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We examine mass outflows from a low-angular momentum, viscous, advective, and magnetized
accretion disk around a rotating black hole in presence of thermal conduction. We consider the disk
is primarily threaded by the toroidal component of the magnetic field and an effective potential
satisfactorily mimicked the spacetime geometry around the rotating black hole. With this, we
self-consistently solve the coupled governing equations for inflow and outflow and compute the
mass outflow rate Rṁ (ratio of mass flux of inflow to outflow) in terms of the inflow parameters,
namely energy (E), angular momentum (λ), plasma-β and conduction parameter (Υs) around weakly
rotating (ak → 0) as well as rapidly rotating (ak = 0.99) black holes. Our findings reveal that the
present formalism admits coupled inflow-outflow solutions across a wide range of inflow parameters
yielding substantial mass loss. We observe that Rṁ monotonically increases with Υs, irrespective of
black hole spin. We also find that for a fixed Υs, when energy, angular momentum, and magnetic
field strength of the inflowing matter is increased, Rṁ is enhanced resulting the outflows even
more pronounced. We further estimate the maximum outflow rate (Rmax

ṁ ) by varying the inflow
parameters and find that thermal conduction leads to maximum mass outflow rate Rmax

ṁ ∼ 25%
for rapidly rotating black hole of spin ak = 0.99. Finally, we employ our formalism to explain the
kinetic jet power of 68 radio-loud low-luminosity active galactic nuclei (LLAGNs), indicating that
it is potentially promising to account for the observed jet power of substantial number of LLAGNs.

I. INTRODUCTION

The accumulation of matter onto black holes (BHs)
powers various high-energy astrophysical phenomena in
the universe, including X-ray binaries (XRBs), gamma-
ray bursts (GRBs), and active galactic nuclei (AGNs).
Several theoretical models have been developed to un-
derstand the nature of these accretion phenomena. The
standard thin accretion disk model, introduced by [1],
assumes efficient radiative cooling, where energy gener-
ated by viscous dissipation is immediately radiated away
from the system, allowing the disk to remain cool. This
yields a geometrically thin and optically thick disk. In
contrast, the radiatively inefficient accretion flow (RIAF)
model indicates that most of the energy generated is
retained within the gas and is advected inward with
the flow, rather than being radiated away. The RIAF
can be categorized on the basis of mass accretion rate
and optical depth. At a very high accretion rate, the
flow becomes optically thick, and photons are trapped
within the gas, leading to a radiatively inefficient state
described by the ‘slim accretion disk model’ [2]. Con-
versely, at low accretion rate, the flow becomes optically
thin and radiative cooling becomes inefficient, leading to
an advection-dominated accretion flow (ADAF) [3, 4].
The ADAF model has successfully explained various ob-
servational features of low-luminosity active galactic nu-
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clei (LLAGNs) and black hole X-ray binaries (BH-XRBs)
[5–13].

Indeed, an intriguing aspect of advective accretion pro-
cess is the presence of winds and outflows in LLAGNs and
XRBs [14–17]. These outflows seem to arise because of
various physical mechanisms, including excess gas pres-
sure, centrifugal forces, magnetic pressure, and radiation
pressure [18–23]. Recent study [24] has demonstrated
that magnetized disks surrounding rapidly rotating black
holes can efficiently eject matter from the disk in the form
of outflows.

In low-density advective accretion flows, the electron
mean free path is significantly larger than the size of the
disk, rendering the plasma to remain collisionless [25, 26].
In this scenario, thermal conduction plays a vital role
in transporting energy from the hot inner region to the
cooler outer region, thereby significantly influencing the
thermodynamic properties of the accretion flows. Mean-
while, several studies have investigated the effects of ther-
mal conduction on accretion flows [25–34]. Notably, [26]
proposed that thermal conduction can aid in launching
outflows, while [30] demonstrated that it enhances wind
velocity including the increase of energy in manyfold.
Furthermore, [29] found that thermal conduction affects
the geometry of outflows by reducing their opening an-
gle, suggesting that it helps in collimating the outflows.
In a recent attempts, [35, 36] demonstrated that thermal
conduction enhances jet efficiency with faster and colli-
mated mass ejection. All these findings evidently indicate
that thermal conduction seems to play a crucial role in
ejecting matter from the accretion disk.

Accretion flows onto black holes exhibit complex dy-
namical behavior. Matter starting from large distances
with negligible speed gains radial velocity, and eventually
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crosses the event horizon at the speed of light. There-
fore, to meet the event horizon condition, any black hole
solution must make smooth sonic state transition from
subsonic to supersonic at the critical point. Depending
on the initial conditions, the flow may have either a sin-
gle or multiple critical points. The presence of multiple
critical points is potentially necessary, as it can lead to
shock transitions.

As the rotating matter accretes inward, it experiences
centrifugal repulsion, which slows down the flow and
leads to the accumulation of matter around the black
hole. At its threshold, this repulsion triggers a shock
transition when the shock conditions are favorable [37].
The shock causes a sudden compression of matter, form-
ing a hot, dense post-shock corona (PSC) that acts as an
effective boundary layer surrounding the black hole and
emitting high-energy radiation. In the PSC, an excess
thermal gradient force develops, deflecting a part of the
infalling matter in the vertical direction as bipolar out-
flows or jets. This compelling mass loss mechanism from
the accretion disk has also been validated by numerical
studies [38–43]. Subsequently, several theoretical stud-
ies have explored various complexities of this process in
recent years [20, 24, 44–50]. However, the role of ther-
mal conduction in generating outflows from the shocked
accretion flow remains unexplored.

Motivated by this, we extend our previous work [24],
and study the accretion-ejection mechanism in a low an-
gular momentum, viscous, advective, magnetized accre-
tion disk, incorporating the effects of thermal conduction.
We consider accretion flow predominantly threaded by
toroidal magnetic fields [51] and adopt an effective po-
tential to mimic the space-time around a rotating black
holes [52]. We self-consistently solve the coupled inflow
and outflow equations around the rotating black hole of
spin ak and quantify the mass outflow rate (Rṁ) in terms
of inflow parameters, namely conduction parameter (Υs),
energy (E), angular momentum (λ), and plasma-β (mea-
sure of magnetic fields strength). Our findings indicate
that thermal conduction significantly influences Rṁ; as
thermal conduction increases, so does the outflow rate.
Furthermore, we calculate the maximum outflow rate
(Rmax

ṁ ) by freely varying the model parameters and ob-
serve that Rmax

ṁ remains higher for a rapidly rotating
black hole (ak = 0.99) compared to a non-rotating black
hole (ak = 0.0). Finally, we discuss the implications of
our findings in the context of jet kinetic power observed
in low luminosity AGNs (LLAGNs).

The paper is structured as follows. In Section II, we de-
scribe the model assumptions and governing equations.
We present the obtained results in Section III. In Sec-
tion IV, we discuss the observational implication of the
present formalism for LLAGNs. Finally, we summarize
our findings in Section V.

II. ASSUMPTIONS AND GOVERNING
EQUATIONS

We consider an axisymmetric disk-jet system around a
rotating BH in the steady state. Specifically, we assume
that the disk is confined around the equatorial plane
where the accretion occurs, and the jet geometry aligns
with the BH rotational axis. Here, we use cylindrical
coordinate system (x, φ, z) with the BH located at ori-
gin, and z = 0 defines the equatorial plane. Further, to
express all the governing equations, we choose the geo-
metrical unit system where the mass of the black hole
(MBH), universal gravitational constant (G), and speed
of light (c) are chosen as unity (MBH = G = c = 1).
In this system, length, angular momentum, and specific
energy are expressed in the units of GMBH/c

2, GMBH/c,
and c2, respectively.

A. Governing equations for accretion

We begin with a low angular momentum, viscous,
magnetized, advective accretion flow around a rotating
BH, incorporating thermal conduction as the heat trans-
fer mechanism. To model the magnetic field structure,
we refer to numerical simulations [53–55], which demon-
strate that the magnetic fields inside the disk are turbu-
lent in nature and primarily dominated by the toroidal
component. Following these simulation works, the total
magnetic fields can be decomposed into mean field, B
= (0, 〈Bφ〉, 0) and fluctuating field, δB = (δBx, δBφ,
δBz). Here, ‘〈 〉’ corresponds to the azimuthal average.
Upon azimuthal averaging, we assume that the fluctuat-
ing terms vanish (〈δB〉 = 0). Therefore, the azimuthal
component becomes dominant over the radial and ver-
tical component, i.e, |〈Bφ〉 + δBφ| >> |δBx| and |δBz|.
This ultimately leads to the azimuthally averaged mag-

netic field as 〈B〉 = φ̂ 〈Bφ〉 [51]. Further, to account
for general relativistic effect, we adopt the recently in-
troduced pseudo-potential [52], which satisfactorily repli-
cates the space-time geometry around a rotating BH. The
effective potential at the disk equatorial plane is given by,

Ψeff
e =

1

2
ln

[
x∆

x3 + (ak + λ)(ak − λ)x+ 2(ak + λ)2

]
, (1)

where λ is the local specific angular momentum of inflow,
ak is the spin parameter of BH, and ∆ = x2 − 2x + a2

k.
Based on the above considerations, the governing mag-
netohydrodynamic (MHD) equations [56–58] describing
the motion of the accretion flow are as follows:

(a) The radial momentum equation:

v
dv

dx
+

1

ρ

dP

dx
+
dΨeff

e

dx
+
〈B2

φ〉
4πxρ

= 0, (2)

Here, x, v, and ρ represent the radial distance, radial ve-
locity, and mass density, respectively. The total isotropic
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pressure P combines both gas pressure (Pgas) and
magnetic pressure (Pmag), such that P = Pgas + Pmag.
For simplicity, we consider that ions are predominantly
protons, and the electron number density (ne) equals
the ion number density (np), leading to ne = np.
Subsequently, assuming a single temperature for both
ions and electrons, we express Pgas = 2ρΘ/τ , where
τ = 1 +mp/me and Θ is the dimensionless temperature
given as Θ = kBT/mec

2. Here, kB is the Boltzmann
constant, T is the temperature in Kelvin, and me and mp

are the electron and proton masses, respectively. Fur-

ther, the magnetic pressure is obtained as Pmag =
〈B2

φ〉
8π ,

where 〈B2
φ〉 denotes the azimuthal average of the square

of toroidal component of the magnetic fields. We define
the plasma-β as the ratio of gas pressure to magnetic
pressure, given by β = Pgas/Pmag, and estimate the
magnetic strength as 〈B2

φ〉 = 8πPgas/β.

(b) The mass conservation equation:

Ṁ = 2πvΣ
√

∆ , (3)

Here, Ṁ denotes the mass accretion rate, which remains
constant everywhere except the region of mass loss, and
Σ refers to the vertically averaged surface mass density
of the accreting matter [59]. Here, Σ = 2ρH, where H
denotes the local half thickness of the disk. Following
[60, 61], we estimate H as,

H =

√
Px3

ρF , F =
1

(1− λΩ)
× (r2 + a2

k)2 + 2∆a2
k

(x2 + a2
k)2 − 2∆a2

k

, (4)

where Ω being the angular velocity of the flow and is
given by, Ω = (2ak + λ(x− 2))/(a2

k(x+ 2)− 2akλ+ x3).

(c) The azimuthal momentum equation:

v
dλ

dx
+

1

Σx

d

dx
(x2Txφ) = 0, (5)

In equation (5), we consider that the vertically integrated
total stress is dominated by the xφ-component of the
Maxwell stress (Txφ) over the other components. Follow-
ing [54], we calculate Txφ in presence of significant radial
motion of the accreting matter as [62],

Txφ =
〈BxBφ〉

4π
H = −αB(W + Σv2), (6)

where W (= 2PH) is the vertically integrated total
pressure [59], and αB (ratio of Maxwell stress to the total
pressure) is the constant of proportionality commonly
known as viscosity parameter.

(d) The entropy generation equation:

vΣ

Γ− 1

(
1

ρ

dPgas

dx
− ΓPgas

ρ2

dρ

dx

)
= Q−−Q+−Qcond, (7)

where Γ is the adiabatic index, and Q+ and Q− are the
vertically integrated heating and cooling rates, respec-
tively. Meanwhile, numerical simulation studies suggest
that the flow is heated because of the thermalization of
magnetic energy through the magnetic reconnection pro-
cess [53, 54]. Following this, the heating rate is calculated
as,

Q+ =
〈BxBφ〉

4π
xH

dΩ

dx
= −αB

(
W + Σv2

)
x
dΩ

dx
. (8)

In equation (7), Qcond accounts for the energy transfer
resulting from saturated thermal conduction in collision-
less plasmas. In reality, at low accretion rates, the elec-
tron mean free path becomes significantly larger than the
length scale of the accretion flow, allowing the plasma to
be treated as collisionless [26]. Based on this, Qcond is
given by [63],

Qcond = −2H

x

d(xFs)

dx
, (9)

where Fs represents the saturated conduction flux,

defined as Fs = 5Υsρ
(
Pgas

ρ

)3/2

. Here, Υs is the di-

mensionless saturated conduction parameter (hereafter
conduction parameter) that regulates the effect of
thermal conduction within the disk and it takes values
in the range 0 ≤ Υs < 1. Furthermore, since this study
focuses on radiatively inefficient hot accretion flows
characterized by low accretion rates, we neglect the
cooling effects and set Q− = 0.

(e) Radial advection of the toroidal magnetic flux:

∂〈Bφ〉φ̂
∂t

= ∇×
(
~v × 〈Bφ〉φ̂−

4π

c
η~j

)
. (10)

Here, ~v is the velocity vector, η denotes the resistivity and

the current density ~j is given by ~j = c(∇ × 〈Bφ〉φ̂)/4π.
Generally, the Reynold number for accretion disk is very
high due to its large extent, and therefore, we neglect the
magnetic diffusion term. Further, we ignore the dynamo
term in this work. Finally, after taking the vertical av-
erage of the obtained equation with the condition that
the azimuthally averaged magnetic field vanishes at the
disk surface, we obtain the advection rate of the toroidal
magnetic flux as [51],

Φ̇B = −
√

4πvHB(x, z = 0), (11)

where B(x, z = 0) represents the azimuthally averaged
toroidal magnetic field confined on the disk equatorial
plane. In a realistic scenario, Φ̇B does not remain con-
stant but rather varies with x due to the influence of the
dynamo and magnetic diffusion terms. However, incorpo-
rating these effects is highly complex and falls outside the
scope of this paper. Hence, following the work of [54] in

the quasi-steady state, we have, Φ̇B ∝ 1/x. This approx-
imation eventually captures the basic governing behavior
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of the advection of magnetic flux while avoiding the in-
tricacies introduced by additional physical processes.

We close the governing equations (2 - 10) of the accre-
tion flow using an equation of state (EoS). In reality, the
flow is thermally non-relativistic (Γ = 5/3) at the outer
regions, while it becomes thermally relativistic (Γ = 4/3)
at the vicinity of the black hole [64]. Hence, a constant Γ
would not accurately describe the thermal variations of
the accretion flow. Instead, it is more appropriate to com-
pute Γ self-consistently based on the disk temperature.
Keeping this in mind, we adopt a relativistic equation of
state (REoS), which is given by [65],

ε =
ρ

τ
f, (12)

where ε denotes the internal energy of the flow and f is
defined in terms of the temperature as,

f =

[
1 + Θ

(
9Θ + 3

3Θ + 2

)]
+

[
mp

me
+ Θ

(
9Θme + 3mp

3Θme + 2mp

)]
.

(13)

With this REoS, we calculate the polytropic index N =
1
2
df
dΘ , adiabatic index Γ = 1 + 1

N , and sound speed C2
s =

ΓPgas/(ε+ Pgas) [58].
Using equations (2 - 7), (11) and (12) and after some

simple algebra, we obtain the wind equation which is
given by,

dv

dx
=
N (x, v,Θ, λ, β)

D(x, v,Θ, λ, β)
, (14)

where numerator (N ) and denominator (D) are the ex-
plicit functions of the flow variables, which are detailed
in Appendix A. Utilizing equation (14), we obtain the
derivatives of Θ, λ and β as,

dΘ

dx
= Θ0 + Θv

dv

dx
, (15)

dλ

dx
= λ0 + λv

dv

dx
, (16)

dβ

dx
= β0 + βv

dv

dx
, (17)

where the coefficients Θ0, Θv, λ0, λv, β0, and βv are the
explicit function of flow variables and given in Appendix
A.

In the accretion process, a subsonic flow at the outer
edge (xedge) of the disk gradually picks up speed and
ultimately crosses the event horizon at light speed be-
fore plunging into the black hole. To meet the inner
boundary condition, an accretion solution around a black
hole must pass through at least one critical point (xc),
where the sonic transition takes place. At xc, both N
and D vanish simultaneously (i.e., N = 0 and D = 0)

and hence the gradient of radial velocity takes the form
dv
dx |xc = 0

0 . Since the flow remains smooth everywhere

during its journey, the value of dv
dx must be real and fi-

nite all throughout. Therefore, we apply l’Hôpital’s rule

at xc to calculate (dv/dx)xc
= (dN/dxdD/dx )|xc

. In general,

we get two values of (dv/dx) at xc. For a physically ac-
ceptable accretion solution, the flow necessarily passes
through a saddle-type critical point, where both values
of (dv/dx)xc are real and of opposite sign [66, 67]. Inter-
estingly, depending on the inflow parameters, a flow can
possess multiple critical points. The critical point closest
to the black hole is referred to as the inner critical point
(xin), while the furthest one is called the outer critical
point (xout) [67–70]. In this work, we we consider αB,
Υs, and ak as global parameters, while boundary values
of λ and β at xc are treated as local parameters. Us-
ing these input parameters, we perform the critical point
analysis at xc and determine the velocity vc and tem-
perature Θc of the inflowing matter. Utilizing vc and
Θc, we integrate equations (14-17) from xc inward up to
the event horizon (xh) and then outward up to the outer
edge (xedge) of the disk. Finally, we join these two parts
to obtain the complete global transonic accretion solu-
tion. Needless to say, the global solution allows us to
determine the inflow variables at the outer edge of the
disk at the xedge, namely Eedge, λedge, and βedge [24, ref-
erences therein]. It is essential to emphasize that these
inflow variables at xedge yield identical global transonic
solutions when one integrates equations (14-17) from the
outer edge. Furthermore, utilizing the local inflow vari-
ables, we approximate the local flow energy in the weak

field limit as E ∼ v2/2+C2
s /(Γ−1)+

〈
B2
φ

〉
/(4πρ)+Ψeff

e

.

B. Governing equations for outflows

The complex interaction between accretion and ejec-
tion near black holes provides insights into mass loss
activities, and hence we assume that outflows originate
from the accretion disk and move along the black hole
rotation axis. As a part of the inflowing matter deflects
as outflows, leading to mass loss from the system, these
outflows remain tenuous in nature. Because of this, we
disregard the differential rotation and neglect viscosity
in the outflows. In addition, as the toroidal component
of the magnetic field is assumed to be dominant and the
matter is being ejected vertically, we neglect the magnetic
fields within the outflows for simplicity. Furthermore, we
adopt the polytropic equation of state, Pj = Kjρ

Γ
j , where

the subscript ‘j’ represents jet variables, Kj measures the
entropy of the outflowing matter and Γ is the adiabatic
index which is determined based on temperature using
the REoS (equation 12, 13). Based on these considera-
tions, the governing equations for outflows are as follows:
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(I) The energy conservation:

Ej =
1

2
v2

j + C2
sj/(Γ− 1) + Ψeff , (18)

and (II) the mass conservation:

Ṁout = ρjvjAj. (19)

In equation (18), Ej, vj denote energy and velocity of

the outflows, and Csj (=
√

ΓPj/ρj) is the sound speed

of the outflowing matter. Here, Ψeff refers the effective
potential and is given by [52] ,

Ψeff =
1

2
ln

x2
j (2Yrj − 4a2

kx
2
j − YZ)

Z[−Yx2
j + 4akλjrjx2

j + λ2
j r

2
j (Z − 2rj)]

,

(20)

where Y = (r2
j + a2

k)2 − ∆a2
k(xj/rj)

2, Z =

r2
j + a2

k

(
1− (xj/rj)

2
)

and rj

(
=
√
x2

j + z2
j

)
is the spher-

ical radius of outflow [24]. In equation (19), Ṁout is the
outflowing mass rate and Aj is the area function. In this
work, we adopt a jet geometry where the outflowing mat-
ter is confined between two boundaries, namely centrifu-
gal wall (CB) and funnel wall (FW) [24, 39, 47, 71]. The

CB is defined as
(
dΨeff

dx

)
rCB

= 0 and the radius of fun-

nel wall is determined using Ψeff |rFW
= 0. Subsequently,

the jet coordinates are defined as, xj = (xCB + xFW)/2
and zj = zCB = zFW . With this, we calculate the

area function as A = 2π(x2
CB − x2

FW)/
√

1 + (dxj/dzj)2,

where
√

1 + (dxj/dzj)2 represents the projection factor
[72]. Similar to accretion, we carry out the critical point
analysis and obtain the outflow velocity (vjc) at the out-
flow critical point (rjc) from the critical point conditions
as [20, 24],

vjc =

√√√√(dΨeff

dr

)
rjc

[
1

Aj

(Aj

dr

)
rjc

]−1

, (21)

where the subscript ‘jc’ indicates the jet quantities at rjc

along with r = rCB. Using equation (21), the outflow
temperature at rjc is determined by numerically solving
the following equation:√

Θjc

N

[ d

dΘj

(
NC2

sj

) ]
Θjc

= vjc. (22)

Employing vjc and Θjc, we solve the jet equations (18,
19) and uniquely obtain the outflow solutions for a given
set of Ej and λj. In this formalism, outflows are consid-
ered to be originated from the PSC region, and hence, in
the next section, we outline the methodology for solving
the governing equations of accretion and outflows self-
consistently incorporating Rankine-Hugoniot conditions
[37] for shock in inflowing matter.

C. Disk-jet connection

During the accretion process, matter experiences two
opposing forces, namely the gravitational pull and cen-
trifugal repulsion. When these forces become comparable
at the vicinity of the black hole, the supersonic inflow de-
celerates causing matter to accumulate. However, this ac-
cumulation does not continue indefinitely, instead, once a
critical threshold is reached, centrifugal repulsion triggers
a shock transition [64]. The resulting shock compression
makes the post-shock flow — also known as the post-
shock corona (PSC) — dense and hot, forming a puffed-
up, torus-like effective boundary around the black hole.
The excess thermal gradient force across the shock front
then drives a fraction of the infalling matter vertically
outward as bipolar outflows. Since this ejection mech-
anism is linked to the accretion process through shock
formation, we apply shock conditions to solve the inflow
and outflow equations. In presence of mass loss, the shock
conditions [20, 37, 57] are as follows: (a) the mass conser-

vation Ṁ+ = Ṁ−− Ṁout = Ṁ−(1−Rṁ), (b) the energy
conservation: E+ = E−, (c) the momentum conservation:
W+ + Σ+v

2
+ = W− + Σ−v

2
−, and (d) the magnetic flux

conservation Φ̇+ = Φ̇−. Here, Rṁ (= Ṁout/Ṁ−) is the
outflow rate, and the symbols ‘+’ and ‘−’ refer the quan-
tities immediately after and before the shock transition.

In this work, since outflows are assumed to be origi-
nated from PSC, we consider the matter to eject with
the same density as the post shock flow, i.e, ρj = ρ+.
Based on this consideration, we compute the mass out-
flow rate Rṁ which is given by,

Rṁ =
(Σ+

Σ−

) vjbAjb

4πv−H+

√
∆
, (23)

where vjb and Ajb represent the outflow speed and area
function of outflow at the jet base (equivalently shock lo-
cation), respectively. To solve the coupled inflow-outflow
system self-consistently, we employ the successive itera-
tion method [20, 46]. We begin with Rṁ = 0 and de-
termine the virtual shock location (x̃s), along with the
corresponding inflow properties across the shock front.
We use Ej = E(x̃s), λj = λ(x̃s) and compute the jet criti-
cal point (rjc) using equation (18, 21 and 22), vjc and Θjc.
We employ the outflow variables at the critical point and
solve equations 18 and 19 from rjc towards BH, up to the
shock location as it is considered as the jet base. Utiliz-
ing the inflow and outflow variables across the shock, we
determined R̃ṁ using equation (23). Next, we use R̃ṁ to
calculate the updated shock location following the above
method. We continue the iteration till the shock loca-
tion converges and with this, we finally obtain Rṁ. We
discuss the properties of Rṁ in the presence of thermal
conduction, in the subsequent sections.
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FIG. 1: Variation of mass outflow rate (Rṁ) as a function of
conduction parameter (Υs) for different λedge values, consid-
ering inflow injected from xedge = 1000. Panels (a) and (b)
depict results for ak = 0.0 and 0.99, respectively. In (a), we
set αB = 0.001, Eedge = 2 × 10−4, and βedge = 105, with
λedge = 3.20 (circle), 3.23 (diamond), and 3.26 (asterisk). In
(b), αB = 0.001, Eedge = 1.2×10−3, and λedge = 2.02 (circle),
2.04 (diamond), and 2.06 (asterisk). See the text for details.

III. RESULTS

We present our numerical results of mass outflow rate
(Rṁ) around both weakly rotating (ak → 0) and rapidly
rotating (ak = 0.99) black holes. In Fig.1, we de-
pict the variation of Rṁ with Υs for flows with a fixed
outer boundary. In Fig.1a, we inject matter around non-
rotating black hole (ak = 0) from the outer edge of the
disk at xedge = 1000 with Eedge = 2.0×10−4, αB = 0.001
and βedge = 105. The dotted, dashed, and solid lines
connecting the circles (green), diamonds (blue), and as-
terisks (red) are obtained for λedge = 3.20, 3.23, and 3.26,
respectively. We observe that for a given λedge, Rṁ in-
creases with the increase of Υs, which is consistent with
the prediction of [26, 35]. Indeed, for a set of inflow pa-
rameters, increasing Υs boosts the thermal pressure that
eventually pushes the shock front outwards, thereby in-
flating the size of PSC [34]. As a result, the jet launching
area increases. In addition, increased thermal conduc-
tion raises the local energy (E) of the inflowing matter
(see Fig 6 in Appendix B), which in turn increases the
flow energy across the shock front (xs). Overall, a higher
Υs enhances the jet energy, providing a stronger driving
force that ejects matter at a higher velocity leading to an
enhanced outflow rate (Rṁ). On contrary, for a fixed Υs,
Rṁ increases with λedge. This finding is not surprising
because higher inflow angular momentum yields stronger
centrifugal barrier, causing the shock to form at a larger
radius, and hence, the size of PSC increases. Conse-
quently, more of the inflowing material is deflected at the
enhanced jet base, leading to an increase in the outflow
rate (Rṁ). Next, in Fig.1b, we choose Eedge = 1.2×10−3,
αB = 0.001, βedge = 105 and inject matter around rapidly
rotating black hole (ak = 0.99) with different λedge. Cir-
cles (green), diamonds (blue) and asterisks (red) joined

0 0.002 0.004 0.006
ϒs

0.10

0.11

0.12

R
ṁ

(a)

Eedge = 4×10−4
Eedge = 3×10−4
Eedge = 2×10−4

ak = 0.00

0 0.002 0.004
ϒs

0.07

0.08

0.09

R
ṁ

(b)

Eedge = 8.0×10−4

Eedge = 1.0×10−3

Eedge = 1.2×10−3

ak = 0.99

FIG. 2: Variation of Rṁ with Υs for a set of inflow energy
Eedge. In panel (a), we choose ak = 0.0, and inject matter from
xedge = 1000 with λedge = 3.20 and βedge = 105 and αB =
0.001. Circles, diamonds and asterisks joined with dotted
(green), dashed (blue) and solid (red) lines denote results for
Eedge = 0.0002, 0.0003, and 0.0004, respectively. In panel (b),
we set ak = 0.99 and αB = 0.001, and fix λedge = 2.02, and
βedge = 105 at xedge = 1000. Circles, diamonds, and asterisks
connected with dotted (green), dashed (blue), and solid (red)
lines represent result for Eedge = 8.0× 10−4, 1.0× 10−3, and
1.2× 10−3, respectively. See the text for details.

with dotted, dashed and solid lines represent results for
λedge = 2.02, 2.04, and 2.06, respectively. In general, we
observe a strong correlation between Rṁ and Υs when
λedge held fixed. Moreover, similar to the case of a weakly
rotating black hole, Rṁ remains higher for larger λedge

when Υs is fixed. Interestingly, outflows are generated
from the rapidly rotating black hole even when λedge is
relatively smaller compared to that of a weakly rotating
black hole. This occurs primarily due to the spin-orbit
coupling present in the effective potential of the black
hole spacetime, where the marginally stable angular mo-
mentum strongly anti-correlates with the black hole spin
ak. Furthermore, we observe that for a fixed λedge, mass
loss no longer occurs beyond a limiting value of Υs (say
Υmax

s ), as RHCs are not favorable in that regime. More-
over, Υmax

s decreases with λedge irrespective to ak val-
ues. It is important to note that Υmax

s does not assume
universal values, as it primarily depends on the inflow
parameters.

Next, we put effort to understand the influence of in-
flow energy in determining the mass outflow rate in pres-
ence of thermal conduction. In doing so, we examine
how Rṁ varies with Υs for varied inflow energies. Here,
we inject inflowing matter from the outer boundary at
xedge = 103 with different energy values (Eedge). The ob-
tained results are shown in Fig. 2. In Fig. 2a, we present
the results for non-rotating black hole with inflow param-
eters set to αB = 0.001, λedge = 3.20, and βedge = 105.
Dotted, dashed, and solid lines joining circles (green),
diamonds (blue) and asterisks (red) correspond to the
results obtained for Eedge = 2 × 10−4, 3 × 10−4, and
4 × 10−4, respectively. Similarly, in Fig. 2b, we present
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R
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FIG. 3: Variation of Rṁ as a function of Υs for a set of plasma-
βedge parameter. Panel (a) corresponds to BH spin parameter
ak = 0.0. Here, we choose αB = 0.001 and the other input
parameters fixed at xedge = 1000 are λedge = 3.20 and Eedge =
2× 10−4. Circles, diamonds, and asterisks joined with dotted
(green), dashed (blue), and solid (red) lines represent results
obtained for βedge = 5 × 103, 104 and 105, respectively. In
panel (b), we set ak = 0.99 and αB = 0.001, and inject matter
with λedgee = 2.02, and Eedge = 1.2× 10−3 from xedge = 103.
Circles, diamonds, and asterisks joined with dotted (green),
dashed (blue), and solid (red) lines are for βedge = 5 × 103,
104, and 105, respectively. See the text for details.

the variation of Rṁ with Υs around rapidly rotating black
hole of spin ak = 0.99. Here, we choose αB = 0.001,
λedge = 2.02, and βedge = 105. Results obtained for
Eedge = 8.0×10−4, 1.0×10−3, and 1.2×10−3 are plotted
using circles, diamonds and asterisks joined with dotted,
dashed and solid lines. In both panels, we find that for
a fixed Υs, Rṁ increases with Eedge. This is expected, as
higher Eedge leads to the higher jet driving force resulting
in an increased outflow rate.

We continue our investigation on mass loss as it is in-
triguing to explore the role of magnetic fields in gener-
ating outflows from the accretion disk in the presence
of thermal conduction. To this end, we estimate Rṁ by
varying the plasma β of the inflowing matter. The ob-
tained results are shown in Fig. 3, where the variation of
Rṁ is depicted as a function of Υs for a set of βedge val-
ues. In Fig. 3a, we present the results for a non-rotating
black hole (ak = 0.0), where the inflowing matter is in-
jected from the outer edge of the disk at xedge = 1000
with αB = 0.001, λedge = 3.20, and Eedge = 2 × 10−4.
The circles, diamonds, and asterisks connected by the
dotted (green), dashed (blue), and solid (red) lines de-
note results obtained for βedge = 5 × 103, 104, and 105,
respectively. Similarly, in Fig. 3b, we set ak = 0.99 and
fix αB = 0.001, λedge = 2.02, and Eedge = 1.2 × 10−3

for inflowing matter injected from xedge = 1000. The cir-
cles, diamonds, and asterisks joined using dotted (green),
dashed (blue), and solid (red) lines are for βedge = 5×103,
104, and 105, respectively. From the figure, it is evident
that Rṁ generally increases with Υs regardless of the
strength of the disk magnetic fields (βedge) for both non-

0 0.0025 0.005 0.0075 0.01
ϒs

0.19

0.21

0.23

0.25

R
m

ax
ṁ

ak = 0.00

ak = 0.99

FIG. 4: Variation of maximum outflow rate Rmax
ṁ with the

conduction parameter Υs. Circles joined using solid (red) and
dashed (blue) lines denote results corresponding to ak = 0.0
and 0.99, respectively. Here, we choose βin = 100, and αB =
0.01. See the text for details.

rotating and rapidly rotating black hole cases. Moreover,
for a fixed value of Υs, a higher βedge leads to an increased
mass loss from the magnetized disk. As the magnetic
field strength increases, it enhances angular momentum
transport, causing the shock to settle down at a smaller
radius. Because of this, the inflow energy at PSC in-
creases that strengthens the jet-driving leading to more
mass loss. It is worth noting that for rapidly rotating
black hole (ak = 0.99), the influence of the plasma-β pa-
rameter on Rṁ is more pronounced at relatively lower Υs

values, while Rṁ tends converge at limiting Υs values.
Overall, we find that Rṁ dynamically scales with

Υs across inflows with different Eedge, λedge, and βedge.
These results clearly highlight the pivotal role of energy,
angular momentum, and magnetic fields in governing
mass loss from the magnetized disk around both weakly
as well as rapidly rotating black holes.

Finally, we put efforts to estimate the maximum mass
outflow rate (Rmax

ṁ ) from the magnetized accretion disk.
To achieve this, we compute Rmax

ṁ as a function of Υs for
two extreme cases of BH spin: a non-rotating black hole
(ak = 0.0) and a rapidly rotating black hole (ak = 0.99).
Here, we set αB = 0.01 and fix the plasma-β at the inner
critical point (xin) as βin = 100, while allowing the energy
(Ein) and angular momentum (λin) at xin to vary freely.
The obtained results are presented in Fig. 4, where circles
connected by solid (red) and dashed (blue) lines repre-
senting results for non-rotating (ak = 0.0) and rapidly
rotating (ak = 0.99) black holes, respectively. Our find-
ings clearly reveal that higher ak drives stronger outflows
regardless of the conduction parameter (Υs), which re-
main consistent with the results reported earlier in weak
thermal conduction limit [24]. Interestingly, for a fixed
ak, Rmax

ṁ initially increases with Υs, however eventu-
ally tends to saturate. Furthermore, we note that for
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a rapidly rotating BH with ak = 0.99, Rmax
ṁ peaks at an

impressive 25%. These results indeed suggest that accre-
tion flows around rapidly spinning black holes with higher
thermal conduction are significantly more susceptible to
mass loss.

Until now, we have explored how inflow parameters
(Υ, E , λ, β) and black hole spin (ak) influence the out-
flow dynamics. Now, it is intriguing to examine how this
theoretical framework connects to the powerful radio jets
frequently observed in active galactic nuclei. In the fol-
lowing section, we extend this accretion-ejection formal-
ism to quantify radio jet power using the mass outflow
rate (Rṁ) for low-luminosity AGNs (LLAGNs).

IV. ASTROPHYSICAL IMPLICATIONS

In this section, we compare the predictions of our
theoretical model with the observational findings. Our
present formalism is based on the premise that the disk
is radiatively inefficient and shows jet activity. Thus, this
model can be suitable for explaining the radio loud low
luminosity AGNs (LLAGNs). To start with, we follow
the LLAGNs catalog from [73] (hereafter L19), which in-
cludes total 14, 585 AGNs observed from SDSS DR7 at
redshift factor, z′ < 0.35 and BH masses ranging from
105.1 − 1010.3M�. To identify the radio counterpart of
the sources, we cross-match the L19 catalogue with 1.4
GHz FIRST survey [74] using a search radius of 2 arcsec.
Subsequently, we find that 11.7 percent AGNs of the L19
catalog were detected in radio frequencies. Thereafter, to
identify the radio loud AGNs, we compute radio loudness
parameter R, which is defined as the ratio of 1.4 GHz ra-
dio flux to the optical g-band flux, and set the condition
R > 19 [75] for categorizing the sources as radio loud.
Based on these criteria, we finally select a sample of 68
radio-loud LLAGNs that exhibit quasi-simultaneous X-
ray and radio observations.

Using the radio flux (Fν , ν is the radio frequency) pro-
vided by FIRST catalog at 1.4 GHz, we estimate the
radio luminosity L1.4 (in Watt Hz−1) as,

L1.4 = 4π × 10−7 D2
L

(1 + z′)1+α
× F1.4, (24)

where DL represents the luminosity distance and α is the
spectral index. Here, we set α = −0.8 [76] considering
Fν ∝ να for the computation. Next, we estimate the
radio luminosity LR (in erg s−1) at 5 GHz utilizing L1.4

in the adopted relation given by [77],

logLR = (20.9± 2.1) + (0.77± 0.08) logL1.4. (25)

We observe that LR varies within 1036.91−1039.66 erg s−1

for selected AGNs under considerations. Following [78–
80], we estimate the jet power (Lobs

jet ) from the observed
radio luminosity LR as

Lobs
jet ∝ L12/17

R . (26)

Meanwhile, [81] established the relationship between the
jet power and the observed jet luminosity, which is given
by,

Lobs
jet =W0

(LR

L0

)12/17

, (27)

where L0 = 1.6 × 1030 erg s−1 and W0 is the normaliza-
tion of the kinetic jet power to observed radio luminosity.
Considering W0 ∼ 6.2 × 1037 erg s−1 for AGNs [81], we
coarsely express the jet power as,

Lobs
jet = 2.96× 1016L

12/17
R . (28)

Further, X-ray luminosity (Lx) for the same sample of
AGNs is calculated in 0.2 − 12 keV energy range from
XMM−Newton data [82], which spans in the range of
1040.99 − 1045.02 erg s−1. Using Lx, we estimate the ac-
cretion power as Ṁc2 = Lx/ηacc, where ηacc denotes the
accretion efficiency factor. Since the spin measurements
of supermassive black holes (SMBHs) in these AGNs are
not well constrained, we adopt a maximum efficiency of
ηacc = 0.3 in this study [83]. Thereafter, we employ the
accretion-ejection model formalism to calculate the max-
imum kinetic jet power [24, 47, 84] using maximum mass
outflow rate Rmax

ṁ as

Lmax
jet = Rmax

ṁ × Ṁ × c2 erg s−1. (29)

It is indeed evident that the maximum outflow rate de-
pends on the black hole spin, and the present formalism
yields Rmax

ṁ ' 0.25 (0.22) for ak = 0.99 (0.0) (see Fig.
4). Therefore, to compute Lmax

jet in terms of the accretion
power, we adopt Rmax

ṁ ' 0.25 for the purpose of repre-
sentation without loosing the generality. Subsequently,
in Fig. 5, we compare the observed jet power (Lobs

jet ) with
the theoretically estimated maximum jet kinetic power
Lmax

jet . The open circles represent the observed jet power
for the radio-loud LLAGNs under consideration, while
the solid (red) line indicates the upper limit of the theo-
retical prediction for jet kinetic power. It is evident that
a substantial number of LLAGNs fall below the theoret-
ical limit, suggesting that the current accretion-ejection
model formalism effectively accounts for the jet kinetic
power.

It is important to note that in this work, jets are as-
sumed to originate from the accretion disk, making the
model particularly applicable when the jet power is less
than the accretion power, i.e., Lmax

jet /Ṁc2 < 1. However,

a few sources are observed to exceed the line Lmax
jet = Ṁc2

(dotted line in green), suggesting that their jet power sur-
passes the accretion power. Here, we note that estimation
of these observables involve significant uncertainty due to
various unknown factors affecting their calculation. For
these sources, the additional jet energy is likely to be ex-
tracted from the black hole’s rotational energy via the
Blandford-Znajek (BZ) mechanism [85]. Overall, with
the exception of these LLAGNs, our accretion-ejection
model seems to provide a satisfactory explanation for the
observed jet power of LLAGNs under consideration.
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Ṁc2 (erg s−1)

1042

1043

1044

Lob
s

je
t

(e
rg

s−
1 )

L
m

ax
je

t
=

Ṁ
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FIG. 5: Plot of observed jet power Lobs
jet and theoretically ob-

tained maximum jet kinetic power Lmax
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(Ṁc2). Open circles denote Lobs
jet for LLAGNs and solid (red)

line refers the model estimated Lmax
jet . Dotted (green) line rep-

resents equality jet power and accretion power Lmax
jet = Ṁc2.

See the text for details.

V. SUMMARY AND CONCLUSION

In this study, we examine the effect of thermal con-
duction on the mass loss from a low angular momen-
tum, advective, viscous, and magnetized accretion disk
around a rotating black hole, for the first time to the
best of our knowledge. In doing so, we assume the ac-
creting plasma is collisionless and adopt the saturated
form of thermal conduction [63]. In addition, we model
the accretion disk as being threaded with a dominant
toroidal magnetic field component [24, 51, 56, 57]. To
simplify the general relativistic complexities, we adopt a
recently developed effective potential [52] that satisfacto-
rily mimics the space-time around a rotating black hole.
Furthermore, we employ the relativistic equation of state
(REoS) [65] to determine the thermodynamic quantities.
With these assumptions, we solve the coupled governing
equations for both inflow and outflow self-consistently
in terms of the inflow parameters, namely energy, angu-
lar momentum, plasma-β, and the conduction parameter.
We summarize the key findings of this study below:

• Using the global inflow-outflow solution, we com-
pute the mass outflow rate (Rṁ) from the magne-
tized disk in presence of thermal conduction. We
find that mass loss continues to happen for wide
range of the inflow parameters for both weakly ro-
tating (ak → 0) and rapidly rotating (ak → 0.99)
black holes.

• We observe that thermal conduction enhances mass
loss from the magnetized disk, with Rṁ increasing
as the conduction parameter Υs rises, irrespective
of the black hole spin values. We also notice that
for a fixed Υs, Rṁ increases as the energy, angular
momentum, and magnetic field strength of the in-

flowing matter increase. However, mass loss ceases
beyond a limiting value of Υs as RHCs for shocks
in inflowing matter becomes unfavorable (see Fig.
1,2 and 3).

• We compute the maximum mass outflow rate Rmax
ṁ

as a function of Υs for two extreme black hole spin
parameters, ak = 0.0 and 0.99 (Fig. 4). Our re-
sults reveal that rapidly rotating black holes expel
more mass from the magnetized disk in the form
of outflows compared to the weakly rotating black
holes. More precisely, when thermal conduction is
active within the disk, Rmax

ṁ reaches up to 25%
for ak = 0.99, whereas it remains below 22% for
ak = 0.0 (see Fig. 4).

• Finally, we investigate the implications of our
accretion-ejection formalism in explaining the jet
luminosity (Lobs

jet ) observed from low-luminosity ac-
tive galactic nuclei (LLAGNs). Towards this,
we compare Lobs

jet for 68 radio-loud LLAGNs with
the model-predicted maximum jet kinetic power
(Lmax

jet ), and good agreement is seen for a signifi-
cant number of sources (see Fig. 5).

It is important to mention that the present accretion-
ejection formalism is developed based on few assumptions
and approximations. We adopt an effective potential to
describe the spacetime geometry of the black hole instead
of full-fledged general relativistic calculations. Moreover,
our model considers only the azimuthal component of the
magnetic field in the accretion flow, omitting the poloidal
component and neglecting magnetic fields in the outflow
dynamics. Indeed, all these aspects seem to be relevant
in the context of jet generation, however, their implemen-
tation lies beyond the scope of this study, and we intend
to explore them in future endeavor.

Data Availability

The data underlying this paper will be available with
reasonable request.
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Appendix A: Derivation of the inflow governing
equations

Using equations (3) and (12) in equations (2), (5), (7),
and (11), we get

Rv
dv

dx
+RΘ

dΘ

dx
+Rλ

dλ

dx
+Rβ

dβ

dx
+R0 = 0, (30a)
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Lv
dv

dx
+ LΘ

dΘ

dx
+ Lλ

dλ

dx
+ Lβ

dβ

dx
+ L0 = 0, (30b)

Ev
dv

dx
+ EΘ

dΘ

dx
+ Eλ

dλ

dx
+ Eβ

dβ

dx
+ E0 = 0, (30c)

Bv
dv

dx
+BΘ

dΘ

dx
+Bλ

dλ

dx
+Bβ

dβ

dx
+B0 = 0, (30d)

The coefficients are given as

Rv = v + Tv, RΘ = TΘ, Rλ = Tλ,

Rβ = Tβ , and R0 = T0 + 2tΘ/(βx) + dΨeff
e /dx,

where

t = 2/τ, Tv = − tΘ(β + 1)

vβ
, TΘ =

t(β + 1)

2β
,

Tλ = −
(
β + 1

β

)(
tΘ

2F

)
∂F
∂λ

, Tβ = − tΘ

2β2
,

T0 = −tΘ
(
β + 1

β

)(
1

2∆

d∆

dx

)
+

1

2F
∂F
∂x

.

Lv =
αBxΘt

v

(β + 1

β

)
− αBxv,

LΘ = −αBxt
(β + 1

β

)
,

Lλ = v, Lβ =
αBx

β2
Θt,

L0 =
αB

2β∆

(d∆

dx
x− 4∆

)(
v2β + (1 + β)Θt

)
.

Ev = tΘ +
5Υs(tΘ)3/2

v
,

EΘ = (vt/2 +Nvt)− 5Υst
3/2
√

Θ,

Eλ =
vtΘ

2F
∂F
∂λ
− αB

(
v2 + Θt

β + 1

β

)
x
∂Ω

∂λ

+
5Υs(tΘ)3/2

2

1

F
∂F
∂λ

,

Eβ = − vtΘ

2(1 + β)β
− 5Υs(tΘ)3/2

2β(1 + β)
,

E0 = vtΘ
( 1

2∆

d∆

dx
+

1

2F
∂F
∂x

)
− αB

(
v2 + Θt

β + 1

β

)
x
∂Ω

∂x

+ 5Υs(tΘ)3/2
(
− 1

x
+

1

2∆

d∆

dx
+

1

2F
∂F
∂x

)
.

Bv =
1

2v
, BΘ =

3

4Θ
, Bλ =

1

4F
∂F
∂λ

Bβ = − 1

4β(1 + β)
− 1

2β
, and

B0 =
1

4

( 1

F
∂F
∂x
− 1

∆

d∆

dx
)
)

+
1

x
.

NΘ =RΘBβLλ −RΘBλLβ −RλBβLΘ+

RβBλLΘ −RβBΘLλ +RλBΘLβ ,

Nv =RvBλLβ +RλBβLv +RβBvLλ−
RvBβLλ −RβBλLv −RλBvLβ ,

N0 =R0BλLβ +RλBβL0 +RβB0Lλ−
R0BβLλ −RβBλL0 −RλB0Lβ .

Θv =
(Nv

NΘ

)
, Θ0 =

(N0

NΘ

)
.

b0 =
BλL0 −B0Lλ
BβLλ −BλLβ

, bv =
BλLv −BvLλ
BβLλ −BλLβ

,

bΘ =
BλLΘ −BΘLλ
BβLλ −BλLβ

βv = bΘΘv + bv, β0 = bΘΘ0 + b0.

λv = − 1

Lλ
(LΘΘv + Lββv + Lv)

λ0 = − 1

Lλ
(LΘΘ0 + Lββ0 + L0)

N = −(E0 + Eλλ0 + Eββ0 + EΘΘ0)

D = (Ev + Eλλv + Eββv + EΘΘv)

Appendix-B: Effect of thermal conduction on the
global solutions of inflowing matter

Thermal conduction plays an important role in trans-
ferring heat energy within the accretion disk. Hence, it is
worthy to examine the effect thermal conduction on the
local energy of inflowing matter. In doing so, we choose
ak = 0, and αB = 0.001, and inject matter from the
outer edge of the disk at xedge = 1000 with λedge = 3.20,
Eedge = 2 × 10−4, and βedge = 105, respectively. With
this, we compute the global accretion solution that passes
through the outer critical point at xout = 800.166, con-
necting the outer edge (xedge = 103) to the event hori-
zon (xh) in the absence of thermal conduction (Υs = 0).
Thereafter, we calculate the energy (E) profile of the in-
flow solution. The obtained results are shown in Fig. 6,
where the variation of (a) Mach number (M = v/Cs)
and (b) local energy (E) are plotted as function of ra-
dial coordinate (x). In both panels, the dotted (green)
curve denotes the results for Υs = 0. Next, we gradu-
ally increase Υs while keeping the other inflow parame-
ters fixed for a non-rotating black hole (ak = 0.0) and
obtain the global inflow solutions. The dashed (blue)
and solid (red) curves represent results corresponding to
Υs = 0.0025, and 0.005, respectively. The respective
outer critical points are located at xout = 788.559 and
774.200, respectively. Evidently, thermal conduction in-
fluences the global accretion solutions, leading to an in-
crease in the local energy of the flow.
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FIG. 6: Variation of (a) Mach number (M = v/Cs) and (b)
energy (E) of the inflowing matter with radial distance (x)
for Υs = 0.0 (green), 0.0025 (blue) and 0.005 (red). Here, we
choose ak = 0, αB = 0.001, and fix the input parameters at
xedge = 1000 as λedge = 3.20, Eedge = 2 × 10−4, and βedge =
105. See the text for details.
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