

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Course: MA642: Real Analysis - I

Quiz II

Instructor: Rajesh Srivastava

Date: November 7, 2025

Duration: 1.5 hours

Maximum Marks: 10

Note: Answers lacking rigorous justification will not be awarded marks.

1. (a) Does there exist a nested sequence of nonempty closed sets in \mathbb{R} whose intersection is empty? 1
1. (b) Suppose $f_n \in C[0, 1]$ is uniformly equicontinuous and $f_n \rightarrow f$ pointwise. Does it imply, $f_n \rightarrow f$ uniformly? 1
2. Suppose f is a uniformly continuous function on a totally bounded metric space X . Show that $f(X)$ is totally bounded. 2
3. For some fixed $f : \mathbb{R} \rightarrow \mathbb{R}$, define $f_n(x) = f(nx)$, for each $x \in \mathbb{R}$. If f_n forms an equicontinuous family, then show that f must be constant. 2
4. Let $f_n \in C[0, 1]$ be uniformly bounded. Define $F_n(x) = \int_0^x f_n(s)ds$. Show that F_n has a uniformly convergent subsequence. 2
5. Show that $f_n : [0, 1] \rightarrow \mathbb{R}$ defined by $f_n(x) = \frac{2nx}{1 + n^2x^2}$ do not form an equicontinuous family at 0. 2

END