Multivariable Calculus part 2: Tutorial Problem Sheet 1

- 1. If $f: D = [a, b] \times [c, d] \to \mathbb{R}$ is continuous, then f is uniformly continuous.
- 2. Let f be real valued continuous function on [a, b]. Show that the graph of f is a set of content zero.
- 3. Let $D = \{(x, y) : a \le x \le b \text{ and } \varphi(x) \le y \le \psi(x)\}$, where φ and ψ are continuous functions on [a, b]. If f is a bounded continuous functions on D, then

$$\iint_{D} f(x,y) dx dy = \int_{a}^{b} \left(\int_{\varphi(x)}^{\psi(x)} f(x,y) dy \right) dx.$$

4. Evaluate the following integral applying Fubini's Theorem

(a)
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \sqrt{1-y^2} dy dx$$

(b)
$$\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} dy dx$$

(c)
$$\int_{0}^{1} \int_{y}^{1} x^2 e^{xy} dx dy$$

- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that $\int_{y=0}^{x} \int_{t=0}^{y} f(t) dt dy = \int_{t=0}^{x} (x-t)f(t) dt$.
- 6. Let f be a continuous function on the bounded domain D. If $\iint_R f(x,y)dxdy = 0$ for all rectangle R in D, then f = 0 on D.
- 7. Let $f : D = [a, b] \times [c, d] \to \mathbb{R}$ be a continuous function. If f_x, f_y, f_{xy} and f_{yx} are continuous then, by using Fubini's theorem, show that $f_{xy} = f_{yx}$.