DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Course: MA642: Real Analysis - I

Instructor: Rajesh Srivastava

Duration: 1.5 hours

Quiz I

Date: September 1, 2025

Maximum Marks: 10

Note: Answers lacking rigorous justification will not be awarded marks.

- 1. (a) Is it necessarily true that every monotone and continuous function defined on \mathbb{R} is uniformly continuous?
 - (b) Consider the set $\{f \in C[0,1] : ||f||_1 \le 1\}$. Is this set bounded in the normed linear space $(C[0,1], ||\cdot||_2)$?
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a monotone decreasing and bounded function. Define

$$h(x) = \inf\{f(y) : y < x\}.$$

Prove that if f is continuous at $a \in \mathbb{R}$, then

$$f(a) = h(a)$$
.

1

3. Let $f(x) = e^{-x^2}$. Show that for each $n \in \mathbb{N}$, there exists a constant M > 0, independent of x, such that

$$|f(x)| \le \frac{M}{(1+x^{2n})^2}.$$

Is it possible for M to be chosen independent of n as well?

4. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous, and suppose

$$\lim_{|x| \to \infty} f(x) = \infty.$$

Prove that f is bounded from below and attains its infimum.

5. Let $0 \neq x \in \ell^{p_0}$ for some $p_0 \geq 1$. Show that

$$\lim_{p \to \infty} \sup ||x||_p \le ||x||_{\infty}.$$

 $|\mathbf{2}|$

|2|

|3|