DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Course: MA746: Fourier Analysis

Instructor: Rajesh Srivastava

Duration: 2.0 hours

MidSem

Date: September 19, 2025

Maximum Marks: 30

Note: Answers lacking rigorous justification will not be awarded marks.

- 1. (a) Let $f \in L^{\infty}(S^1)$ with f' monotone. Does the Fourier series of f converge uniformly?
 - (b) Suppose $f \in L^1(S^1)$ and $f = g^2$. Does this imply that $\hat{g}(n) \to 0$ as $|n| \to \infty$?
 - (c) Does there exist a non-zero Lebesgue-integrable periodic function f on S^1 such that f * (f + f') = f''?
- 2. Let f(x,y) be periodic in y, with $f \in C([-\pi,\pi] \times [-\pi,\pi])$. For each fixed x, define

$$A_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x, y) e^{-iny} dy.$$

3

4

Show that A_n converges uniformly to 0.

3. For $f \in L^{\infty}(S^1)$, prove that $\lim_{n \to \infty} \frac{1}{2\pi} \int_{S^1} f(t) f(nt) dt = (\hat{f}(0))^2$.

4. Suppose $f: [-\pi, \pi] \to \mathbb{R}$ is defined by f(t) = 1 - |t| if |t| < 1 and (t) = 0 if $|t| \ge 1$. Show that the kth partial sum of the Fourier series of f is

$$S_k(f)(t) = \frac{1}{2\pi} + 2\sum_{n=1}^k \frac{1 - \cos(n)}{n^2\pi} \cos(nt).$$

Determine whether $S_k(f'')$ converges uniformly.

5. Let $f \in C^1(S^1)$. Show that there exists M > 0 such that $|\hat{f}(n)| \leq \frac{M}{1+|n|}$. Furthermore, prove that $\sum_{n \in \mathbb{Z}} (1+|n|^2) |\hat{f}(n)|^2 < \infty$.

6. For
$$f, g \in L^2(\mathbb{R})$$
, show that $\widehat{f * g} = \widehat{f} \widehat{g}$.

- 7. Let $x^j f \in L^1(\mathbb{R})$ for $0 \le j \le k$. Prove independently (without using known result in this regard) that $\hat{f} \in C^k(\mathbb{R})$, and that $D^k \hat{f}(x) = \widehat{(-ix)^k} f(x)$, where $D = \frac{d}{dx}$.
- 8. Let X be the subspace of $C^{\infty}(\mathbb{R})$ consisting of functions f such that $x^k f(x)$ is bounded for every non-negative integer k. Show that $\widehat{X} = X$.