0 + h) − f(0) − Jf (0)h
∥h∥

= ∥h∥αf(v)
∥h∥

, ∥v∥ = 1, h = ∥h∥v

→ 0 as ∥h∥ → 0

Mixed Derivatives: Let D ⊂ Rn (or R2) be an open set.

fxx = (fx)x = ∂

∂x

(
∂f

∂x

)
= ∂2f

∂x2

fxy = ∂

∂y
(fx) = ∂2f

∂y∂x

Example 2.3.16.

f(x, y) =

xy
x2−y2

x2+y2 , x2 + y2 ̸= 0

0, x2 + y2 = 0

fyx(0, 0) = ∂fy

∂x
(0, 0) = lim

h→0

fy(h, 0) − fy(0, 0)
h

But
fy(h, 0) = lim

k→0

f(h, k) − f(h, 0)
k

= h
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So,
fyx(0, 0) = lim

h→0

h− 0
h

= 1

Similarly, fx(0, 0) = −1 ̸= fyx(0, 0).

Notations: C1(D) — set of all continuously differentiable functions on D whose derivative is
continuous (that is, fx and fy both are continuous).

C2(D) – set of all functions on D whose partial derivatives up to second order are continuous.
(that is, fx, fy, fxy,fyx, fxx, fyy are continuous.)

Theorem 2.3.17. If D is open and f ∈ C2(D), then fxy(x0, y0) = fyx(x0, y0).

Proof. Since D is open and (x0, y0) ∈ D, there exists an open ball Bδ(x0, y0) ⊂ D or one can
draw a rectangle. Let

F (x, y) = f(x, y) − f(x0, y) + f(x0, y0) − f(x, y0) (1)

Again, let A(x, y) = f(x, y) − f(x0, y). From (1), we get F (x, y) = A(x, y) − A(x, y0) By the
mean value theorem,

F (x, y) = ∂A

∂y
(x, η)(y−y0) = (∂f

∂y
(x, η)−∂f

∂y
(x0, η))(y−y0) where η = y0+(y−y0)θ1, 0 < θ1 < 1

F (x, y) = ∂2f

∂x∂y
(ξ, η)(x− x0)(y − y0)

where ξ = x0 + (x− x0)θ2, 0 < θ2 < 1.

F (x, y)
(x− x0)(y − y0) = ∂2f

∂x∂y
(ξ, η)

Since (x, y) → (x0, y0) =⇒ (ξ, η) → (x0, y0) and ∂2f
∂x∂y is continuous at (x0, y0),

lim
(x,y)→(x0,y0)

F (x, y)
(x− x0)(y − y0) = ∂2f

∂x∂y
(x0, y0) (2)

Similarly, let B(x, y) = f(x, y)−f(x, y0). Then F (x, y) = B(x, y)−B(x0, y). It is straightforward
to verify that

lim
(x,y)→(x0,y0)

F (x, y)
(x− x0)(y − y0) = ∂2f

∂y∂x
(x0, y0) (3)

Thus from (2) and (3),
∂2f

∂x∂y
(x0, y0) = ∂2f

∂y∂x
(x0, y0)
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Note that if f ∈ C2(D),D ⊂ Rn, then

∂2f

∂xj∂xk
= ∂2f

∂xk∂xj
, ∀j, k = 1, 2, . . . , n

2.3.5 Taylor’s theorem

Theorem 2.3.18 (Taylor’s Theorem). Let D be an open set in R2 and f ∈ C2(D). Then there
exist λ ∈ (0, 1) such that

f(X +H) = f(X) + f ′(X)H +Htf ′′(C)H,

where C = X + λH and ∥H∥ < δ.

Proof. Let g(t) = f(X + tH), so g(t) = f ◦ φ(t) where φ(t) = X + tH.

g′(t) = f ′(φ(t))φ′(t) = f ′(φ(t))H

= hfx(φ(t)) + kfy(φ(t))

g′′(t) = h(fx)′(φ(t))φ′(t) + k(fy)′(φ(t))φ′(t)

= h(fxx(φ(t))fxy(φ(t)))H + k(fyx(φ(t))fyy(φ(t)))H

= Ht

(
fxx(φ(t)) fxy(φ(t))
fyx(φ(t)) fyy(φ(t))

)
H where Ht = (h k) (row vector)

Since g(0) = f(X), g(1) = f(X +H), the Mean Value Theorem for one variable gives:

g(1) = g(0) + g′(0) · 1 + 1
2g

′′(λ).12

So,
f(X +H) = f(X) + f ′(X)H + 1

2H
T f ′′(C)H

where C = X + λH and ∥H∥ < δ.

Theorem 2.3.19. Let f : [a, b] → Rn be differentiable on (a, b) and continuous on [a, b]. Then
there exists λ ∈ (a, b) such that ∥f(b) − f(a)∥ ≤ ∥f ′(λ)∥(b− a)

Proof. Let g(t) = (f(b) − f(a)) · f(a+ (b−a)t). Then g′(t) = (f(b) − f(a)) · f ′(a+ (b−a)t)(b−a)
(by chain rule). Since g : [a, b] → R is differentiable, by the Mean Value Theorem, there exists
λ ∈ (a, b) such that

g(b) − g(a) = g′(λ)(b− a)
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∥f(b) − f(a)∥2 = (f(b) − f(a)) · f ′(λ)(b− a)

≤ ∥f(b) − f(a)∥ · ∥f ′(λ)∥(b− a)

Thus,
∥f(b) − f(a)∥ ≤ ∥f ′(λ)∥(b− a)

Theorem 2.3.20. Let D be open in Rn and f : D ⊂ Rn → Rm be differentiable at X ∈ D. Then
there exist λ ∈ (0, 1) such that ∥f(X+H)−f(X)∥ ≤ ∥f ′(C)∥ ∥H∥, where C = X+λH, ∥H∥ < ε

(for some λ > 0).
Note: Equality need not hold. For g : (−1, 1) → R2,

g(t) = (t3, 1 − t2)

Suppose
g(1) − g(−1) = g′(λ)(1 − (−1))

(2, 0) = 2(3λ2,−2λ) =⇒ λ = 0,± 1√
3

But x = t3, y = 1 − t2, x2 = (1 − y)3, has no tangent parallel to x-axis.

Proof. Let g(t) = f(X + tH). Then g : [0, 1] → Rm is differentiable. By previous Mean Value
Theorem, ∃ λ ∈ (0, 1) such that

∥g(1) − g(0)∥ ≤ ∥g′(λ)∥(1 − 0)

∥f(X +H) − f(X)∥ ≤ ∥g′(λ)∥ ≤ ∥f ′(c)∥∥H∥, C = X + λH

where g′(λ) = f ′(X + λH)H.

Notations:

(i) Ln(R) = space of all linear maps from Rn to Rn.

(ii) GLn(R) =
{
A ∈ Ln(R) : AA−1 = I

}
= set of all invertible matrices.

Proposition 2.3.21. Let A ∈ GLn(R) and B ∈ Ln(R) be such that ∥B −A∥ < 1
∥A−1∥ . Then

(i) B ∈ GLn(R) (that is, GLn(R) is open in Ln(R)).
(ii) A 7→ A−1 is continuous on GLn(R).

Proof. Let α = 1
∥A−1∥ , β = ∥B −A∥. Then β < α. For x ∈ Rn, write

α∥x∥ = α∥A−1Ax∥ ≤ α∥A−1∥∥Ax∥
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that is,
α∥x∥ ≤ ∥Ax∥ = ∥(A−B)x+Bx∥ ≤ ∥A−B∥∥x∥ + ∥Bx∥

=⇒ (α− β)∥x∥ ≤ ∥Bx∥ (1)

(i) If Bx = 0, then (α−β)∥x∥ = 0 =⇒ x = 0. Since B is a one-to-one linear map from Rn → Rn,
so B is onto.
(ii) Put x = B−1y in (1), then

∥B−1y∥
∥y∥

≤ 1
α− β

, y ̸= 0.

sup
y ̸=0

∥B−1y∥
∥y∥

≤ 1
α− β

=⇒ ∥B−1∥ < 1
α− β

Now,
∥B−1 −A−1∥ = ∥B−1(A−B)A−1∥ ≤ ∥A−B∥ 1

2(α− β) → 0 as A → B

Hence, the map A 7→ A−1 is continuous.

Note: A 7→ A−1 is one-to-one map, because A−1 = B−1 =⇒ A = B.

Example 2.3.22. Let f : R → R be one-to-one and onto, and f is continuously differentiable at
x0 ∈ R such that f ′(x0) ̸= 0. Then f−1 is differentiable at y0 = f(x0) and

(
f−1

)′
(y0) = 1

f ′(x0) .

Proof.

ϵ(k) =
f−1(y0 + k) − f−1(y0) − k

f ′(x0)
|k|

Let h = f−1(y0 +k)−f−1(y0), y0 +k = f(x0 +h) and k = f(x0 +h)−f(x0) =⇒ h ·f ′(x0 +θh)
for some θ.

Since f ′(x0) ̸= 0, ∃ δ > 0 such that f ′(x) ̸= 0 for all x ∈ [x0 − δ, x0 + δ]. So |f ′(x)| > m > 0
for all x ∈ [x0 − δ, x0 + δ]. Choose h small such that x0 + θh ∈ [x0 − δ, x0 + δ]. |k| > |h|m. Thus
k → 0 =⇒ h → 0.

|ϵ(k)| =

∣∣∣h− f(x0+h)−f(x0)
f ′(x0)

∣∣∣
|f(x0 + h) − f(x0)| = |f ′(x0) − f ′(x0 + θh)|

|f ′(x0 + θh)||f ′(x0)| → 0
|f ′(x0)| = 0 (sincef ′ is continuous at x0)

Note: If f−1 is differentiable, then f−1 ◦ f(x) = x and (f−1)′(f(x0))f ′(x0) = 1.
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2.4 Inverse and implicit function theorems

2.4.1 Inverse function theorem

Theorem 2.4.1 (Inverse Function Theorem). Let Ω be an open set in Rn. Suppose f : Ω ⊂
Rn → Rn be a C1 map such that det f ′(x0) ̸= 0. Then

(i) ∃ open sets U and V ⊂ Rn such that f : U → V (= f(U)) is bijective.

(ii) f−1 is a C1 map on V , and

(f−1)′(f(x0)) = (f ′(x0))−1.

Proof. Let A = f ′(x0). For y ∈ Rn, define φ : Ω → Rn by

φ(x) = x+A−1(y − f(x)) (1)

Then φ(x) = x if and only if y = f(x) (that is, x is the fixed point of φ if and only if y = f(x)).
Since f ′ is continuous at x0, for ϵ = 1

2∥A−1∥ > 0, there exists δ > 0 such that

∥x− x0∥ < δ =⇒ ∥f ′(x) − f ′(x0)∥ < 1
2∥A−1∥

.

Let U = Bδ(x0) = {x ∈ Rn : ∥x− x0∥ < δ} and V = f(U).

(i) Claim: f is one-to-one on U .

Now, φ′(x) = I +A−1f ′(x) = A−1(A− f ′(x)). Thus, ∥φ′(x)∥ ≤ ∥A−1∥∥A− f ′(x)∥ < 1
2 .

If x1, x2 ∈ U , by the Mean Value Theorem for φ,

∥φ(x1) − φ(x2)∥ ≤ ∥φ′(x1 + λ(x2 − x1))∥∥x1 − x2∥ < 1
2∥x1 − x2∥.

So, φ is a contraction on U . Hence, φ can have only one fixed point. Hence, y = f(x) for
at most one x ∈ U . Therefore, f is one-to-one on U .

(ii) Claim: V is open.

Let y∗ ∈ V . Then y∗ = f(x∗) for some x∗ ∈ U . Then ∃r > 0 such that Br(x∗) = {x ∈ U :
∥x− x∗∥ < r} ⊂ U .

Now, it is enough to prove that, whenever

∥y − y∗∥ < r

2∥A−1∥
=⇒ y ∈ V (2)
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Suppose ∥y − y∗∥ < r
2∥A−1∥ . Then

∥φ(x∗) − x∗∥ = ∥A−1(y − y∗)∥

≤ ∥A−1∥∥y − y∗∥ < r

2 .

If x ∈ Br(x∗) = {x ∈ Ω : ∥x− x∗∥ ≤ r}, then

∥φ(x) − x∗∥ ≤ ∥φ(x) − φ(x∗)∥ + ∥φ(x∗) − x∗∥

<
1
2∥x− x∗∥ + r

2 < r.

So x ∈ Br(x∗) =⇒ φ(x) ∈ Br(x∗). φ : Br(x∗) → Br(x∗) is a contraction mapping.
Then φ has a fixed point x ∈ Br(x∗) such that φ(x) = x if and only if y = f(x). Now
y = f(x) ⊂ f(Br(x∗)) ⊂ f(U) = V . Thus, V is open and hence f : U → V is one-to-one
and onto (with V = f(U) open).

(iii) Claim: f−1 : V → U is differentiable at f(x0).

Let y ∈ V , then y + k ∈ V (since V is open) for small ∥k∥.

Let h = f−1(y + k) − f−1(y). Then k = f(x+ h) − f(x) (since f−1(y) = x). Now,

φ(x+ h) − φ(x) = h+A−1(f(x) − f(x+ h)) = h−A−1k.

=⇒ ∥h−A−1k∥ ≤ 1
2∥h∥

=⇒ ∥h∥ ≤ ∥h−A−1k∥ + ∥A−1k∥

≤ 1
2∥h∥ + ∥Ah∥

that is,
1
2∥h∥ ≤ ∥A−1k∥ (3)

≤ ∥A−1∥∥k∥

Now,

η(k) = f−1(y0 + k) − f−1(y0) − (f−1(x0))−1k

∥k∥

= (f ′(x0))−1(f ′(x0)h− (f(x0 + h) − f(x0)))
∥k∥

∥η(k)∥ ≤ ∥(f ′(x0))−1∥∥f(x0 + h) − f(x0) − f ′(x0)h∥
∥h∥

2∥A−1∥

→ 0 as h → 0 (sincek → 0 =⇒ h → 0)
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=⇒ (f−1)′(f(x0)) = (f ′(x0))−1

(iv) f−1 is continuously differentiable that is, (f−1)′ is continuous. Need to prove (f−1)′(y0) =
(f ′(x0))−1. Since A 7→ A−1 is continuous on GLn(R), (f−1)′ is continuous.

Example 2.4.2. Let f : R2 → R2 be defined by f(x, y) = (x− e−y, y − ex). Then

f ′(0, 0) =
(

1 1
−1 1

)
, det f ′(0, 0) = 2 ̸= 0

Hence f is one-to-one in a neighborhood of (0, 0) and

(f−1)′(f(0, 0)) = (f ′(0, 0))−1 =
(

1 1
−1 1

)−1

2.4.2 Implicit function theorem

Consider f : R2 → R by f(x, y) = x2 + y2 − 1. Then f ′(x, y) = (2x, 2y).

∂f

∂x

∣∣∣∣
(1,0)

= 2, ∂f

∂y

∣∣∣∣
(1,0)

= 0

Then one can draw a ball centered at (1, 0) such that of radius r < 1 such that f(φ(y), y) = 0,
that is,

x = φ(y), |y| < r < 1, φ(y) =
√

1 − y2

However, one cannot draw a ball of any radius around (1, 0) such that f(x, ψ(x)) = 0, that
is, y = ψ(x) for |x| < r, even r very small. Because, for any r > 0, one cannot write
ψ(x) =

√
1 − x2 as x > 1 will be included in any ball around (1, 0).

However, at any point on the circle, other than (±1, 0) and (0,±1). One can solve x and y

simultaneously in a small neighborhood of the point.
Now, consider a linear map

A : Rn × Rm → Rn

Then (h, k) ∈ Rn × Rm, (h, k) = (h, 0) + (0, k).

A(h, k) = A(h, 0) +A(0, k) = Axh+Ayk (say)

Lemma 2.4.3. If Ax is invertible (Ax ∈ Ln(R)), then for each k ∈ Rm, there exist a unique
h ∈ Rn such that h = −A−1

x Ayk
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Proof. A(h, k) = 0 ⇐⇒ Axh + Ayk = 0. Since Ax is invertible, h = −A−1
x Ayk. Now, let

Ω ⊂ Rn × Rm be an open set and f : Ω ⊂ Rn × Rm → Rn be differentiable.

f = (f1, . . . , fn)

fi : Ω ⊂ Rn × Rm → R

f ′
i(x, y) =

(
∂fi

∂x1
(x, y) · · · ∂fi

∂xn
(x, y) · · · ∂fi

∂y1
(x, y) · · · ∂fi

∂ym
(x, y)

)

f ′ =


∂f1
∂x1

· · · ∂f1
∂xn

∂f1
∂y1

· · · ∂f1
∂ym...

...
...

...
∂fn

∂x1
· · · ∂fn

∂xn

∂fn

∂y1
· · · ∂fn

∂ym


n×(n+m)

=
[(

∂fi

∂xj

)
x

(
∂fi

∂yk

)
y

]
n×(n+m)

= (Ax Ay)

Then Ax : Rn → Rn is linear and Ay : Rm → Rn is linear, where Ax =
(

∂fi
∂xj

)
x
, Ay =

(
∂fi
∂yk

)
y
.

Theorem 2.4.4. Implicit Function Theorem: Let Ω be an open subset in Rn × Rm. If
f : Ω ⊂ Rn × Rm → Rn be a C1 map, with f(x0, y0) = 0 and det [f ′(x0, y0)]x ̸= 0 for some
(x0, y0) ∈ Ω. Then

(i) There exist open sets U ⊂ Rn × Rm and W ⊂ Rm such that for all y ∈ W there exist a
unique x ∈ Rn with (x, y) ∈ U and f(x, y) = 0.

(ii) If x = g(y), then g : W ⊂ Rn → Rn is C1 map, g(y0) = x0, f(g(y), y) = 0 for all y ∈ W

and g′(y0) = −A−1
x Ay, where Ax = f ′

x, Ay = f ′
y.

that is, f will vanish on a curve x = g(y).

Proof. (i) Let F : Ω → Rn × Rm by F (x, y) = (f(x, y), y). Then F is a C1-map, and

F ′(x0, y0) =
[
{f ′(x0, y0)}x {f ′(x0, y0)}y

0 I

]

detF ′(x0, y0) ̸= 0. Therefore, by the Inverse Mapping Theorem, there exist open sets
U ⊂ Rn × Rm and V ⊂ Rn × Rm such that F : U → V is a one-one onto C1-map.

Let W = {y ∈ Rm : (0, y) ∈ V }. Then W is open, because V is open. Since F is onto, for
y ∈ W ,

(0, y) = F (x, y) =⇒ (x, y) ∈ U.

=⇒ f(x, y) = 0, ∀y ∈ W.
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Suppose, for this y, there exist (x′, y) ∈ U such that f(x′, y) = 0. Then

F (x′, y) = (f(x′, y), y) = (f(x, y), y) = F (x, y).

Since F is one-to-one on U =⇒ x′ = x.

(ii) Define x = g(y) for y ∈ W . Then

(g(y), y) ∈ U and f(g(y), y) = 0 (*)

=⇒ F (g(y), y) = (0, y) ∀y ∈ W.

that is, F−1(0, y) = (g(y), y).

By the Inverse Mapping Theorem, F−1 is a C1-map, hence g is a C1-map.

To compute g′(y0), consider f(g(y), y) = 0, y ∈ W . Differentiating with respect to y and
using the chain rule, we get

f ′(g(y0), y0)
(
g′(y0)
I

)
= 0

f ′(x0, y0)
(
g′(y0)
I

)
= 0

Let A := f ′(x0, y0), then

(Ax Ay)
(
g′(y0)
I

)
= 0

=⇒ Axg
′(y0) +Ay = 0 =⇒ g′(y0) = −A−1

x Ay

Example 2.4.5. Prove that x2 + yex − sin(xy) = 0 can be solved for y in a neighborhood of
(0, 0), but cannot be solved for x in any neighborhood of (0, 0).

F (x, y) = x2 + yex − sin(xy) (1)

(i) F (0, 0) = 0, ∂F
∂y |(0,0) = 1 ̸= 0. By the implicit function theorem, there exists a ball around

(0, 0) and an interval for x such that F (x, g(x)) = 0 or y = g(x) for |x| < r.

(ii) ∂F
∂x |(0,0) = 0. Hence, the implicit function theorem cannot be applied.

On the contrary, suppose x = ϕ(y), then 0 = ϕ(0) and

(ϕ(y))2 + yeϕ(y) − sin(ϕ(y)y) = 0
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for |y| < r for some r > 0. Then

2ϕ(0)ϕ′(0) + 1 · eϕ(0) + 0 · eϕ(0)ϕ′(0) − cos(ϕ(0)0)
(
ϕ′(0)0 + ϕ(0) · 1

)
= 0

=⇒ 1 = 0 (contradiction)

Example 2.4.6. Let f : R × R2 → R2

f(x, y, z) = (xey + yez, xez + zey)

Then f is a C1-map.

f ′(x, y, z) =
(
ey xey + ez yez

ez zey xez + ey

)

f(−1, 1, 1) = (0, 0)

Let f = (f1, f2). Then 
∂f1
∂y

∂f1
∂z

∂f2
∂y

∂f2
∂z

 (−1, 1, 1) =
(

0 e

e 0

)

By the implicit function theorem, there exists an open ball U in R3 and open ball V in R2, such
that

(y, z) = (ϕ(x), ψ(x)), |x| < r for some r > 0.

Exercise 2.4.7. Let f : R2 → R be a C1-map such that f(0, o) = 0, fx(0, 0) = 1. Let
F (x, y) = (f(x, y), y). Prove that F is injective in some neighborhood of (0, 0). Does F remain
injective in any neighborhood of (0, 0)?

Remark: Condition in implicit function theorem or inverse mapping theorem on derivatives are
sufficient.

Example 2.4.8. f : R2 → R, f(x, y) = x2 − y3.

f(0, 0) = 0,
∂f

∂y
(0, 0) = 0,

but y = x2/3 is a solution of f(x, y) = 0 near (0, 0).

Example 2.4.9. Let f : R2 → R2, f(x, y) = (x3, y3). Then det f ′(0, 0) = 0 but f is one-to-one,
onto.
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Chapter 3

Lebesgue Measure and Integral

This chapter presents the measure-theoretic foundation of modern integration. Motivated
by limitations of the Riemann integral, we build Lebesgue outer measure, deduce its main
properties, and define Lebesgue measurable sets, including instructive examples such as the
Cantor set and the existence of non-measurable sets. We introduce measurable and simple
functions, define the Lebesgue integral, and develop the main convergence principles—the
monotone convergence theorem, Fatou’s lemma, the dominated convergence theorem, and the
bounded convergence theorem—together with a useful estimate (Chebyshev’s inequality) for
controlling the size of level sets.

3.1 Syllabus map

We introduce the measure-theoretic approach to integration: we build Lebesgue measure from
outer measure, define measurable functions, construct the Lebesgue integral, prove convergence
theorems, and introduce the Lp spaces.

3.2 From Riemann to Lebesgue

3.2.1 Limitations of the Riemann integral

Let f : [a, b] → R and f is bounded on [a, b]. Then f ∈ R[a, b] (that is, f is Riemann integrable)
if and only if f is almost continuous. However, there are functions which are neither almost
continuous nor bounded and so forth.

(I) f : [0, 1] → R, f(x) =

1 x ∈ (R \ Q) ∩ [0, 1]

0 x ∈ Q ∩ [0, 1]
Then inf U(P, f) = 1 and supL(P, f) = 0. =⇒ f /∈ R[0, 1].
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(II)
∫ 1

0

1√
t
dt, f(t) = 1√

t
is not bounded near “0”. However,

∫ 1

1
n

1√
t
dt = 2(1 − 1√

n
) ≤ 2.

Question is should we write ∫ 1

0

1√
t
dt = sup

n

∫ 1

1
n

1√
t
dt = 2 ?

(III)
∫ ∞

0

1
1 + t2

dt,
∫ n

0

1
1 + t2

dt = tan−1 n ≤ π

2 .
Does it suitable to rewrite ∫ ∞

0

1
1 + t2

dt = sup
n

∫ n

0

1
1 + t2

dt = π

2 ?

3.3 Measure and measurability

3.3.1 Sigma-algebras and measures

Definition 3.3.1. Let X be a nonempty set. A collection A ⊂ P(X) is called a σ-algebra on X
if.

(i) X ∈ A;

(ii) if E ∈ A, then Ec ∈ A;

(iii) if (En)n≥1 ⊂ A, then ⋃n≥1En ∈ A.

The pair (X,A) is called a measurable space. Elements of A are called measurable sets.

Definition 3.3.2. A function µ : A → [0,∞] is a measure if µ(∅) = 0 and µ is countably additive.
The triple (X,A, µ) is called a measure space.

3.3.2 Lebesgue outer measure

For open (closed) interval I = (a, b) assign the length ℓ(I) = b− a. For I = (a,∞) or (−∞, b),
we assign ℓ(I) = ∞. Now, the question is to assign an appropriate length to an arbitrary subset
of R. If O ⊂ R is open, then O = ⋃

n In, In = (an, bn) and In ∩ Im = ∅ if n ≠ m. In this case, one
can consider ℓ(O) = ∑∞

n=1 ℓ(In). However, if A ⊆ R, A ⊆ O ⊂ R. Hence, A ⊂
⋃∞

n=1 In. Thus,
we have an over-estimate for length of A. that is,

ℓ(A) ≤
∑

ℓ(In), such that A ⊂
∞⋃

n=1
In.
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Therefore, we assign a number to A via

m∗(A) := inf
{∑

ℓ(In) : A ⊂
⋃
n

In

}

where m∗(A) denotes the outer measure of A.
Notice that we do not require disjointness in the cover {In : n ∈ N} of A. Moreover, In could be
any type of interval, for example, (an, bn) or [an, bn) or [an, bn] or (an, bn].
Since ϕ ⊂ (0, ϵ),∀ϵ > 0. Then m∗(ϕ) ≤ ϵ,∀ϵ > 0. Hence m∗(ϕ) = 0.
For a ∈ R,

{a} ⊂ (a− ϵ

2 , a+ ϵ

2)

=⇒ m∗({a}) ≤ ϵ, ∀ϵ > 0

=⇒ m∗({a}) = 0.

3.3.3 Basic properties of outer measure

(i) If A ⊂ B, then m∗(A) ≤ m∗(B).
Let B ⊂

⋃
n In, then A ⊂

⋃
n In. By definition m∗(A) ≤

∑
ℓ(In); B ⊂

⋃
n In.

=⇒ m∗(A) ≤ inf {
∑
ℓ(In) : ⋃n In ⊃ B} =⇒ m∗(A) ≤ m∗(B).

(ii) If {An}∞
n=1 is a sequence of subsets in R, then

m∗
(⋃

n

An

)
≤
∑

m∗(An)

By definition of infimum, for ϵ > 0, ∃ a cover {In,k}∞
k=1of An such that∑∞

k=1 ℓ(In,k) < m∗(An) + ϵ
2n (if m∗(An) < ∞).

Thus, {In,k : k = 1, 2, . . . , n = 1, 2, . . .} is a cover of ⋃∞
n=1An.

Therefore,

m∗
( ∞⋃

n=1
An

)
≤

∞∑
n=1

∞∑
k=1

ℓ(In,k) ≤
∞∑

n=1

(
m∗(An) + ϵ

2n

)
≤

∞∑
n=1

m∗(An) + ϵ, ∀ϵ > 0.

Thus,

m∗
( ∞⋃

n=1
An

)
≤

∞∑
n=1

m∗(An)

Example 3.3.3. If A ⊂ R is countable, then A = {a1, a2, . . .} = ⋃∞
i=1{ai}

m∗(A) ≤
∑

m∗({ai}) = 0 =⇒ m∗(A) = 0.
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Thus m∗(Q) = 0. Alternatively, one can think,

Q ⊂
⋃

n∈Z

(
rn − ϵ

2|n|+1 , rn + ϵ

2|n|+1

)

=⇒ m∗(Q) ≤
∑

ℓ

(
rn − ϵ

2|n|+1 , rn + ϵ

2|n|+1

)
= ϵ

2 , ∀ϵ > 0.

Proposition 3.3.4. If I is any interval with end points a and b. Then m∗(I) = b− a.

Proof. We prove the result for each type of interval. Suppose I = [a, b] and m∗(I) = b− a. Then
for I = (a, b), one can deduce that [

a+ ϵ

2 , b− ϵ

2

]
⊂ (a, b)

therefore m∗
([
a+ ϵ

2 , b− ϵ

2

])
≤ m∗{(a, b)}

that is,
b− a ≤ m∗{(a, b)}

Now, (a, b) is a cover of itself, so

m∗{(a, b)} ≤ ℓ{(a, b)} = b− a

Other covering can be done in similar way. Now, consider the case of proving m∗([a, b]) = b− a.

[a, b] ⊂
(
a− 1

n
, b+ 1

n

)
, ∀n ≥ 1

m∗([a, b]) ≤ b− a+ 2
n

→ b− a

On the other hand, suppose [a, b] ⊂
⋃∞

n=1 In. Then [a, b] ⊂
⋃k

n=1 In (Exercise)
(Hint: use Bolzano–Weierstrass theorem.)

=⇒ (a, b) ⊂
k⋃

n=1
In

By induction,

b− a ≤
k∑

n=1
ℓ(In).

(
if [a, b] ⊂

⋃k
n=1 In ⊔ Ik+1. Then (a, b) ⊂

⋃k
n=1 In or (a, b) ⊂ Ik+1. Thus

b− a ≤
k+1∑
n=1

ℓ(In).
)
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=⇒ b− a ≤
∞∑

n=1
ℓ(In) for {In}∞

n=1 that cover [a, b].

Hence,
b− a ≤ m∗([a, b]) ≤ b− a.

Example 3.3.5. Let A ⊂ R and x ∈ R. Then for A+ x = {a+ x : a ∈ A}, we have

m∗(A+ x) = m∗(A).

Let A ⊂
⋃

n In. Then A+ x ⊂
⋃

n(In + x) that is, {In + x}∞
n=1 is a covering of A+ x. Hence

m∗(A+ x) ≤
∑

ℓ(In + x) =
∑

ℓ(In)

for all cover {In} of A. Therefore, m∗(A+x) ≤ m∗(A). By replacing x → −x, m∗(A−x) ≤ m∗(A).
Replacing A by A+x, m∗(A) ≤ m∗(A+x). Thus, m∗(A+x) = m∗(A), that is, m∗ is translation
invariant.

Proposition 3.3.6. Let A ⊂ R and ϵ > 0. Then ∃ an open set O ⊃ A such that m∗(O) <
m∗(A) + ϵ that is, m∗(A) = inf{m∗(O) : O ⊃ A,O open}

Proof. By definition, for ϵ > 0, ∃{In} that cover A such that

∑
ℓ(In) < m∗(A) + ϵ (if m∗(A) < ∞.)

But m∗ (⋃ In) ≤
∑
ℓ(In) < m∗(A) + ϵ. Let O = ⋃

In. Then m∗(O) < m∗(A) + ϵ.

Theorem 3.3.7. If A ⊂ R, then ∃ a Gδ-set G ⊂ R such that m∗(A) = m∗(G).

Proof. By the previous result for ϵ = 1
n , ∃ an open set On ⊃ A such that

m∗(On) < m∗(A) + 1
n

Let G = ⋂
On (a Gδ-set in R). Then A ⊂ G ⊂ On. Thus

m∗(A) ≤ m∗(G) ≤ m∗(On) < m∗(A) + 1
n

So m∗(A) ≤ m∗(G) ≤ m∗(A) + 1
n , ∀n ≥ 1 =⇒ m∗(A) = m∗(G)

Example 3.3.8. Let E = ⋃
En, En ⊂ R. Then m∗(E) = 0 if and only if m∗(En) = 0 for all

n ∈ N.
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Solution: m∗(E) ≤
∑
m∗(En) If each of m∗(En) = 0 =⇒ m∗(E) = 0.

Conversely, suppose m∗(E) = 0 and m∗(En0) > 0 for some n0 ∈ N. Then for ϵ = 1
2m

∗(En0) >
0, ∃ a cover {Ik} of E such that

∑
ℓ(Ik) < m∗(E) + 1

2m
∗(En0)

But En0 ⊂ E ⊂
⋃
Ik =⇒ m∗(En0) <∑ ℓ(Ik), that is,

m∗(En0) < 1
2m

∗(En0)

which is a contradiction.

Example 3.3.9. Let O = ⋃
In, In open intervals. Then m∗(O) = ∑

ℓ(In).
For ϵ > 0, ∃ a cover {Jk} of O such that

∑
ℓ(Ik) < m∗(O) + ϵ (1)

Now, ⋃ In = O ⊂
⋃
Jk. Since In’s are disjoint, each In ⊂ Jk,n,

ℓ(In) ≤ ℓ(Jk,n)

=⇒
∞∑

n=1
ℓ(In) <

∞∑
n=1

ℓ(Jk,n) <
∞∑

n=1
ℓ(Jk) < m∗(O) + ε

=⇒
∞∑

n=1
ℓ(In) < m∗(O) + ε, ∀ ε > 0

=⇒
∞∑

n=1
ℓ(In) ≤ m∗(O) ≤

∞∑
n=1

ℓ(In)

So, m∗
( ∞⋃

n=1
In

)
=

∞∑
n=1

ℓ(In) =
∞∑

n=1
m∗(In).

Corollary 3.3.10. If {Oi}∞
i=1 is a family of disjoint open sets in R, then

m∗
( ∞⋃

i=1
Oi

)
=

∞∑
i=1

m∗(Oi).

m∗
( ∞⋃

i=1
Oi

)
= m∗

( ∞⋃
i=1

∞⋃
n=1

Ii,n

)
=

∞∑
i=1

∞∑
n=1

ℓ(Ii,n).

So, m∗
( ∞⋃

i=1
Oi

)
=

∞∑
i=1

m∗(Oi).
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Question 3.3.11. What are all those sets for which m∗ is countably additive, that is,

m∗
( ∞⋃

n=1
En

)
=

∞∑
n=1

m∗(En)?

Example 3.3.12. Suppose G is an open and bounded set in R. Then for ∀ε > 0, there exists a
compact set K ⊂ G such that m∗(K) > m∗(G) − ε.

Since G is bounded, G ⊂ [α, β] =⇒ m∗(G) ≤ β − α < ∞. Further, G is open, therefore

G =
⋃
In =⇒ m∗(G) =

∑
ℓ(In) < ∞

So for ε > 0, there exists N ∈ N such that

∞∑
n=N+1

ℓ(In) < ε

2 (1)

Let

K =
N⋃

n=1

[
an + ε

4N , bn − ε

4N

]
, In = (qn, bn)

Then

m∗(K) =
N∑

n=1
m∗

[
an + ε

4N , bn − ε

4N

]

=
N∑

n=1

(
ℓ(In) − ε

2N

)
=

N∑
n=1

ℓ(In) − ε

2

Therefore,

m∗(K) =
N∑

n=1
ℓ(In) + ε

2 − ε

>
N∑

n=1
ℓ(In) +

∞∑
n=N+1

ℓ(In) − ε

= m∗(G) − ε

Proposition 3.3.13. If [a, b] ∩ [c, d] = ∅ then

m∗([a, b] ∪ [c, d]) = m∗([a, b]) +m∗([c, d]).

Proof. Since [a, b] ∩ [c, d] = ∅. Then [a, b] and [c, d] will be separated by some distance ε > 0.
(Why?)
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Suppose [a, b] ∪ [c, d] ⊂
⋃
In. Then

[a, b] ⊂
⋃

(In ∩ (a− ε, b+ ε)) =
⋃
I ′

n (Say)

[c, d] ⊂
⋃

(In ∩ (c− ε, d+ ε)) =
⋃
I ′′

n (Say)

Then I ′
n ∩ I ′′

l = ∅, for all n,m ≥ 1.

=⇒ m∗([a, b]) +m∗([c, d]) ≤
∑

ℓ(I ′
n) +

∑
ℓ(I ′′

n)

=
∑

ℓ(In ⊔ I ′′
n) =

∑
ℓ{In ∩ ((a− ε, b+ ε) ∪ (c− ε, d+ ε))}

m∗([a, b]) +m∗([c, d]) <
∞∑

n=1
ℓ(In)

m∗([a, b]) +m∗([c, d]) ≤ m∗([a, b] ∪ [c, d])

Since m∗ is countably subadditive, other inequality holds.

Observation: If G is an open and bounded subset of R, then for each ε > 0, there is an open
set O and a compact set K such that K ⊂ G ⊂ O and m∗(O) −m∗(K) < ε.
In general, we fail to write

m∗(B \A) = m∗(B) −m∗(A)

for A ⊆ B (we shall see example later).

3.3.4 Lebesgue measurable sets

A set E ⊂ R is said to be Lebesgue measurable, if ∀ε > 0, there exists open set O and closed set
F such that

F ⊂ E ⊂ O and m∗(O \ F ) < ε

Note: m∗(O \ E) ≤ m∗(O \ F ) < ε and m∗(F \ E) ≤ m∗(O \ E) < ε.
Thus, one can interpretate that Lebesgue measurable sets are approximately open and closed.

Proposition 3.3.14. Let M denote the class of all Lebesgue measurable subsets of R. Then

(i) If E ∈ M, then Ec ∈ M. Oc ⊂ Ec ⊂ F c and m∗(F c \Oc) < ε.

(ii) If m∗(E) = 0. Then E ∈ M.

For ε > 0, there exist O ⊃ E such that m∗(O) < 0 + ε. Let F be any closed set in E. Then
m∗(F ) ≤ m∗(E) = 0.

therefore m∗(O \ F ) ≤ m∗(O) < ε. Thus, E ∈ M.

(iii) If {En}∞
n=1 ⊂ M, then E = ⋃∞

n=1En ∈ M.
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Write E′
n = En \

⋃n−1
i=1 Ei, then

⋃
E′

n = ⋃
En, where E′

n are pairwise disjoint sets (that is,
E′

n ∩E′
m = ∅ for n ≠ m). Thus, without loss of generality, one can assume E = ⋃∞

n=1En,
En ∩ Em = ∅ if n ̸= m.

Suppose m∗(E) < ∞, then m∗ (En) ≤ m∗(E) < ∞.

For ε > 0, ∃ Fn ⊂ En ⊂ On such that m∗(On \ Fn) < ε
2n . Now,

k∑
n=1

m∗(On) ≤
k∑

n=1
m∗(On \ Fn) +

k∑
n=1

m∗(Fn)

<
k∑

n=1

ε

2n
+m∗

(
k⋃

n=1
Fn

)
[ since Fn is closed and bounded]

< ε+m∗(E) < ∞, ∀k ≥ 1.

that is,
∑∞

n=1m
∗(On) < ∞. For ε > 0, ∃ n0 ∈ N such that

∑∞
n=n0+1m

∗(On) < ε,.

Let O = ⋃∞
n=1On and F = ⋃n0

n=1 Fn. Then,

m∗(O \ F ) = m∗

( n0⋃
n=1

On

)⋃ ∞⋃
n=n0+1

On

 \
(

n0⋃
n=1

Fn

)
≤ m∗

(
n0⋃

n=1
(On \ Fn)

)
+m∗

 ∞⋃
n=n0+1

On

 (sinceA ∪B \ C = (A \ C) ∪ (B \ C))

≤
n0∑

n=1
m∗(On \ Fn) +

∞∑
n=n0+1

m∗(On) (Fn ⊂ En ⊂ On)

<
n0∑

n=1

ε

2n
+ ε

< 2ε.

that is, F ⊂ E ⊂ O and ∀ε > 0, m∗(O \ F ) < 2ε =⇒ E ∈ M.

If m∗(E) = ∞, write E = ⋃
k∈ZE ∩ [k, k + 1) = ⋃

k∈ZAk and can be done in similar way.

(iv) If E1, E2 ∈ M, then E1 ∪ E2 = E1 ⊔ (E2 \ E1). But for ε > 0, ∃ Oi ⊃ Ei ⊃ Fi such that
m∗(Oi \ Fi) < ε

2 ; i = 1, 2.

For O = O1 ∪O2, F = F1 ∪ F2,

O \ F =
2⋃

i=1
(Oi \ Fi) =⇒ m∗(O \ F ) < ε.

(E1 ∩ E2)c = Ec
1 ∪ Ec

2 ∈ M, since E ∈ M
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=⇒ m∗(O \ F ) < ε, Oc ⊆ Ec ⊆ F c

m∗(F c \Oc) = m∗(F c ∩O) < ε

Thus, M is closed under countable union/intersection and complement.

Note: such family of sets is called a σ-algebra.

Definition 3.3.15. If J ⊂ P(R) such that

(i) A ∈ J =⇒ Ac ∈ J .

(ii) Ai ∈ J =⇒
⋃∞

i=1Ai ∈ J , then J is called a σ-algebra of sets.

B(R) = σ({(a, b) : a, b ∈ R, a < b < ∞}) (Borel σ-algebra)

is the σ-algebra generated by countable union and complement of sets of type (a, b) and a, b < ∞.

Proposition 3.3.16. Let a, b ∈ R and a < b, b− a < ∞. Then I = (a, b) ∈ M.

Proof. For ε > 0, [a+ ε, b− ε] ⊂ (a, b) and

m∗{(a, b) \ [a+ ε, b− ε]} = m∗{(a, a+ ε) ⊔ (b− ε, b)} (for small ε > 0)

≤ m∗{(a, a+ ε)} +m∗{(b− ε, b)}

= 2ε

Since I is open, it follows that (a, b) ∈ M. Now [a, b) = {a} ∪ (a, b) and m∗({a}) = 0
=⇒ {a} ∈ M and (a, b) ∈ M. =⇒ [a, b) and [a, b] ∈ M
Thus, any open set O = ⋃

n In ∈ M. Since M is closed under complement, any closed set
F ∈ M.

Example 3.3.17. If A,B ⊂ R such that m∗(A) = 0. Then m∗(A ∪B) = m∗(B).

since m∗(A ∪B) ≤ m∗(A) +m∗(B) = m∗(B) ≤ m∗(A ∪B)

.

Proposition 3.3.18. Let x ∈ R and E ∈ M. Then x+ E ∈ M.

Proof. For ε > 0, there exist F ⊂ E ⊂ O, O open, F closed such that m∗(O \ F ) < ε.
But F + x is closed and O + x = ⋃(In + x) is open with F + x ⊂ E + x ⊂ O + x.
Now, m∗ (O + x \ (F + x)) = m∗(O \ F ) < ε.

Example 3.3.19. Verify that.

(i) (F + x)c = F c + x.
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(ii) (O + x) ∩ (F + x)c = O ∩ F c + x.

(Hint: z /∈ F + x =⇒ z − x /∈ F =⇒ z − x ∈ F c =⇒ z ∈ F c and so forth).

Theorem 3.3.20. If E = ⋃∞
n=1En, En ∈ M. Then

m∗
( ∞⋃

n=1
En

)
=

∞∑
n=1

m∗(En)

(i) Suppose E is bounded, then m∗(E) < ∞ =⇒ m∗(En) < ∞.
For ε > 0, ∃Fn ⊂ En ⊂ On such that m∗(On \ Fn) < ε

2n .

Now,
k∑

n=1
m∗(En) ≤

k∑
n=1

(m∗(Fn) +m∗(On \ Fn))

<
k∑

n=1
m∗(Fn) +

k∑
n=1

ε

2n
<

k∑
n=1

m∗(Fn) + ε

(sinceEn = (En \ Fn) ∪ Fn ⊆ (On \ Fn) ∪ Fn)

Since Fn’s are compact (closed and bounded).

k∑
n=1

m∗(En) <
k∑

n=1
m∗(Fn) + ε =

(
k⋃

n=1
Fn

)
+ ε

that is
k∑

n=1
m∗(En) < m∗(E) + ε, ∀k ≥ 1.

=⇒
k∑

n=1
m∗(En) ≤ m∗(E) ≤

k∑
n=1

m∗(En).

Now, suppose E is not bounded. Then, as

R =
∞⋃

k=1
(k, k + 1],

let
Ak = E ∩ (k, k + 1], En,k = En ∩ (k, k + 1].

Then
E =

⋃
k∈Z

Ak, En =
⋃

k∈Z
En,k.

Now,
∞∑

n=1
m∗(En) ≤

∞∑
n=1

∑
k∈Z

m∗(En,k) (1)
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Since Ak = ⋃∞
n=1En,k, Ak is bounded.

m∗(Ak) =
∞∑

n=1
m∗(En,k) (2)

therefore
∞∑

n=1
m∗(En) ≤

∞∑
k=−∞

m∗(Ak) (3)

Now,
l∑

k=−l

m∗(Ak) = m∗

 l⋃
k=−l

Ak

 ≤ m∗(E), ∀l ≥ 1

If m∗(E) = ∞, okay, identity holds trivially. As

m∗(E) ≤
∞∑

n=1
m∗(En), let m∗(E) < ∞,

=⇒
∞∑

k=−∞
m∗(Ak) ≤ m∗(E) (4)

=⇒
∞∑

n=1
m∗(En) ≤ m∗(E) ≤

∞∑
n=1

m∗(En).

3.3.5 The Cantor set

The Cantor set is an uncountable set in [0, 1] having zero length with many peculiar properties,
answering some of the difficult questions related to topology of real line.
Let C0 = [0, 1].

0
1
3

2
3 1.

Delete middle one-third open interval J1 =
(

1
3 ,

2
3

)
from C0. Then

C1 = [0, 1
3] ∪ [23 , 1]

0
1
3

2
3 1.

Delete one-third open interval from each section of C1, and let

J2 =
(1

9 ,
2
9

)
∪
(7

9 ,
8
9

)
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Then,

C2 = [0, 1
9] ∪ [29 ,

1
3] ∪ [23 ,

7
9] ∪ [89 , 1]

Thus,

• C0 = [0, 1], one closed interval of length 1.

• C1 = [0, 1
3 ] ∪ [2

3 , 1], two closed disjoint intervals each of length 1
3 .

• C2 = [0, 1
9 ] ∪ [2

9 ,
1
3 ] ∪ [2

3 ,
7
9 ] ∪ [8

9 , 1], four closed disjoint intervals each of length 1
9 .

By induction, one can construct Cn with 2n disjoint closed intervals each of length 3−n.

(i) Cn is a decreasing sequence of closed and bounded sets, thus Cn ∈ M.

(ii) Let C = ⋂∞
n=1Cn, then C contains all the end-points of the intervals.

(iii) C = [0, 1] \
{(

1
3 ,

2
3

)
∪
(

1
9 ,

2
9

)
∪
(

7
9 ,

8
9

)
∪ . . .

}
.

(iv) Since C ⊂ Cn, ∀n ≥ 0,
m∗(C) ≤ m∗(Cn) = 2n · 1

3n
→ 0.

Thus, m∗(C) = 0.

(v) C is nowhere dense in [0, 1], that is (C)o = (Co) = ∅.

If not so, then Co ≠ ∅ and x ∈ Co. But Co is open, there exist (y, z) ⊂ Co ⊂ C, y < z.
Thus, m∗{(y, z)} ≤ m∗(C) = 0, contradiction.

(vi) Cantor set is uncountable:

Consider the endpoint 1
3 ∈ C. One can write

1
3 = 0

3 + 2
32 + 2

33 + . . .∞ = (0.222 . . .)3

end point x = 2
3 = (0.2)3. Similarly, we shall prove that each endpoint can be written as

x = a1
3 + a2

32 + · · · ∞, ai ∈ {0, 2}.

For this, consider the set

F =
{
x ∈ [0, 1] : x =

∞∑
i=1

ai

3i
, ai ∈ {0, 1, 2}

}
\ {end points}
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For x ∈ F , we have
x = a1

3 + a2
32 + · · ·

Notice that a1 = 1 if and only if x ∈
(

1
3 ,

2
3

)
if and only if x /∈ C.

a1 ̸= 1, a2 = 1 if and only if x ∈
(

1
9 ,

2
9

)
⊔
(

7
9 ,

8
9

)
if and only if x /∈ C.

Thus, if ai = 1 for some i, if and only if x /∈ C.

=⇒ C = {x ∈ [0, 1] : x = ∑∞
i=1

ai
3i , ai ∈ {0, 2}}.

Define f : C → [0, 1] by

f(x) = f

( ∞∑
i=1

ai

3i

)
=

∞∑
i=1

ai

2 2−i

Then ai
2 ∈ {0, 1}. Thus f(x) ∈ [0, 1].

f is not one-one:

f

(1
3

)
= f ((0.022 . . .)3) = (0.011 . . .)2 = (0.1)2 = 1

2
and

f

(2
3

)
= f ((0.2)3) = (0.1)2 = 1

2

=⇒ f

(1
3

)
= f

(2
3

)
Exercise 3.3.21. Prove that f(x) = f(y) if and only if x, y are end points of one of the deleted
open interval.

f is an onto map: Here f : C → [0, 1] and let y ∈ [0, 1] such that

f(x) = y =
∞∑

i=1
ai

1
2i

Let
x =

∑ 2ai

3i

then f(x) = y holds. Thus, f is onto. Therefore, C is an uncountable set, having outer measure
zero.

3.3.6 Nonmeasurable sets

For x, y ∈ R, define x ∼ y if and only if x − y ∈ Q. Then ∼ is an equivalence relation on R.
Hence, it partitions R into disjoint equivalence classes.
Let x+ Q = {x+ r : r ∈ Q}. Then x+ Q is an equivalence class under ∼.

(i) (x+ Q) ∩ [0, 1] ̸= ∅ (easy).
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(ii) Let E be a subset of [0, 1] that contains exactly one member from each x+ Q, x ∈ R.

Let Q ∩ [−1, 1] = {r1, r2, . . .} and write Ei = E + ri, i = 1, 2, . . .

(iii) Ei ∩ Ej = ∅, if i ̸= j.

If z ∈ Ei ∩ Ej , then z = x+ ri = y + rj

=⇒ x− y = rj − ri ∈ Q

So x ∼ y, contradiction to the definition of E, as E contains exactly one member from
each x+ Q.

(iv) [0, 1] ⊂
⋃∞

i=1Ei ⊂ [−1, 2].

Let x ∈ [0, 1]. Then x + Q must contains a point of E. That is, there exists unique
y ∈ (x+ Q) ∩ E, y − x ∈ Q ∩ [−1, 1]. Thus, y − x = ri0 =⇒ x = y − ri0 ∈ Ei0 .

The set E is not Lebesgue measurable. On the contrary, if E ∈ M, then

1 ≤ m∗
( ∞⋃

i=1
Ei

)
≤ 3

1 ≤
∞∑

i=1
m∗(E) ≤ 3

which is not possible, because either m∗(E) > 0. If m∗(E) = 0, then m∗(Ei) = 0. But
[0, 1] ⊆

⋃
Ei =⇒ 1 ≤

∑
m∗(Ei) = 0, which is a contradiction.

Remark 3.3.22. (i) m∗ is not countably additive.

Let A = ⋃∞
i=1Ei. Then 1 ≤ m∗(A) ≤ 3. But ∑∞

i=1m
∗(Ei) = ∞. Thus,

m∗
( ∞⋃

i=1
Ei

)
≤ 3 < ∞ =

∞∑
i=1

m∗(Ei)

(ii) Whether m∗ is finitely additive?

Suppose m∗ (⋃n
i=1Ai) = ∑n

i=1m
∗(Ai) for any A1, . . . , An ∈ P(R) = power set of R. (in

other words, let m∗ be finitely additive).

Now,

m∗(E) =
n∑

i=1
m∗(Ei)

= m∗
(

n⋃
i=1

Ei

)
≤ m∗

( ∞⋃
i=1

Ei

)
≤ 3
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So,
m∗(E) < 3

n
, ∀n ∈ N

=⇒ m∗(E) = 0, contradiction.

Therefore, m∗ cannot be finitely additive.

(iii) Suppose A ⊂ E and A ∈ M, then m∗(A) = 0.

For this, let Ai = A+ ri, ri ∈ Q ∩ [−1, 1].

Then,
n⋃

i=1
Ai ⊂

∞⋃
i=1

Ei ⊂ [−1, 2]

Since A is Lebesgue measurable, each of Ai ∈ M. Thus,

m∗
(

n⋃
i=1

Ai

)
≤ 3

n∑
i=1

m∗(Ai) ≤ 3

So,
m∗(A) ≤ 3 =⇒ m∗(A) ≤ 3

n
, ∀n ≥ 1

=⇒ m∗(A) = 0

We know that m∗ : P(R) → [0,∞]. Restrict m∗ to M. Then for E ∈ M, we write m∗(E) = m(E).
that is, m∗|M = m (say).

Theorem 3.3.23. Let (En) ⊂ M be an increasing sequence of sets. Then

lim
n→∞

m(En) = m

( ∞⋃
n=1

En

)
(*)

Proof. Let E = ⋃
nEn. If m(E) = ∞, then some of m(En0) = ∅. Hence (*) holds. Therefore,

suppose m(En) < ∞, ∀n ≥ 1. Since m(En) is an increasing sequence.

lim
n→∞

m(En) = sup
n
m(En) ≤ m(E).

Now,
∞⋃

n=1
En = E1

∞⋃
n=1

(En+1 \ En)

Thus,

m(E) = m(E1) +
∞∑

n=1
m(En+1 \ En)
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= m(E1) + lim
k→∞

k∑
n=1

(m(En+1) −m(En))

= lim
k→∞

m(Ek+1)

Theorem 3.3.24. Let (En) ⊂ M be a decreasing sequence of sets such that m(E1) < ∞. Then

lim
n→∞

m(En) = m

( ∞⋂
n=1

En

)

Proof. Since m(En) ≥ m(En+1) ≥ m (⋂∞
n=1En),

lim
n→∞

m(En) = inf
n
m(En) ≥ m

( ∞⋂
n=1

En

)

E1 \
∞⋂

n=1
En =

∞⋃
n=1

(En \ En+1) (Exercise)

m

(
E1 \

∞⋂
n=1

En

)
=

∞∑
n=1

m(En \ En+1)

m(E1) −m

( ∞⋂
n=1

En

)
= lim

k→∞

k∑
n=1

(m(En) −m(En+1))

= m(E1) − lim
k→∞

m(Ek+1)

=⇒ m

( ∞⋂
n=1

En

)
= lim

k→∞
m(Ek+1)

Alternative: E1 \ En is a increasing in n.

lim
n→∞

m(E1 \ En) = m

( ∞⋃
n=1

(E1 \ En)
)

m(E1) − lim
n→∞

m(En) = m

(
E1 \

∞⋂
n=1

En

)

= m(E1) −m

( ∞⋂
n=1

En

)

So,

lim
n→∞

m(En) = m

( ∞⋂
n=1

En

)
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Exercise 3.3.25. E ∈ M if and only if E ∩ (a, b) ∈ M, for all a, b ∈ R.
If E ∈ M, it follows immediately that E ∩ (a, b) ∈ M, for any a, b ∈ R, because (a, b) ∈ M.
Suppose E ∩ (a, b) ∈ M, for all a, b ∈ R.
Then E ∩ (k, k + 1] = E ∩ (k, k + 1) ∪ (E ∩ {k + 1}) ∈ M (since m∗(E ∩ {k + 1}) = 0). But
E = ⋃

k∈Z(E ∩ (k, k + 1]) ∈ M.

Theorem 3.3.26. E ∈ M if and only if for all A ⊂ R, we have

m∗(A) = m∗(A ∩ E) +m∗(A \ E) (1)

But, proving (*), it is enough to prove

m∗(A) ≥ m∗(A ∩ E) +m∗(A \ E)

Proof. If m∗(A) = ∞, then (1) is true.
Suppose m∗(A) < ∞, and E ∈ M. Then there exist Gδ set G ⊇ A such that m∗(A) = m∗(G).
(since G = ⋂∞

n=1On)

therefore m∗(A∩E)+m∗(A\E) ≤ m∗(G∩E)+m∗(G\E) = m∗((G∩E)⊔(G\E)) = m∗(G) = m∗(A).

Now, let (1) holds. Claim: E ∈ M.
First consider m∗(E) < ∞. Then there exist Gδ set G such that E ⊆ G and m∗(G) = m∗(E) < ∞.
Since (1) is true for all A ⊂ R,

m∗(G) = m∗(G ∩ E) +m∗(G \ E)

that is m∗(G) = m∗(G) +m∗(G \ E)

So, m∗(G \ E) = 0 =⇒ G \ E ∈ M.
But G\(G\E) = E =⇒ E ∈ M. If m∗(E) = ∞, then, write E = ⋃

n∈Z(E∩(n, n+1]) = ⋃
n∈ZEn.

We claim that E ∈ M. For this, we all need to prove that if E1, E2 satisfy (1), then E1 ∩ E2

satisfies (1). From the bounded case (n, n+ 1] ∈ M ⇐⇒ (n, n+ 1] satisfies (1)). Thus,

m∗(A) = m∗(A ∩ En) +m∗(A \ En)

Since En = E ∩ (n, n+ 1]. Hence, by the bounded case En ∈ M. Since E = ⋃
En =⇒ E ∈ M.

Now,
m∗(A) = m∗(E1 ∩A) +m∗(A \ E1) (2)

m∗(A) = m∗(E2 ∩A) +m∗(A \ E2) (3)
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Replace A in (3) by A ∩ E1 and A \ E1 and use them in (2). Then R.H.S. of (1)

= m∗(E1 ∩ E2 ∩A) +m∗(A ∩ E1 \ E2) +m∗(E2 ∩ (A \ E1)) +m∗(A \ E2 \ E1)

≥ m∗((E1 ∩ E2 ∩A) ∪ (A ∩ E1 \ E2) ∪ (E2 ∩ (A \ E1)) ∪ (A \ E2 \ E1))

≥ m∗(A) (using (1))

Thus, (E1 ∪ E2)c = Ec
1 ∩ Ec

2 will satisfy (1), as (1) is closed under complement. (1) is called
Carathéodory’s criterion of measurability.

3.4 Measurable functions and integration

3.4.1 Measurable functions

Let Ju = collection of all open subsets of R with respect to the usual metric u on R.

{O ⊂ R : O =
∞⋃

n=1
In, In = (an, bn)}

and M = class of all Lebesgue measurable subsets of R.
Jd0 = collection of all open sets of R with respect to d0 — the discrete metric on R = P(R).

=⇒ Ju ⊊ M ⊊ Jd0 = P(R).
Since Ju is not closed under countable intersections (and complements) of open sets,
=⇒ Ju ⊊ M and M ⊊ Jd0 , because every subset need not be Lebesgue measurable.
Consider f : (R,Ju) → (R,Ju) continuous. Then f−1(O) ∈ Ju, ∀ O ∈ Ju (from range side).
Now, if f : (R,M) → (R,Ju), what happen to f−1(O)? If f is continuous on (R,Ju), then
f−1(O) is open and hence f−1(O) ∈ M.
In addition, consider f(x) = 1

x
, x ∈ R \ {0}, then f cannot be made continuous at 0 but

f(x) = ∞ if and only if x = 0. (important!)
If we want to take f(x) = 1

x
into consideration, we here to extend the range (−∞,∞) to [−∞,∞].

Let R = (−∞,∞) and R = [−∞,∞]. Therefore, the sets [−∞, a) and (b,∞] for a, b ∈ R should
be added to Ju. That is,

J u = Ju ∪ {[−∞, a) ∪ (b,∞] : a, b ∈ R}

Definition 3.4.1. Let f : (R,M) → (R,J u) is said to be Lebesgue measurable if f−1(O) ∈ M,

for all O ∈ J u.
Since O ∈ J u can be expressed as the countable union/intersection of sets of the form [−∞, a) and
(b,∞] and M is closed under countable union/intersection, it is enough to consider O = (b,∞]
or [−∞, a).
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Thus, f : (R,M) → (R,J u) or R is Lebesgue measurable if f−1{(α,∞]} ∈ M, ∀α ∈ R.

Proposition 3.4.2. If f : (R,M) → R = [−∞,∞]. Then the following are equivalent:

1. f−1{(α,∞]} ∈ M, for all α ∈ R.

2. f−1{[α,∞]} ∈ M, for all α ∈ R.

3. f−1{[−∞, α)} ∈ M, for all α ∈ R.

4. f−1{[−∞, α]} ∈ M, for all α ∈ R.

5. f−1{±∞} ∈ M and f−1{(a, b)} ∈ M, for all a, b ∈ R.

Proof. (i) =⇒ (ii):

[α,∞] =
∞⋂

n=1
(α− 1

n ,∞] ∋ x,

let x /∈ [α,∞] =⇒ α > x > α− 1
n , ∀n ≥ 1 =⇒ α = x = α, which is a contradiction.

Since M is closed under complement, so (ii) =⇒ (iii).
Now, (iii) =⇒ (iv), because

[−∞, α] =
∞⋂

n=1
[−∞, α+ 1

n)

(iv) =⇒ (i) as M is closed under complements (since Mc = M).
Thus, (i) to (iv) are equivalent. Hence,

f−1(∞) =
⋃
f−1{(n,∞]} ∈ M (by (i))

f−1(−∞) =
⋃
f−1{[−∞,−n)} ∈ M (by (iii))

(a, b) = (a,∞] ∩ [−∞, b)

=⇒ f−1{(a, b)} ∈ M , ∀ a, b ∈ R

Example 3.4.3. Let E ∈ M, define

f(x) = χE(x) =

1 x ∈ E

0 x /∈ E

f−1({(α,∞]} =



E α = 0

E 1 > α > 0

∅ α ≥ 1

R α < 0
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Example 3.4.4. f : R → R, f(x) = k is Lebesgue measurable.

f−1{(α,∞]} =

∅ if α ≥ k

R if α < k

f k-finite. If k = ∞, f(x) = ∞, ∀x ∈ R. Then f−1{(α,∞]} = R.
Notice that for α ∈ R, ∃rj ∈ Q such that rj increases to α.
f(x) ≥ α =⇒ f(x) ≥ α > rj , ∀j.
So {x : f(x) > α} = ⋂∞

j=1{x : f(x) > rj}. Thus, f is Lebesgue measurable if and only if
f−1{(rj ,∞]} ∈ M, for all rj ∈ Q.

Example 3.4.5. If f, g : R → R be Lebesgue measurable such that f(x) + g(x) ̸= ∞ − ∞, for
any x ∈ R. Then f + g is Lebesgue measurable.
Thus, we need to show the following sets to be Lebesgue measurable.

A = {x ∈ R : f(x) + g(x) = ±∞}

B = {x ∈ R : ∞ > f(x) + g(x) > α}, ∀α ∈ R

A = {x ∈ R : f(x) = ±∞ + g(x)} if g(x) are finite (or otherwise)

For x ∈ B, ∞ > f(x) + g(x) > α, ∃rx such that f(x) > rx > α− g(x)

x ∈
⋃

r∈Q
({x : f(x) > r}

⋂
{x : g(x) > α− r})

=⇒ B =
⋃

r∈Q
({x ∈ R : f(x) > r}

⋂
{x ∈ R : g(x) > α− r}) =⇒ B ∈ M

Exercise 3.4.6. {x : f2(x) > α} = {x : f(x) >
√
α}
⋃

{x : −f(x) >
√
α} ∈ M.

Exercise 3.4.7. 4fg = (f + g)2 − (f − g)2 =⇒ if f, g are Lebesgue measurable, then f2, fg

are Lebesgue measurable.

Definition 3.4.8. A property P is called “holding almost everywhere” if the places (or points)
where it false have Lebesgue measure zero, that is, P is true almost everywhere.

m∗ ({x ∈ R : P is false}) = 0

If f = g almost everywhere on R, then

m∗ ({x ∈ R : f(x) ̸= g(x)}) = 0

Example 3.4.9. If f : R → R and f(x) = 0 for almost everywhere x ∈ R, then f is Lebesgue
measurable.
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Let E = {x ∈ R : f(x) ̸= 0}, then m∗(E) = 0 =⇒ E,Ec ∈ M, and so forth.

Proposition 3.4.10. If f, g are Lebesgue measurable, then

max{f, g} = f + g + |f − g|
2

min{f, g} = f + g − |f − g|
2

sup fn, inf fn, lim sup fn, lim inf fn, limfn are all Lebesgue measurable.

Proposition 3.4.11. If f : R → R be such that f(x) ̸= 0, ∀x ∈ R, then 1
f is measurable.

Proof. {
x : 1

f(x) > α

}
= {x : f(x) > 1

α
, α < 0}

⋃
{x : f(x) < 1

α
, α > 0} ∈ M

3.4.2 Simple functions

Let Ei ∈ M and αi ∈ R. Then φ = ∑n
i=1 αiχEi is called a simple function.

Example 3.4.12. φ = 1 · χ[0,1] + 2 · χ[2,3]

Theorem 3.4.13. Let f : R → [0,∞] be a measurable function. Then there exist a sequence
(φn) of simple functions such that:

(i) φn ↑ and φn ≤ f .

(ii) φn → f pointwise.

(iii) φn → f uniformly on any set A where f is bounded.

Proof. We first divide the image of f in [0, 2n] into 22n disjoint parts. k = 0, 1, 2, . . . , 22n − 1.

f−1
([

k

2n
,
k + 1

2n

))
= En,k and f−1 ([2n,∞]) = Fn

Then (i) φn ≥ 0, (ii) En,k’s are disjoint measurable sets, (iii) φn ↑ on [0,∞].
Claim: φn(x) ≤ φn+1(x).
If x ∈ En,k =

{
x : 2k

2n+1 ≤ f(x) < 2k+2
2n+1

}
= En+1,2k

⋃
En+1,2k+1.

For x ∈ En+1,2k, φn(x) = k
2n = 2k

2n+1 = φn+1(x).
For x ∈ En+1,2k+1, φn(x) = 2k+1

2n+1 = φn+1(x).
If x ∈ Fn, then x ∈ (Fn \ Fn+1)⋃Fn+1.
For x ∈ Fn+1, φn(x) = 2n < 2n+1 = φn+1(x).
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For x ∈ Fn \ Fn+1, we have

2n = 22n+1

2n+1 ≤ f(x) < 2n+1 = 22n+2

2n+1

that is, x ∈ En+1,22n+1
⋃
. . .
⋃
En+1,22n+2−1. Then, φn+1(x) ∈

{
22n+1

2n+1 , . . . ,
22n+2−1

2n+1

}
. Thus,

φn(x) = 2n = 22n+1

2n+1 ≤ φn+1(x).

That is, φn ↑ and φn ≤ f.

(iv) φn → f pointwise.
Let f(x) < ∞. Then

{x : f(x) < ∞} =
∞⋃

m=1
{x : f(x) < 2n}

Therefore, f(x) < 2n, for some n, and hence x ∈ En,k =⇒ φn(x) = k
2n

therefore k

2n
≤ f(x) < k + 1

2n
=⇒ 0 ≤ f(x) − φn(x) < 1

2n
, n ≥ 1 =⇒ φn → f pointwise.

(*)
If f(x) = ∞, for some x. Then {x : f(x) = ∞} = ⋂∞

n=1{x : f(x) ≥ 2n}.
So, φn(x) = 2n → ∞ = f(x).
(v) φn → f uniformly on a set where f is bounded.
Let E = {x : f(x) ≤ M}. Then, ∃n0 such that f(x) < 2n, ∀n ≥ n0,
Hence, from (*), 0 ≤ f(x) − φn(x) < 1

2n , ∀n ≥ n0

Notice that n0 is free (or unique on E) of x ∈ E. Thus,

0 ≤ sup(f(x) − φn(x)) ≤ 1
2n

→ 0.

Hence, φn → f uniformly on E.

Corollary 3.4.14. If f : R → R is measurable. Then there exists a sequence of simple functions
such that |φn| ↑ |f | pointwise.

Proof. f = f+ − f−. Then there exist φ+
n ↑ f+ and φ−

n ↑ f−. That is,

φn = φ+
n − φ−

n → f+ − f− = f

|φn| = φ+
n + φ−

n ≤ f+ + f− and |φn| ↑ |f |

In this case,
|f − φn| = |f+ − φ+

n + f− − φ−
n | → 0
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and φn → f uniformly on E = {x : |f(x)| < M}.

Note that,
f+ = max{f, 0}, f− = − min{f, 0}.

Adoptions: 0 · ∞ = 0, ∞ · 0 = 0.
Example: 0 ·m(R) = 0, ∞ ·m(Q) = 0.
Avoidation: ∞ − ∞.

3.4.3 The Lebesgue integral

Let φ : R → R such that

φ =
m∑

j=1
αjχEj , αj ∈ [0,∞],

and Ej ∈ M and m(Ej) ≤ ∞. Then we write

∫
R
φdm =

m∑
j=1

αjm(Ej).

Remark 1.
∫
R φdm = 0 if and only if φ = 0.

Now, if E ∈ M, then φ|E = ∑m
j=1 αjχEj∩E , hence

∫
E
φdm =

m∑
j=1

αjm(Ej ∩ E)

Notice that (R,M,m) is called Lebesgue measure space. If E ∈ M, then for

ME = {F ∩ E : F ∈ M}, (E,ME ,m)

is also a Lebesgue measure space on E.
Remark 2. Since E1 ∪ E2 = (E1 \ E2) ∪ (E1 ∩ E2) ∪ (E2 \ E1), in the definition of φ, one can
assume {Ej : j = 1, 2, . . . , n} is a disjoint family, that is, Ej ∩ Ei = ∅ if i ̸= j.

Now, let f : R → [0,∞] be measurable, then there exists a sequence of simple functions
φn ↑ f pointwise. Hence

∫
R φn dm ↑ sequence in R.

Thus, we define ∫
R
f dm := sup

n≥1

∫
R
φn dm

or ∫
R
f dm = sup

{∫
R
φdm : φ ≤ f

}
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If f : R → R measurable, then f = f+ − f−. We write∫
R
f dm =

∫
R
f+ dm−

∫
R
f− dm,

if at least either of
∫
R f

+ dm or
∫
R f

− dm is finite.
Let

L+(R,M,m) = {f : R → [0,∞] : f measurable}

Proposition 3.4.15. For φ,ψ simple functions in L+(R,M,m) and c ∈ R = [0,∞],

(i)
∫
R cφ = c

∫
R φ.

(ii)
∫
R(φ+ ψ) =

∫
R φ+

∫
R ψ.

(iii) If φ ≤ ψ, then
∫

R φdm ≤
∫

R ψ dm.

Proof. (i) is trivial.

(ii) Let φ = ∑m
j=1 αjχEj , ψ = ∑m

k=1 βkχFk
.

Notice that by assigning 0 on
(⋃n

j=1Ej

)c
, one can assume that R = ⋃n

j=1Ej , R = ⋃m
k=1 Fk.

Then Ej = ⋃m
k=1(Ej ∩ Fk), Fk = ⋃n

j=1(Ej ∪ Fk).

Now,

∫
R
φdm+

∫
R
ψ dm =

n∑
j=1

m∑
k=1

αjm(Ej ∩ Fk) +
m∑

k=1

n∑
j=1

βkm(Ej ∩ Fk)

=
m∑

k=1

n∑
j=1

(αj + βk)m(Ej ∩ Fk) (1)

∫
R

(φ+ ψ)dm =
∫
R

m∑
k=1

n∑
j=1

(αj + βk)χEj∩Fk
dm

=
∫
R
φdm+

∫
R
ψ dm (by (1))

(iii) If φ ≤ ψ, then αj ≤ βk, when Ej ∩ Fk ̸= ∅.

∫
R
φdm =

n∑
j=1

m∑
k=1

αjm(Ej ∩ Fk) ≤
n∑

j=1

m∑
k=1

βkm(Ej ∩ Fk) =
∫
R
ψ dm.

Proposition 3.4.16. If f, g ∈ L+(R,M,m), then for f ≤ g,
∫
R f dm ≤

∫
R g dm.
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For this, let φ ≤ f , φ simple, then φ ≤ g

=⇒
∫
R
f dm = sup

φ≤f

∫
R
φdm ≤ sup

φ≤g

∫
R
φdm =

∫
R
g dm.

Proposition 3.4.17. If f, g ∈ L+(R,M,m), then∫
R

(f + g) dm =
∫
R
f dm+

∫
R
g dm.

(We prove it later!)

3.5 Convergence theorems and Lp spaces

3.5.1 Monotone convergence theorem

Theorem 3.5.1 (Monotone Convergence Theorem). Let fn, f ∈ L+(R,M,m) be such that
fn ↑ f pointwise. Then ∫

R
f dm = lim

n→∞

∫
R
fn dm.

Proof: Since fn ≤ fn+1 ≤ f , the limit of
∫
R fn will be bounded above by

∫
R f . Hence,

lim
n→∞

∫
R
fn ≤

∫
R
f.

In order to show the other inequality, it is enough to show that for each ϵ > 0,

lim
n→∞

∫
R
fn ≥ (1 − ϵ)

∫
R
f,

or for φ ≤ f ,
lim

n→∞

∫
R
fn ≥ (1 − ϵ)

∫
R
φ.

Let En = {x ∈ R : fn(x) ≥ (1 − ϵ)φ(x)}. Since fn ↑ f , En ⊆ En+1. Moreover, R = ⋃∞
n=1En.

For, let x ∈ R, then fn(x) ↑ f(x), and so for some n, fn(x) ≥ (1 − ϵ)φ(x). If not, fn(x) <
(1 − ϵ)φ(x) for all n, so f(x) ≤ (1 − ϵ)φ(x), φ ≤ f ⇒ Contradiction. Let ν(En) =

∫
En
φ. Then ν

becomes a measure on (R,M) and En ↑ R. Hence,

lim
n→∞

ν(En) = ν(R).

Thus,
(1 − ϵ)

∫
R
φ = lim

n→∞

∫
En

(1 − ϵ)φ ≤ lim
n→∞

∫
En

fn ≤ lim
n→∞

∫
R
fn.

Remark 3.5.2. fn ↑ f is necessary in monotone convergence theorem.
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Example 3.5.3. fn = 1
n
χ[0,n] → 0.

∫
R
fn dm = 1 ̸= 0 =

∫
R

lim fn dm.

Example 3.5.4. Verify MCT for fn : R → [0,∞], given by.

(i) fn = χ(n,n+1).

(ii) fn = nχ(0, 1
n

).

Remark 3.5.5. Integration is a linear map on L+(R,M,m), that is, f 7→
∫
R f dm is linear.

Let f, g ∈ L+(R,M,m). Then there exists φn ↑ f and ψn ↑ g. By MCT,∫
R

(f + g) dm = lim
n→∞

∫
R

(φn + ψn) dm

= lim
n→∞

(∫
R
φn dm+

∫
R
ψn dm

)
=
∫
R
f dm+

∫
R
g dm.

Example 3.5.6. For E ∈ M, and f ∈ L+(R,M,m), if
∫

E f dm = 0, then f = 0, provided
m(E) > 0.

∫
E
f dm = sup

φ≤f

∫
E
φ = 0 =⇒

∫
E
φ = 0 =⇒ φ = 0.

Corollary to MCT: Let fn, f ∈ L+(R,M,m) be such that fn ↑ f pointwise almost everywhere
on R. Then ∫

R
f dm = lim

n→∞

∫
R
fn dm.

Proof. Let fn ↑ f pointwise on A, then m∗(Ac) = 0. So, A,Ac ∈ M. That is, χEfn → χEf . By
MCT, ∫

χAf = lim
n→∞

∫
χAfn

=⇒
∫

A
f dm = lim

n→∞

∫
A
fn dm.

Now, ∫
R
f dm =

∫
A
f dm+

∫
Ac
f dm = lim

n→∞

∫
A
fn dm+

∫
Ac
fn dm

Thus, ∫
R
f dm = lim

n→∞

∫
R
fn dm
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Theorem 3.5.7. Let f ∈ L+(R,M,m). Then∫
R
f dm = 0 ⇐⇒ f = 0 almost everywhere on R.

Proof. For f = φ = ∑n
j=1 αjχEj ,

∫
R
φdm = 0 ⇐⇒ either αj = 0 or m(Ej) = 0, ∀j = 1, 2, . . . , n

that is
∫
R
φdm = 0 ⇐⇒ φ = 0 almost everywhere

Now, if f = 0 almost everywhere,∫
R
f dm = sup

φ≤f

∫
R
φdm = 0 (by previous case)

Suppose
∫
R f dm = 0. Then consider

E = {x ∈ R : f(x) > 0} =
∞⋃

n=1

{
x ∈ R : f(x) > 1

n

}
=

∞⋃
n=1

En (say).

Now, m(En) = n
∫

En

1
n dm ≤ n

∫
En
f dm ≤ n

∫
R f dm = 0.

Thus, m(E) = 0 =⇒ f = 0 almost everywhere

3.5.2 Fatou’s lemma

Lemma 3.5.8 (Fatou’s Lemma). Let fn ∈ L+(R,M,m). Then∫
R

limfn dm ≤ lim
∫
R
fn dm

Proof. Let gk = infn≥k fn. Then gk ≤ fj , for all j ≥ k. Thus,
∫
R gk ≤ infj≥k

∫
R fj .

Now,
gk ↑ sup

k≥1

(
inf
n≥k

fn

)
By the Monotone Convergence Theorem (MCT),∫

R
limfn dm =

∫
R

lim
k→∞

gk dm = lim
k→∞

∫
R
gk dm ≤ lim

k→∞
inf
j≥k

∫
R
fj dm

Remark 1: Strict inequality can hold.
For fn = 1

nχ[0,n] → 0 uniformly, then
∫
R limfn dm = 0 < 1 = lim

∫
R fn dm.

Remark 2: Fatou’s Lemma need not hold beyond non-negative functions.
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Example 3.5.9. let fn = − 1
nχ[n,2n], ∀n ≥ 1.

Now, infn≥k fn(x) = infn≥k

{
− 1

n

}
= − 1

k .

sup
k≥1

(
inf
n≥k

fn(x)
)

= 0 that is limfn(x) = 0

∫
R

limfn = 0 > −1 = lim
∫
R
fn.

Let f : (R,M,m) → R = [−∞,∞] be measurable. Then f = f+ − f− and f+, f− are
L-measurable.

Definition 3.5.10. If
∫
R f

+ dm < ∞ and
∫
R f

− dm < ∞ both hold, then we say f is integrable,
and ∫

R
f dm =

∫
R
f+ dm−

∫
R
f− dm

Since |f | = f+ + f−. It follows that
∫
R f dm is finite if and only if

∫
R |f | dm is finite.

Let
L1(R,M,m) =

{
f : R → R : f measurable and

∫
R

|f | < ∞
}

We also use the symbols L1(R) or L1(R,m) or L1(R,M,m).
Notice that L1 is a linear space over R.
Since ∫

R
|f | = 0 ⇐⇒ |f | = 0almost everywhere ⇐⇒ f = 0almost everywhere

If we adopt f = 0 if and only if f = 0 almost everywhere Then L1(R,M,m) is a normed linear
space with ∥f∥1 =

∫
R |f | dm.

Proposition 3.5.11. If f ∈ L1(R,M,m), then∣∣∣∣∫
R
f dm

∣∣∣∣ ≤
∫
R

|f | dm

Proof.∣∣∣∣∫
R
f dm

∣∣∣∣ =
∣∣∣∣∫

R
f+ dm−

∫
R
f− dm

∣∣∣∣ ≤
∣∣∣∣∫

R
f+ dm

∣∣∣∣+∣∣∣∣∫
R
f− dm

∣∣∣∣ =
∫
R
f+ dm+

∫
R
f− dm =

∫
R

|f | dm

3.5.3 Chebyshev’s inequality

Let f ∈ L1(R,M,m). Then m ({x ∈ R : |f(x)| ≥ α}) ≤ 1
α∥f∥1.

Proof.

the left-hand side = 1
α

∫
{x:|f(x)|≥α}

αdm ≤ 1
α

∫
{x:|f(x)|≥α}

|f(x)| dm ≤ 1
α

∫
R

|f(x)| dm = 1
α

∥f∥1
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.

Corollary 3.5.12. If f ∈ L1(R,M,m), then m{x ∈ R : |f(x)| = ∞} = 0 that is, an L1-function
is almost finite.

Proof. m{x : |f(x)| = ∞} = m{
⋂

{x : |f(x)| ≥ n}}. But m{x : |f(x)| ≥ n} ≤ 1
n∥f∥1.

So, m{x : |f(x)| = ∞} ≤ m{x : |f(x)| ≥ n} ≤ 1
n∥f∥1 → 0 as n → ∞.

3.5.4 Dominated convergence theorem

Theorem 3.5.13 (Dominated Convergence Theorem). Let fn : (R,M,m) → R be a sequence of
measurable functions such that

(i) fn(x) → f(x) pointwise, for all x ∈ R.

(ii) |fn| ≤ g ∈ L1(R,M,m).

Then ∫
R
f dm = lim

n→∞

∫
R
fn dm

Proof. Since fn → f pointwise and |fn| ≤ g ∈ L1(R,M,m),

=⇒ |fn| → |f | =⇒ |f | ≤ g ∈ L1 =⇒ f ∈ L1

Now,
0 ≤ g + fn → g + f pointwise

0 ≤ g − fn → g − f pointwise

By Fatou’s Lemma,∫
R

(g + f) dm =
∫
R

lim
n→∞

(g + fn) dm ≤ lim
∫
R

(g + fn) dm

=⇒
∫
R
f dm ≤ lim

∫
R
fn dm (since

∫
R
g < ∞)

Similarly, ∫
R

(g − f) dm =
∫
R

lim
n→∞

(g − fn) dm ≤ lim
∫
R

(g − fn) dm

−
∫
R
f dm ≤ −lim

∫
R
fn dm

that is
∫
R
f dm ≥ lim

∫
R
fn dm

So,
lim

∫
R
fn dm ≤

∫
R
f dm ≤ lim

∫
R
fn dm
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=⇒ lim
∫
R
fn =

∫
R
f.

Exercise 3.5.14. Verify the Dominated Convergence Theorem for fn : (R,M,m) → R, where

(i) fn = nχ[0, 1
n

].

(ii) fn = 1
nχ[n,n+1].

(iii) fn = χ[n,n+1].

(Hint: fn → 0,
∫
R fn = 1).

3.5.5 Bounded convergence theorem

Theorem 3.5.15 (Bounded Convergence Theorem). Let E ∈ M and 0 < µ(E) < ∞. If
fn, f : (E,ME ,m) → R be such that

(i) |fn(x)| ≤ M , ∀n ∈ N,∀x ∈ E.

(ii) fn → f pointwise.

Then ∫
E
f = lim

n→∞

∫
E
fn

Proof. ∫
E

|fn| ≤
∫

E
M = Mm(E) < ∞

So, fn are dominated by M . And by Dominated Convergence Theorem,∫
E
f = lim

n→∞

∫
E
fn

Theorem 3.5.16. If f is bounded. Then f ∈ R[a, b] if and only if f is continuous on [a, b] almost
everywhere, that is, there exists g : [a, b] → R continuous such that f = g almost everywhere.

Theorem 3.5.17. Every Riemann integrable function is Lebesgue integrable, that is, R[a, b] ⊂
L1[a, b].
If f ∈ R[a, b], then f = g almost everywhere, where g is continuous on [a, b]. Therefore, g is
measurable and hence f is measurable.
If f ∈ R[a, b], then

inf
P
U(P, f) =

∫ b

a
f(x) dx
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sup
P
L(P, f) =

∫ b

a
f(x) dx

both exist and are equal to
∫ b

a f(x)dx. But for Lebesgue integration, we only want

sup
P
L(P, f) =

∫
f dm

Hence f ∈ R[a, b] =⇒ f ∈ L1[a, b].
(Note that this is just an intuition and not a proof.)

Theorem 3.5.18. Let f ∈ R[a, b]. Then f ∈ L1[a, b] and

∫
[a,b]

f dm =
∫ b

a
f(x) dx

Proof. Let I = [a, b] and f ∈ R(I), then there exists an increasing sequence of partitions Pn of I
such that

limU(Pn, f) = limL(Pn, f) =
∫ b

a
f(x)dx.

For a partition P of [a, b], denote

φP =
k∑

j=1
Mjχ(tj−1,tj ], Mj = sup

[tj−1,tj ]
f(x)

and

ψP =
k∑

j=1
mjχ(tj−1,tj ], mj = inf

[tj−1,tj ]
f(x),

where P = {a = t0 < t1 < · · · < tj−1 < tj < · · · tk = b}.
Then φP ↓ sequence and ψP ↑ sequence. Since f ∈ R(I), ∃M,m > 0 such that m ≤ f(x) ≤ M

but then
m ≤ ψPn(x) ≤ f(x) ≤ φPn(x) ≤ M (1)

For each fixed x ∈ I, φPn(x) ↓ sequence bounded below by m and ψPn(x) ↑ sequence bounded
above by M . Let

lim
n→∞

φPn(x) = φ(x), lim
n→∞

ψPn(x) = ψ(x)

Then
m ≤ ψ(x) ≤ f(x) ≤ φ(x) ≤ M (2)

Then ψ and φ being limit of simple functions are measurable.
By Bounded Convergence Theorem,

∫
I
φdm = lim

n→∞

∫
I
φn dm = lim

n→∞
U(Pn, f) =

∫ b

a
f(x)dx
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Similarly, ∫
I
ψ dm = lim

n→∞

∫
I
ψn dm = lim

n→∞
L(Pn, f) =

∫ b

a
f(x)dx

Therefore ∫
I
(φ− ψ) dm = 0 ⇐⇒ φ− ψ = 0 almost everywhere (since φ− ψ ≥ 0)

From ψ(x) ≤ f(x) ≤ φ(x) almost everywhere. So f(x) = ψ(x) almost everywhere =⇒ f is
measurable. Thus, ∫

I
f dm =

∫
I
ψ dm =

∫ b

a
f(x)dx

Note: R[a, b] ⊊ L1[a, b]. Since f = χ(R\Q)∩[0,1],
∫

[0,1] f dm = 1 but L(P, f) = 0 and U(P, f) = 1,
∀P .

3.5.6 Lp spaces

Definition 3.5.19. Let (X,A, µ) be a measure space and let 1 ≤ p < ∞. The space Lp(X,µ)
consists of measurable functions f for which

∫
X |f |p dµ < ∞, modulo equality µ-almost everywhere.

The norm is
∥f∥p :=

(∫
X

|f |p dµ
)1/p

.

For p = ∞, we set ∥f∥∞ := inf{M > 0 : |f | ≤ M µ-almost everywhere}.

Theorem 3.5.20. For each 1 ≤ p ≤ ∞, the space Lp(X,µ) is complete.
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