Elementary properties of Complex numbers

- Let us consider the quadratic equation $x^2 + 1 = 0$.
- **It has no real root.**
- \bullet Let *i*(iota) be the solution of the above equation, then

$$
\bullet \ \ i^2 = -1 \ \text{i.e.} \ \ i = \sqrt{-1}.
$$

- \bullet *i* is not a real number. So we define it as *imaginary number*.
- A complex number is defined by $z = x + iy$, for any $x, y \in \mathbb{R}$.
- **Complex analysis is theory of functions of complex numbers.**
- Why do we need Complex Analysis?
- Evaluation of certain integrals which are difficult to workout. Viz.

$$
\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2}.
$$

- **•** Fourier Analysis.
- Differential Equations. \bullet
- **•** Number Theory.
- All major branches of Mathematics which is applicable in science and engineering.
- A complex number denoted by z is an ordered pair (x, y) with $x \in \mathbb{R}$, $y \in \mathbb{R}$.
- \bullet x is called real part of z and y is called the imaginary part of z. In symbol $x = \text{Re } z$, and $y = \text{Im } z$.
- We denote $i = (0, 1)$ and hence we write $z = x + iy$ where the element x is identified with $(x, 0)$, and y is identified with $(0, y)$.
- Re $z = Im$ iz and $Im z = -Re$ iz.
- \bullet By $\mathbb C$ we denote the set of all complex numbers, that is, $\mathbb{C} = \{z : z = x + iy, x \in \mathbb{R}, y \in \mathbb{R}\}.$

Algebra of Complex Numbers

Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ be two complex numbers.

• Addition and subtraction: We define

$$
z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2).
$$

• Multiplication: We define

$$
z_1z_2=(x_1+iy_1)(x_2+iy_2)=(x_1x_2-y_1y_2)+i(x_1y_2+x_2y_1).
$$

Since $i = (0, 1)$ it follows from above that $i^2 = -1$.

 \bullet Division: If z a non-zero complex number then we define

$$
\frac{1}{z} = \frac{1}{x + iy} = \frac{x - iy}{x^2 + y^2}.
$$

From this we get

$$
\frac{x_1 + iy_1}{x_2 + iy_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)} = \frac{(x_1x_2 + y_1y_2) + i(x_2y_1 - x_1y_2)}{x_2^2 + y_2^2}.
$$

Let $z_1, z_2, z_3 \in \mathbb{C}$.

- Commutative and associative law for addition : $z_1 + z_2 = z_2 + z_1$. and $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3.$
- Additive identity : $z + 0 = 0 + z = z \forall z \in \mathbb{C}$
- **Additive inverse** : For every $z \in \mathbb{C}$ there exists $-z \in \mathbb{C}$ such that $z + (-z) = 0 = (-z) + z$.
- **Commutative and associative law for multiplication** : $z_1z_2 = z_2z_1$ and $z_1(z_2z_3) = (z_1z_2)z_3.$
- Multiplicative identity : $z \cdot 1 = z = 1 \cdot z \forall z \in \mathbb{C}$
- Multiplicative inverse : For every non-zero $z \in \mathbb{C}$ there exists $w(=\frac{1}{z}) \in \mathbb{C}$ such that $zw = 1 = wz$.
- Distributive law : $z_1(z_2 + z_3) = z_1z_2 + z_1z_3$.

Note: C is a field.

If $z = x + iy$ is a complex number then its **conjugate** is defined by $\overline{z} = x - iy$. Conjugation has the following properties which follows easily from the definition. Let $z_1, z_2 \in \mathbb{C}$ then,

- Re $z = \frac{1}{2}(z + \bar{z})$ and $\text{Im } z = \frac{1}{2i}(z \bar{z}).$
- $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}.$
- $\overline{z_1z_2} = \overline{z_1}\overline{z_2}$
- Note: If $\alpha \in \mathbb{R}$ then $\overline{\alpha z} = \alpha \overline{z}$).
- $\bullet \quad \bar{z} = z$
- Re $z = \text{Re } \bar{z}$ and $\text{Im } z = -\text{Im } \bar{z}$.

The **modulus** or absolute value of a complex number $z = x + iy$ is a non-negative real number denoted by $|z|$ and defined by

$$
|z| = \sqrt{x^2 + y^2}.
$$

Note that if $z = x + iy$ then |z| is the Euclidean distance of the point (x, y) from the origin (0, 0).

Exercise: Verify the following properties.

 $z\bar{z} = |z|^2$. • $|x| = |Re z| < |z|$ and $|y| = |Im z| < |z|$ $|\bar{z}| = |z|, |z_1z_2| = |z_1||z_2|$ and z_1 $z₂$ $=$ $\frac{|z_1|}{|z_2|}$ $\frac{|z_1|}{|z_2|}$ ($z_2 \neq 0$). • $|z_1 + z_2|$ < $|z_1| + |z_2|$ (Triangle inequality). \bullet $||z_1| - |z_2|| \leq |z_1 - z_2|$

- We can represent the complex number $z = x + iy$ by a position vector in the XY – plane whose tail is at the origin and head is at the point (x, y) .
- When XY-plane is used for displaying complex numbers, it is called Argand plane or Complex plane or z plane.
- \bullet The X-axis is called as the real axis where as the Y-axis is called as the imaginary axis.

Graph the complex numbers:

- 1. $3 + 4i$ (3.4)
- 2. $2 3i$ (2,-3)
- 3. $-4 + 2i$ $(-4,2)$
- 4. 3 (which is really $3 + 0i$) $(3,0)$
- 5. 4i (which is really $0 + 4i$) $(0,4)$

The complex number is represented by the point or by the vector from the origin to the point.

Add $3 + 4i$ and $-4 + 2i$ graphically.

Graph the two complex numbers $3 + 4i$ and $-4 +$ 2i as vectors.

Create a parallelogram using these two vectors as adjacent sides.

The sum of $3 + 4i$ and -4 $+ 2i$ is represented by the diagonal of the parallelogram (read from the origin).

This new (diagonal) vector is called the resultant vector.

Subtract $3 + 4i$ from $-2 + 2i$

Subtraction is the process of adding the additive inverse. $(-2 + 2i) - (3 + 4i)$ $= (-2 + 2i) + (-3 - 4i)$ $= (-5 - 2i)$

Graph the two complex numbers as vectors.

Graph the additive inverse of the number being subtracted.

Create a parallelogram using the first number and the additive inverse. The answer is the vector forming the diagonal of the parallelogram.

Polar representation of Complex Numbers

- Consider the unit circle on the complex plane. Any point on the unit circle is represented by $(\cos \varphi, \sin \varphi), \varphi \in [0, 2\pi]$.
- Any non-zero $z \in \mathbb{C}$, the point $\frac{z}{|z|}$ lies on the unit circle and therefore we write $\frac{z}{|z|} = \cos \varphi + i \sin \varphi$. i.e. $z = |z|(\cos \varphi + i \sin \varphi)$.
- The symbol $e^{i\varphi}$ is defined by means of Euler's formula as

$$
e^{i\varphi} = \cos\varphi + i\sin\varphi.
$$

Polar representation of Complex Numbers

- Any non-zero $z = x + iy$ can be uniquely specified by its magnitude (length from origin) and direction(the angle it makes with positive X – axis).
- Let $r = |z| = \sqrt{x^2 + y^2}$ and θ be the angle made by the line from origin to the point (x, y) with the positive X–axis.
- From the above figure $x = r \cos \theta$, $y = r \sin \theta$ and $\theta = \tan^{-1}(\frac{y}{x})$.

Polar representation of a Complex Number

- If $z \neq 0$ then $\arg(z) = \{\theta : z = re^{i\theta}\}.$
- \bullet Note that $arg(z)$ is a multi-valued function.

$$
\arg(z)=\{\theta+2n\pi: z=re^{i\theta}, n\in\mathbb{Z}\}.
$$

- arg $z = Arg z + 2k\pi$ So, if θ is argument of z then so is $\theta + 2k\pi$. For example, arg $i = 2k\pi + \frac{\pi}{2}$, $k \in \mathbb{Z}$, where as Arg $i = \frac{\pi}{2}$.
- The principal value of $arg(z)$, denoted by $Arg(z)$, is the particular value of arg(z) chosen in within $(-\pi, \pi]$.
- Let $z_1 = r_1 e^{i\theta_1}$, $z_2 = r_2 e^{i\theta_2}$ then $z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$.
- If $z_1 \neq 0$ and $z_2 \neq 0$, $\arg(z_1z_2) = \arg(z_1) + \arg(z_2)$.
- As $|e^{i\theta}|=1, \; \forall \; \theta \in \mathbb{R},$ it follows that $|z_1z_2|=|z_1||z_2|.$

De Moiver's formula:

$$
z^{n} = [r(\cos\theta + i\sin\theta)]^{n} = r^{n}(\cos n\theta + i\sin n\theta).
$$

- \bullet Problem: Given a non-zero complex number z_0 and a natural number $n \in \mathbb{N}$. Find all distinct complex numbers w such that $z_0 = w^n$.
- If w satisfies the above then $|w|=|z_0|^{\frac{1}{n}}.$ So, if $z_0=|z_0|(\cos\theta+i\sin\theta)$ we try to find α such that

$$
|z_0|(\cos\theta+i\sin\theta)=[|z_0|^{\frac{1}{n}}(\cos\alpha+i\sin\alpha)]^n.
$$

By De Moiver's formula cos $\theta = \cos n\alpha$ **and** $\sin \theta = \sin n\alpha$ **, that is,** $n\alpha = \theta + 2k\pi \Rightarrow \alpha = \frac{\theta}{n} + \frac{2k\pi}{n}$. The distinct values of w is given by $|z_0|^{\frac{1}{n}}$ (cos $\frac{\theta+2k\pi}{n}$ + i sin $\frac{\theta+2k\pi}{n}$), for, $k = 0, 1, 2, ..., n-1$.