MA 101 (Mathematics-I)

Multivariable Calculus part 2: Practice Problem Sheet 2

- 1. Consider the transformation $T: [0, 2\pi] \times [0, 1] \to \mathbb{R}^2$ given by $T(u, v) = (2v \cos u, v \sin u)$.
 - (a) For a fixed $v_o \in [0, 1]$, describe the set $\{T(u, v_o) : u \in [0, 2\pi]\}$.
 - (b) Describe the set $\{T(u, v) : [0, 2\pi] \times [0, 1]\}.$
- 2. Let R be the region in \mathbb{R}^2 bounded by the straight lines y = x, y = 3x and x + y = 4. Consider the transformation T(u, v) = (u - v, u + v). Find the set S satisfying T(S) = R.
- 3. Evaluate $\iint_{R} x dx dy$ where R is the region $1 \le x(1-y) \le 2$ and $1 \le xy \le 2$.
- 4. Evaluate

(a)
$$\int_{0}^{\frac{1}{\sqrt{2}}} \int_{x=y}^{\sqrt{1-y^2}} (x+y) dx dy.$$

(b)
$$\int_{0}^{1} \int_{x=0}^{1-y} \sqrt{x+y} (y-2x)^2 dx dy.$$

(c)
$$\int_{1}^{2} \int_{x=0}^{y} \frac{1}{(x^2+y^2)^{\frac{3}{2}}} dx dy.$$

(d)
$$\int_{0}^{2} \int_{y=0}^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} dy dx.$$

5. Using change of variables u = x + y and v = x - y, show that

$$\int_{0}^{1} \int_{y=0}^{y=x} (x-y) dy dx = \int_{0}^{1} \int_{u=v}^{2-v} \frac{v}{2} du dv.$$

- 6. Find the volume of the solid in the first octant bounded below by the surface $z = \sqrt{x^2 + y^2}$ above by $x^2 + y^2 + z^2 = 8$ as well as the planes y = 0 and y = x.
- 7. Find the volume of the solid bounded by the surfaces $z = 3(x^2+y^2)$ and $z = 4-(x^2+y^2)$.
- 8. Let D denote the solid bounded by surfaces y = x, $y = x^2$, z = x and z = 0. Evaluate $\iint_D y dx dy dz$.
- 9. Let *D* denote the solid bounded below by the plane z + y = 2, above by the cylinder $z + y^2 = 4$ and on the sides x = 0 and x = 2. Evaluate $\iint_D x dx dy dz$.
- 10. Let $D = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} \le 1\}$ and $E = \{(u, v, w) \in \mathbb{R}^3 : u^2 + v^2 + w^2 \le 1\}$. Show that $\iiint_D dxdydz = \iiint_E 24dudvdw$.

11. Let *D* be the solid that lies inside the cylinder $x^2 + y^2 = 1$, below the cone $z = \sqrt{4(x^2 + y^2)}$ and above the plane z = 0. Evaluate $\iint x^2 dx dy dz$.

12. Evaluate
$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} x dz dy dx$$
.

- 13. Let *D* denote the solid bounded above by the plane z = 4 and below by the cone $z = \sqrt{x^2 + y^2}$. Evaluate $\iiint_D \sqrt{x^2 + y^2 + z^2} dx dy dz$.
- 14. Parametrize the part of the sphere $x^2 + y^2 + z^2 = 16, -2 \le z \le 2$ using the spherical co-ordinates.
- 15. Let D denote the solid enclosed by the spheres $x^2 + y^2 + (z-1)^2 = 1$ and $x^2 + y^2 + z^2 = 3$. Using the spherical coordinates, set up iterated integral that gives the volume of D.
- 16. Let S be the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$. Parametrize S by considering it as a graph and again by using the spherical coordinates.
- 17. Let S denote the part of the plane 2x + 5y + z = 10 that lies inside the cylinder $x^2 + y^2 = 9$. Find the area of S.
 - (a) By considering S as a part of the graph z = f(x, y), where f(x, y) = 10 2x 5y.
 - (b) By considering S as a parametric surface $r(u, v) = (u \cos v, u \sin v, 10 u(2 \cos v + 5 \sin v)), 0 \le u \le 3 \text{ and } 0 \le v \le 2\pi.$
- 18. Find the area of the surface x = uv, y = u + v, z = u v, where $(u, v) \in D = \{(s, t) \in \mathbb{R}^2 : s^2 + t^2 \leq 1\}$.
- 19. Find the area of the part of the surface $z = x^2 + y^2$ that lies between the cylinders $x^2 + y^2 = 4$ and $x^2 + y^2 = 16$.
- 20. Let S be the part of the cylinder $y^2 + z^2 = 1$ that lies between the planes x = 0 and x = 3 in the first octant. Evaluate $\iint_{\sigma} (z + 2xy) d\sigma$.