

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Course: MA642: Real Analysis - I

EndSem

Instructor: Rajesh Srivastava

Date: November 18, 2025

Duration: 03:00 hours

Maximum Marks: 50

Note: Answers lacking rigorous justification will not be awarded marks.

1. (a) Whether $f_n(x) = \sin^2(\frac{x}{n})$ forms an equicontinuous family in $C[0, 1]$? 1
1. (b) Does there exist a continuous function $f : \mathbb{R} \rightarrow \mathbb{R}^2$ such that $\{f(x - [x]) : x \in \mathbb{R}\}$ is unbounded? 1
1. (c) Whether $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ satisfying $|f(x)| \leq \|x\|^2$ is necessarily continuously differentiable at $(0, 0)$? 1
1. (d) Does there exist a discontinuous function on a metric space, whose graph is connected? 1

2. Let $A : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation defined by $A(x, y) = (2x, 3y)$. Find the norm of A with respect to Euclidean norm. 2
3. Prove that every continuous function $f : [0, 1] \rightarrow [0, 1]$ has a fixed point. 4
4. Let $X = [0, 1] \cup [2, 3]$. Show that there exists a non-constant uniformly continuous map $f : X \rightarrow \mathbb{R}$ such that $f^{-1}(\{0\}) = \emptyset$ and $f^{-1}((-\infty, 0)) \neq \emptyset \neq f^{-1}((0, \infty))$. 4
5. Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a continuously differentiable such that $f_y(a, b) \neq 0$ for some $(a, b) \in \mathbb{R}^2$. Show that there exists a point $(c, d) \in \mathbb{R}^2$ such that $f(a, b) = f(c, d)$. 5
6. Let $f : [0, 1] \rightarrow \mathbb{R}$ satisfies IVP and set $\{x \in [0, 1] : f(x) = t\}$ is closed for every $t \in \mathbb{R}$, then show that f is continuous. 5
7. Let $f(x) = e^{-x^2}$. Show that there exists a polynomial p_k which converges uniformly to f on every compact subset of \mathbb{R} . 5
8. Determine all functions $f \in C[0, 1]$ such that $f(x) = \int_0^x (x - y) f(y) dy$. 5
9. Show that there exists a linear transformation $A : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ such that the strict inequality $\|A^2\| < \|A\|^2$ holds. 4
10. Show that equation $x^2 + yz - \cos(xz) = 0$ can be solved for x in some neighborhood of $(1, 1, 0)$. Whether it can be solved for y in a neighborhood of $(1, 1, 0)$? 4
11. Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be continuously differentiable with $f(0, 0) = 0$. Find the condition under which $f(f(x, y), y) = 0$ can be solved for y in some neighborhood of $(0, 0)$. 3
12. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable and $f'(0) \neq 0$. Show that the function $g(x, y) = (f(x), xf(x) - y)$ is locally invertible in some neighborhood of $(0, 0)$. Give an example of f (with justification) for which g is globally invertible. 5