
Differentiability

Lecture 4 Differentiability



Differentiability

Recall: Let A be a nonempty open subset of R. x0 ∈ A. Then we say f is
differentiable at x0 if the limit

lim
h→0

f (x0 + h)− f (x0)

h

exists.

Definition: Let D be a nonempty open subset of C. z0 ∈ D. Then f is
differentiable at z0 if the limit

lim
h→0

f (z0 + h)− f (z0)

h

exists. The value of the limit is denoted by f ′(z0) and is called the
derivative of f at the point z0.

Let f (z) = z2. Then f (z + h)− f (z) = 2zh + h2 and hence the above
limit is 2z . In general, d

dz
(zn) = nzn−1, n ∈ N.

If g(z) = z then the function g is not differentiable anywhere in C. As

lim
h→0

g(z + h)− g(z)

h
= lim

h→0

h

h

does not exist.
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Differentiability

If f is differentiable at z0 then f is continuous at z0.

Proof: Since f ′(z0) = lim
z→z0

f (z)− f (z0)

z − z0
it follows that

lim
z→z0

f (z) = lim
z→z0

f (z)− f (z0)

z − z0
(z − z0) + f (z0) = f (z0).

Derivative of a constant function is zero. However, converse need not be
true.

Suppose f , g be differentiable at z0 and α, β ∈ C. Then

(αf + βg)′ = αf ′ + βg ′.

If h(z) = f (z)g(z), then h′(z0) = f ′(z0)g(z0) + f (z0)g ′(z0)

If f (z) =
g(z)

h(z)
and h(z0) 6= 0, then

f ′(z0) =
g ′(z0)h(z0)− g(z0)h′(z0)

[h(z0)]2
.

(Chain Rule) d
dz
f (g(z)) = f ′(g(z))g ′(z) whenever all the terms make

sense.
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Differentiability

Question: Is there any difference between the differentiability in R2 and C?

Let f : C→ R defined by f (z) = |z |2. Consider

lim
h→0

|z0 + h|2 − |z0|2

h
= lim

h→0

z0h̄ + z̄0h + hh̄

h
= z0 lim

h→0

h̄

h
+ z̄0 + h̄.

The above limit exists if and only if z0 = 0. i.e. the function f (z) is
complex differentiable only at 0.

However if we view the same function f as f : R2 → R i.e.
f (x , y) = x2 + y 2 then f is differentiable everywhere on R2.
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Differentiability

Let D be an open subset of C and f : D → C such that

f (z) = f (x + iy) = u(x , y) + iv(x , y).

Let z0 = x0 + iy0 ∈ D then

ux(x0, y0) = lim
h→0

u(x0 + h, y0)− u(x0, y0)

h
.

uy (x0, y0) = lim
k→0

u(x0, y0 + k)− u(x0, y0)

k
.

Analogously one can define vx(x0, y0), vy (x0, y0) and higher order partial

derivatives of u and v at (x0, y0).
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Necessary condition for Differentiability

Theorem Suppose that f (z) = f (x + iy) = u(x , y) + iv(x , y) is differentiable
at z0 = x0 + iy0. Then the partial derivatives of u and v exist at the point
z0 = (x0, y0) and

f ′(z0) = ux(x0, y0) + ivx(x0, y0) = vy (x0, y0)− iuy (x0, y0).

Thus equating the real and imaginary parts we get

ux = vy , uy = −vx , at z0 = x0 + iy0 (Cauchy Riemann equations).

Proof. Since f is differentiable at z0 letting h = h1 + ih2 tending to 0 in two
different paths we get the same limit.

f ′(z0) = lim
h→0

f (z0 + h)− f (z0)

h

= lim
h→0

u(x0 + h1, y0)− u(x0, y0) + i [v(x0 + h1, y0)− v(x0, y0]

h
= ux(x0, y0) + ivx(x0, y0), [h1 → 0, h2 = 0]
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Necessary condition for Differentiability

and

f ′(z0) = lim
h→0

f (z0 + h)− f (z0)

h

= lim
h→0

u(x0, y0 + h2)− u(x0, y0) + i [v(x0, y0 + h2)− v(x0, y0)]

ih

= lim
h→0

v(x0, y0 + h2)− v(x0, y0)

h
− i lim

h→0

u(x0, y0 + h2)− u(x0, y0)

h
= vy (x0, y0)− iuy (x0, y0) [h1 = 0, h2 → 0].

Thus equating the real and imaginary parts of f ′(z0) we get

ux(x0, y0) = vy (x0, y0), uy (x0, y0) = −vx(x0, y0), (Cauchy Riemann equations).
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Necessary condition for Differentiability

Summary:

f is differentiable at z0 ⇒ partial derivatives of u and v exist at z0 and f
satisfies Cauchy Riemann equations.

The partial derivatives of u and v exist at the point z0 = (x0, y0) but f
DOES NOT satisfy Cauchy Riemann equations =⇒ f is NOT
differentiable at z0.

Take f (z) = |z |2. Let z0 = (x0, y0) 6= (0, 0). Here u(x , y) = x2 + y 2 and
V (x , y) = 0. Then

ux(x0, y0) = 2x0, uy (x0, y0) = 2y0, vx(x0, y0) = 0 = vy (x0, y0)

f does NOT satisfy Cauchy Riemann equations and hence not
differentiable at z0.

f satisfies Cauchy Riemann equations at z0 6=⇒ f is differentiable at z0.
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Necessary condition for Differentiability

Example: Let

f (z) =

z2

z
if z 6= 0

0 if z = 0.

lim
z→0

f (z)− f (0)

z − 0
= lim

(x, y)→(0, 0)

(
x3−3xy2

x2+y2 + i y3−3x2y
x2+y2

)
− 0

x + iy − 0

Let z approach 0 along the x-axis. Then, we have

lim
(x, 0)→(0, 0)

x − 0

x − 0
= 1 .

Let z approach 0 along the line y = x . This gives

lim
(x, x)→(0, 0)

−x − ix

x + ix
= −1 .

Since the limits are different along two different paths, we conclude that f is
not differentiable at the origin.
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Necessary condition for Differentiability

ux(0, 0) = lim
x→0

u(x , 0)− u(0, 0)

x − 0
= lim

x→0

x − 0

x
= 1 .

In a similar fashion, one can show that

uy (0, 0) = 0, vx(0, 0) = 0 and vy (0, 0) = 1 .

Hence the function satisfies the Cauchy-Riemann equations ux = vy , uy = −vx
at the point z = 0.
Cauchy-Riemann equation in polar form

Let f (z) = f (re iθ) = u(r , θ) + iv(r , θ). The polar form of Cauchy
Riemann equation can be obtained as follows:

∂u

∂r
=

1

r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
.

Result: Let D be a domain in C. If f : D ⊆ C→ C is such that
f ′(z) = 0 for all z ∈ D, then f is a constant function.
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Sufficient condition for Differentiability

Theorem Let the function f = u + iv be defined on B(z0, r) such that
ux , uy , vx , vy exist on B(z0, r) and are continuous at z0. If u and v satisfies CR
equations then f ′(z0) exists and f ′(z0) = ux(z0) + ivx(z0).

Exercise: Using the above result we can immediately check that the functions

1 f (x + iy) = x3 − 3xy 2 + i(3x2y − y 3)

2 f (x + iy) = e−y cos x + ie−y sin x

are differentiable everywhere in the complex plane.
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