Sequence, Limit and Continuity

Functions of a complex variable

- Let $S \subseteq \mathbb{C}$. A complex valued function is a rule that assigns to each complex number $z \in S$ a unique complex number w.
- We write w = f(z). The set S is called the **domain** of f and the set $\{f(z): z \in S\}$ is called **range** of f.
- Any complex function can be separated into real and imaginary parts:

$$z = x + iy$$
 and $w = f(z) = u(x, y) + iv(x, y)$,

where $x, y \in \mathbb{R}$ and u(x, y), v(x, y) are **real-valued** functions. In other words, the components of the function f(z), u = u(x, y) and v = v(x, y) can be interpreted as **real-valued functions** of the two real variables x and y.

Complex Sequences

- Complex Sequences: A complex sequence is a function whose domain is the set of natural numbers and range is a subset of complex numbers. In other words, a sequence can be written as $f(1), f(2), f(3) \dots$ Usually, we will denote such a sequence by the symbol $\{z_n\}$, where $z_n = f(n)$.
- Limit of a sequence: A number I is called the limit of an infinite sequence $\{z_n\}$, if for every $\epsilon>0$, there exists a $N_{\epsilon}>0$ such that $|z_n-I|<\epsilon$ whenever $n\geq N_{\epsilon}$.
- In such case we write $\lim_{n\to\infty} z_n = I$.
- If the limit of the sequence exists we say that the sequence is convergent; otherwise it is called not convergent.
- A convergent sequence has a unique limit.
- Every convergent sequence is bounded.
- If $z_n = x_n + iy_n$ and $I = \alpha + i\beta$ then

$$\lim_{n\to\infty} z_n = I \Longleftrightarrow \lim_{n\to\infty} x_n = \alpha \quad \text{and} \quad \lim_{n\to\infty} y_n = \beta.$$

Limit of a function

• Limit of a function: Let f be a complex valued function defined at all points z in some deleted neighborhood of z_0 . We say that f has a limit a as $z \to z_0$ and write

$$\lim_{z\to z_0}f(z)=a,$$

if for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$|f(z) - a| < \epsilon$$
, whenever $0 < |z - z_0| < \delta$.

- If the limit of a function f(z) exists at a point z_0 , it is **unique**.
- If f(z) = u(x, y) + iv(x, y) and $z_0 = x_0 + iy_0$ then,

$$\lim_{z\to z_0} f(z) = u_0 + iv_0 \Longleftrightarrow \lim_{(x,y)\to (x_0,y_0)} u(x,y) = u_0 \text{ and } \lim_{(x,y)\to (x_0,y_0)} v(x,y) = v_0.$$

Limit contd....

Note:

- The point z_0 can be approached from any direction. If the limit $\lim_{z \to z_0} f(z)$ exists, then f(z) must approach a unique limit, no matter how z approaches z_0 .
- If the limit $\lim_{z \to z_0} f(z)$ is different for different path of approaches then $\lim_{z \to z_0} f(z)$ does not exists.

Let f, g be complex valued functions with $\lim_{z \to z_0} f(z) = \alpha$ and $\lim_{z \to z_0} g(z) = \beta$. Then,

- $\bullet \lim_{z \to z_0} [f(z) \pm g(z)] = \lim_{z \to z_0} f(z) \pm \lim_{z \to z_0} g(z) = \alpha \pm \beta.$
- $\bullet \lim_{z\to z_0} [f(z)\cdot g(z)] = \lim_{z\to z_0} f(z)\cdot \lim_{z\to z_0} g(z) = \alpha\beta.$
- $\bullet \lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)} = \frac{\alpha}{\beta} \quad (if \quad \beta \neq 0).$
- $\lim_{z \to z_0} Kf(x) = K \lim_{z \to z_0} f(z) = K\alpha \quad \forall \quad K \in \mathbb{C}.$

Properties of continuous functions

• Continuity at a point: A function $f:D\to\mathbb{C}$ is continuous at a point $z_0\in D$ if for for every $\epsilon>0$, there is a $\delta>0$ such that

$$|f(z)-f(z_0)|<\epsilon$$
, whenever $|z-z_0|<\delta$.

In other words, f is continuous at a point z_0 if the following conditions are satisfied.

- $\lim_{z \to z_0} f(z)$ exists,
- $\bullet \lim_{z\to z_0} f(z) = f(z_0).$
- A function f is continuous at z_0 if and only if for every sequence $\{z_n\}$ converging to z_0 , the sequence $\{f(z_n)\}$ converges to $f(z_0)$.
- A function f is continuous on D if it is continuous at each and every point in D.
- A function $f: D \to \mathbb{C}$ is continuous at a point $z_0 \in D$ if and only if u(x,y) = Re (f(z)) and v(x,y) = Im (f(z)) are continuous at z_0 .

Continuity

Let $f,g:D\subseteq\mathbb{C}\to\mathbb{C}$ be continuous functions at the point $z_0\in D$. Then

- $f \pm g$, fg, kf $(k \in \mathbb{C})$, $\frac{f}{g}$ $(g(z_0) \neq 0)$ are continuous at z_0 .
- Composition of continuous functions is continuous.
- $\overline{f(z)}$, |f(z)|, Re (f(z)) and Im (f(z)) are continuous.
- If a function f(z) is continuous and nonzero at a point z_0 , then there is a $\delta > 0$ such that $f(z) \neq 0, \ \forall \ z \in B(z_0, \delta)$.
- Continuous image of a compact set (closed and bounded set) is compact.