Analytic functions

Analytic functions

- **Definition:** A function f is called **analytic** at a point $z_0 \in \mathbb{C}$ if there exists $r > 0$ such that f is differentiable at every point $z \in B(z_0, r)$.
- A function is called analytic in an open set $U \subseteq \mathbb{C}$ if it is analytic at each point U.
- **An entire function** is a function thar is analytic on the whole complex plane C.
- **•** For $n \in \mathbb{N}$, and complex numbers a_0, \ldots, a_n , the polynomial $f(z) = \sum_{k=1}^{n} a_k z^k$ is entire. $k=0$
- The function $f(z) = \frac{1}{z}$ is analytic for all $z \neq 0$ (hence not entire).
- \bullet Analyticity \implies Differentiability, whereas Differentiability \implies Analyticity.
- **Example:** The function $f(z) = |z|^2$ is differentiable only at $z = 0$ however it is not analytic at any point.

Let $f(z) = u(x, y) + iv(x, y)$ be defined on an open set $D \subseteq \mathbb{C}$.

- **●** f is analytic on $D \implies f$ satisfies CR Equation on D.
- \bullet f satisfies CR Equation on D and u, v has continuous first order partial derivatives on $D \implies f$ is differentiable on $D \implies f$ is analytic on D
- Suppose f, g are analytic in an open set D. Then $f \pm g$, fg, $\frac{f}{f}$ $\frac{1}{g}\,\left(g\neq 0\right),$ $\alpha f\,\left(\alpha\in\mathbb{C}\right)$ are analytic on $D.$
- **Composition of analytic functions is analytic.**
- \bullet Let f is analytic in a domain D. If the real part or imaginary part or argument or modulus of f is constant then f is constant in D .

Harmonic Functions

- **Harmonic functions:** A real valued function $\phi(x, y)$ is said to be harmonic in a domain D if
	- **1** all the partial derivatives up to second order exist and continuous on D,
	- $\bullet \phi$ satisfies the Laplace equation $\phi_{xx}(x, y) + \phi_{yy}(x, y) = 0$ at each point of D.
- **Theorem:** If $f(z) = u(x, y) + i v(x, y)$ is analytic in a domain D, then the functions $u(x, y)$ and $v(x, y)$ are harmonic in D. **Proof:** Since f is analytic in D, f satisfies the CR equations $u_x = v_y$ and $u_y = -v_x$ in D. Now, it gives that $u_{xx} = v_{yx}$ and $u_{yy} = -v_{xy}$. Consequently, $u_{xx} + u_{yy} = v_{yx} - v_{xy} = 0$. Therefore, u is harmonic in D. Similarly, one can show that v is harmonic in D.

Note: We have used the fact that all the second order partial derivatives $(u_{xx}, u_{xy}, u_{yy}, v_{xx}, v_{xy}, v_{yy})$ exist which will follow from the fact that "if f is analytic at a point then its derivatives of all orders exists at that point".(Prove Later!)

Let D be a domain and $u: D \to \mathbb{R}$ is harmonic. Does there exist a harmonic function $v : D \to \mathbb{R}$ such that $f(z) = u(x, y) + iv(x, y)$ is analytic in D? If such harmonic function $v: D \to \mathbb{R}$ exists then v is called the **harmonic** conjugate of u .

- The function $v(x, y) = 2xy$ is a harmonic conjugate of $u(x, y) = x^2 y^2$ in $\mathbb C$. The function $f(z) = z^2 = (x^2 - y^2) + i (2xy)$ is analytic in $\mathbb C$.
- \bullet Does harmonic conjugate v always exist for a given harmonic function u in a domain D? Answer: 'No'.
- The function $u(x, y) = \log(x^2 + y^2)^{\frac{1}{2}}$ is harmonic on $G = \mathbb{C} \setminus \{0\}$ and it has no harmonic conjugate on G.
- \bullet Question: Under what condition harmonic conjugate v exists for a given harmonic function μ in a domain D ?
- **Theorem:** Let G be either the whole plane $\mathbb C$ or some open disk. If $u: G \to \mathbb{R}$ is a harmonic function then u has a harmonic conjugate in G.

Harmonic Conjugate

- **Construction of a harmonic conjugate** Let $u(x, y) = x^2 y^2$. We have to find the harmonic conjugate of u .
- **Step 1:** Check that *u* is harmonic: clearly $u_{xx} + u_{yy} = 2 2 = 0$.
- **Step 2:** Calculate u_x and u_y : $u_x(x, y) = 2x$ and $u_y(x, y) = -2y$. Since the conjugate harmonic function v satisfied CR equations we have

$$
u_x(x,y) = v_y(x,y) = 2x \implies v(x,y) = \int u_x(x,y) \, dy + \phi(x) = 2xy + \phi(x).
$$

O Consider

$$
v_x(x, y) = 2y + \phi'(x) = -u_y(x, y) = 2y \implies \phi'(x) = 0.
$$

So $v(x, y) = 2xy + c$, where c is a constant.

So $f(x, y) = u(x, y) + iv(x, y) = x^2 - y^2 + 2ixy + ic = z^2 + ic$ is analytic.

- \bullet Given a harmonic function u. Suppose the harmonic conjugate of u exists. Is it unique? Ans:Yes, it is unique up to an additive constant.
- **Proof.** Let v_1 and v_2 be two harmonic conjugates of u. Then $f_1 = u + iv_1$ and $f_2 = u + iv_2$ are analytic. Then $f_1 - f_2 = i(v_1 - v_2)$ is analytic. So $v_1 = C + v_2$.
- A function $f(z) = u(x, y) + iv(x, y)$ is analytic if and only if v is the harmonic conjugate of u .