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We study low angular momentum, advective accretion flows around a Kerr black hole within
the framework of general relativistic magnetohydrodynamics (GRMHD) in the steady state. By
solving the full set of GRMHD equations, we aim to provide a comprehensive understanding of the
behavior of magnetized plasma in the strong gravity regime near a rotating black hole. The accretion
solutions are obtained for a set of input parameters, namely energy (E), angular momentum (L),
magnetic flux (Φ), and isorotation parameter (I). By systematically varying these parameters, we
generate a family of global GRMHD accretion solutions that characterize the physical environment
around the black hole. Using this approach, we investigate whether the inferred magnetic field
strengths reported by the Event Horizon Telescope (EHT) for Sagittarius A∗ at various radii can
be reproduced. We find that, for a broad range of parameter values, our model successfully recovers
the EHT inferred magnetic field strengths with an accuracy of approximately 10%, offering a self-
consistent framework for interpreting near-horizon accretion physics.

PACS numbers: 95.30.Lz,97.10.Gz,97.60.Lf

I. INTRODUCTION

Black holes, a remarkable prediction of Einstein’s the-
ory of general relativity [1], are regions of spacetime
where gravity is so extreme that nothing—not even
light—can escape their grasp. Although they cannot be
observed directly, a variety of powerful indirect meth-
ods have been developed to investigate their properties.
These include the observation of black hole shadows [2–
4], electromagnetic emissions such as X-rays and radio
waves [5–8], and the detection of gravitational waves
[9, 10]. Supermassive black holes (MBH > 105M⊙)
are believed to power quasars and reside at the cen-
ters of galaxies, while stellar-mass black holes (MBH ∼
2–102M⊙) are typically found in X-ray binary systems.
The radiation observed from these objects arises from the
conversion of gravitational potential energy into electro-
magnetic energy as matter accretes onto the black hole.

One of the most striking observational signatures of
a black hole is its shadow: a dark central region encir-
cled by a bright ring, caused by the bending of light in
the intense gravitational field. The source of this light is
thought to be the accretion flow—a disk of hot, infalling
matter surrounding the black hole—which plays a cen-
tral role in shaping the observed shadow [3, 11–16]. In
supermassive systems, accretion typically proceeds at low
rates, producing hot, radiatively inefficient flows, whereas
stellar-mass black holes often accrete matter transferred
from a companion star. Understanding the physics of
accretion is therefore essential for interpreting the black
hole observations and for probing the nature of these ex-
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treme astrophysical environments.

Magnetic fields are ubiquitous in astrophysical environ-
ments and are expected to play a pivotal role in shaping
the dynamics and observational signatures of accretion
flows around black holes [17–21]. Magnetic fields may
originate from the companion star, the surrounding in-
terstellar medium, or be generated internally through dy-
namo processes within the accretion disk [22–26]. In par-
ticular, dynamo mechanism converts the kinetic energy
of turbulent motions into magnetic energy [27–30], ampli-
fying and organizing magnetic fields within the accretion
flow. Early studies examined the evolution of initially
uniform magnetic fields in spherically symmetric accre-
tion onto Schwarzschild black holes, revealing how mag-
netic energy can reach equipartition with kinetic energy
and drive synchrotron emission near the event horizon
[31, 32]. Such emission potentially offers a diagnostic tool
to distinguish between spinning and non-spinning black
holes. Magnetic turbulence, through Maxwell stresses,
is now widely believed to be the primary mechanism for
angular momentum transport within accretion disks [12].
The coupling between magnetic fields and differential ro-
tation gives rise to magnetorotational instability (MRI),
which generates magnetohydrodynamic (MHD) turbu-
lence, enhances effective viscosity, and enables matter to
accrete efficiently [33]. Furthermore, magnetic fields are
crucial in launching bipolar outflows and collimated jets,
the features commonly observed in both stellar-mass and
supermassive black hole systems [33–37]. Similarly, in so-
lar winds, pressure gradients overcome gravity to drive a
continuous supersonic plasma outflow, which transports
magnetic field lines into interplanetary space forming a
spiral structure [38, 39]. These magnetized outflows carry
away angular momentum via magnetic torques [40], caus-
ing faster rotating stars to spin down more rapidly than
slower rotators. Magnetic reconnection processes also
contribute to disk heating by dissipating magnetic energy
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[41–48], while synchrotron radiation provides a compet-
ing cooling mechanism [49–51].

Numerical simulations consistently show that, in mag-
netized accretion disks, the toroidal component of the
magnetic field typically dominates over the poloidal com-
ponent due to the differential rotation of the inflowing
material [52–60]. Motivated by these findings, numer-
ous attempts were made to study self-consistent global
MHD accretion solutions around black holes [43, 59, 61–
66]. These models often assume a predominantly toroidal
magnetic field, consistent with the disk’s rotational dy-
namics.

In recent past, horizon-scale images of supermassive
black holes (SMBHs) have opened an unprecedented ob-
servational window to examine the innermost regions of
two galaxies. The Event Horizon Telescope (EHT) col-
laboration produced the first polarimetric images of the
black hole at the center of the M87 galaxy, marking a
major milestone in black hole astrophysics [67–72]. Soon
after, the EHT collaboration successfully captured the
image of Sagittarius A∗ (Sgr A∗) at the centre of the
Milky Way galaxy [73–80]. Imaging and modelling anal-
yses reveal that the image of Sgr A∗ is dominated by
a bright, thick ring with a diameter of 51.8 ± 2.3 µas.
To interpret the asymmetric ring, the EHT collaboration
employed state-of-the-art general relativistic magnetohy-
drodynamic (GRMHD) simulations coupled with general
relativistic ray-tracing techniques. These simulations ex-
plored both Standard and Normal Evolution (SANE) and
Magnetically Arrested Disk (MAD) scenarios across a
range of black hole spins. The observational data, partic-
ularly the resolved polarized structure, favored the MAD
framework with a spin parameter of ak ∼ 0.94, suggest-
ing a magnetically dominated accretion environment [77].
This asymmetry in the ring structure is well explained
by strong gravitational lensing of synchrotron radiation
emitted by hot plasma near the event horizon, offering
compelling evidence for the presence of a Kerr black hole
with mass ∼ 4 × 106 M⊙. The polarimetric measure-
ments provided further constraints on the accretion flow
properties, including the black hole spin, the mass accre-
tion rate, the electron-to-ion temperature ratio, and the
inclination angle of the observer relative to the angular
momentum axis of the flow [77, 79, 80]. Importantly, the
magnetic field configuration near the event horizon was
characterized using these data, revealing field strengths
of 26+3

−4 G at 7.3 rg, 67
+8
−9 G at 4 rg, and 560+80

−80 G in the
immediate vicinity of the event horizon. These measure-
ments, along with signatures of flare-related structural
variability, evidently infer the critical role of magnetic
fields in the dynamics of the near-horizon region. Sim-
ulations based on the MAD scenario have successfully
reproduced similar polarimetric features [81, 82], demon-
strating the dynamic role of strong magnetic fields in
shaping the observed emissions from SMBHs.

Motivated by these groundbreaking observations, we
aim to investigate the accretion dynamics around a Kerr
black hole by solving the ideal GRMHD equations [83],

constrained by the magnetic field strengths at various
radii as reported by the EHT for Sgr A∗. Our model
framework focuses on key flow parameters, namely en-
ergy (E), angular momentum (L), magnetic flux (Φ),
and isorotation parameter (I) [58], to construct self-
consistent GRMHD accretion solutions. We incorporate
a relativistic equation of state to accurately describe the
thermodynamic properties of the inflowing plasma [84].
By systematically exploring the L–Φ parameter space,
we identify accretion solutions that reproduce the EHT
inferred magnetic field strengths with an accuracy of ap-
proximately 10%, providing valuable insights into the
structure and magnetization of near-horizon accretion
flows.

This paper is organized as follows. In §II, we describe
the GRMHD framework and underlying model assump-
tions. In §III, we present the obtained results and discuss
the astrophysical implication of our model. Finally, we
summarize our findings in §IV.

II. GRMHD FRAMEWORK AND MODEL
ASSUMPTIONS

We examine the accretion flow around a Kerr black
hole in the GRMHD framework. The line element for a
stationary, axisymmetric spacetime is expressed as,

ds2 =gµνdx
µdxν

=gttdt
2 + grrdr

2 + 2gtϕdtdϕ+ gϕϕdϕ
2 + gθθdθ

2.

(1)

In terms of Boyer-Lindquist coordinates [85], the compo-
nents of the Kerr metric are given by,

gtt = (a2k sin
2 θ −∆)/Σ,

gtϕ = (A∆− akB sin2 θ)/Σ,

grr = Σ/∆,

gθθ = Σ,

gϕϕ = (B2 sin2 θ −A2∆)/Σ,

(2)

where A = ak sin
2 θ, Σ = a2k cos θ

2 + r2, B = r2 + a2k,

and ∆ = (r − rH)(r − rC). Here, rH (= 1 +
√
1− a2k)

is the event horizon, rC (= 1 −
√
1− a2k) is the Cauchy

horizon, and ak is the Kerr parameter. In our analysis,
we use (−,+,+,+) sign convention and adopt a unit sys-
tem as MBH = G = c = 1, where MBH is the mass of
the black hole, G is the universal gravitational constant,
and c is the speed of light. In this unit system, length,
angular momentum, and energy are expressed in terms
of rg (= GMBH/c

2), rgc and c2, respectively. We con-
strain our whole analysis on the equatorial plane of the
disk considering θ = π/2.
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A. Governing Equations

We use fundamental principles to obtain the GRMHD
equations that describe a relativistic, magnetized, advec-
tive accretion flow around a rotating black hole in the
steady state. These equations are derived from the con-
servation laws, i.e., the conservation of mass, conserva-
tion of energy-momentum, and homogeneous Faraday’s
law in the presence of strong gravitational fields [86–89],
which are as follows:

∇µ (ρu
µ) = 0; ∇µT

µν = 0; ∇µ
∗Fµν = 0. (3)

Here, ρ is the mass density and uµ is the four-
velocity of matter. Tµν is the energy-momentum ten-
sor that describes the matter distributions. ∗Fµν =
1
2 (−g)−1/2ηµνδκFδκ is the Hodge dual of the Faraday

electromagnetic tensor Fµν and ηµνδκ is the Levi-Civita
symbol. Considering the fluid and Maxwell part, the to-
tal energy-momentum tensor is given by,

Tµν = (e+pgas)u
µuν+pgasg

µν+Fµ
λF

νλ− 1

4
F 2gµν , (4)

where e is the local energy density, pgas is the gas pres-
sure of the flow, and F 2 = FµνF

µν . We consider per-
fectly conducting fluid (ideal MHD condition) [89, 90],
where the electric field in the rest frame of fluid is
zero, which implies eµ = Fµνuν = 0. In this frame,
the magnetic field is written as bµ = ∗Fµνuν , where
uµb

µ = 0. Finally, we write the electromagnetic tensor as

Fµν = −(−g)−1/2ηµνλδuλbδ. Using the aforementioned
relations, we get the energy-momentum tensor as,

Tµν = ρhtotu
µuν + ptotg

µν − bµbν , (5)

where htot (= hgas +
B2

ρ ) is the total specific enthalpy of

the fluid, and hgas = (e + pgas)/ρ. The total pressure is
ptot = pgas+pmag with pmag = B2/2 and B2 = bµb

µ. We
define plasma-β as the ratio of gas pressure to magnetic
pressure (β = pgas/pmag) that measures the magnetic
activity inside the disk.

B. Conserved Quantities

Using Eq. 3, we get the conserved mass accretion rate
along the radial direction as,

Ṁ = −4πρvγvH
√
∆ = Constant, (6)

where Ṁ refers the mass accretion rate, and H denotes
the local half-thickness of the disk. In this work, we con-
sider a 1.5-dimensional flow model [91], in which the disk
is assumed to remain in vertical hydrostatic equilibrium.
Following [92], we compute H, which is given by,

H2 =
pgasr

3

ρF
, F = γ2

ϕ

(r2 + a2k)
2 + 2∆a2k

(r2 + a2k)
2 − 2∆a2k

.

Here, v is the radial three-velocity in the co-rotating
frame and is defined as v2 = γ2

ϕv
2
r with γ2

ϕ = 1/(1− v2ϕ),

v2ϕ = (uϕuϕ)/(−utut), and v2r = (urur)/(−utut). The ra-

dial Lorentz factor is γv = 1/(1−v2)1/2 and Ω = uϕ/ut =
(gtϕ − λgϕϕ)/(gtt − λgtϕ) is the angular velocity of the
fluid.
The Kerr spacetime possesses two commuting Killing

vectors associated with time (ξt) and azimuthal coordi-
nate (ξϕ). Using ∇µ(T

µνξν) = 0, we derive two con-
served quantities along t and ϕ directions. Along the
radial direction, we get,

−
√
−g T r

t√
−gρur

= −htotut +
1

ρur
br
(
gttb

t + gtϕb
ϕ
)
= E , (7)

and

√
−g T r

ϕ√
−gρur

= htotuϕ − 1

ρur
br
(
gϕϕb

ϕ + gtϕb
t
)
= L, (8)

where E and L are the conserved energy and angular
momentum, respectively. The time component of the
source-free Maxwell equation (Eq. 3) implies,

−
√
−g ∗F rt =

√
−g(utbr − urbt) = Φ, (9)

and ϕ component of the equation (Eq. 3) gives us the
relativistic isorotation equation [89] as,

√
−g ∗F rϕ =

√
−g(urbϕ − uϕbr) = I. (10)

Here, Φ and I are the magnetic flux and isorotation pa-
rameter, respectively, that remain constant all through-
out along the flow streamline within the disk.
Next, we project the energy-momentum conservation

equation (Eq. 3) along the three spatial directions using
the projection operator hi

µ = δiµ + uiuµ, where i = 1, 2, 3
and µ, ν = 0, 1, 2, 3. This yields the component form of
the Navier–Stokes equations. The r-component of the
Navier-Stokes equation, equivalently the radial momen-
tum equation, is given by,

hr
µ∇νT

µν = 0. (11)

It is worth mentioning that in the immediate vicin-
ity of the black hole, the accretion flow is inherently
relativistic due to its bulk velocity and thermal energy,
whereas at sufficiently large radii, the flow is essentially
non-relativistic. This implies that as matter accretes in-
ward, it undergoes a natural transition from the non-
relativistic to the relativistic regime. Describing such
trans-relativistic flows requires a relativistically consis-
tent equation of state (EoS), since formulations based
on a fixed adiabatic index Γ are inadequate for captur-
ing the thermodynamic behavior across these regimes.
Therefore, to close the system of governing equations, we
employ the Relativistic Equation of State (EoS), where
the adiabatic index (Γ) depends on the temperature (T )
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and the fluid composition. Following [84], the local en-
ergy density (e), gas pressure (pgas) and mass density (ρ)
are related as,

e =
ρf

τ
, pgas =

2ρΘ

τ
, (12)

where

f = (2− ζ)

[
1 + Θ

(
9Θ + 3

3Θ + 2

)]
+ ζ

[
mp

me
+Θ

(
9Θme + 3mp

3Θme + 2mp

)]
,

with τ = 1 + (mp/me), ζ = np/ne, and dimensionless
temperature Θ = kBT/mec

2. Here, mp and me denote
the masses of the ion and electron, respectively, while
np and ne represent their corresponding number densi-
ties. In this study, we consider ζ = 1 for simplicity. The
polytropic index (N) and the specific heat ratio (Γ) are

given by N = 1
2

df
dΘ and Γ = 1 + 1

N . It is noteworthy
that the characteristic wave speeds in magnetized flows
correspond to the Alfvén and magnetosonic waves. Ac-
cordingly, we define the Alfvén speed as C2

a = B2/(ρhtot)
and the fast magnetosonic speed as C2

f = C2
s+C2

a−C2
sC

2
a

[see 88], where the relativistic sound speed is expressed
as C2

s = Γpgas/ρhgas and the magnetosonic Mach number
is given by M = v/Cf .

Next, using the condition bµuµ = 0, we determine the
components of the magnetic field as follows:

bϕ =

I√
−g

+ ΩΦ√
−g(1−v2

r)

vγv√
grr

(
1− λΩ

1−v2
r

) ,

br =

Φ√
−g

+ λbϕ vγv√
grr(

γϕγv
√

−1
gtt+gtϕΩ

)
(1− v2r)

,

bt = −br
v
√
gtt + gtϕΩ

γϕ
√
−grr

+ λbϕ.

(13)

With this, the total strength of the magnetic field is ob-
tained as,

B =
(
grr(b

r)2 + gtt(b
t)2 + gϕϕ(b

ϕ)2 + 2gtϕb
tbϕ
) 1

2

. (14)

C. Critical Points Analysis and Transonic Solutions

The derivatives of the energy conservation equation
(Eq. 7) and angular momentum conservation equation
(Eq. 8) yield,

dE
dr

= Er + Ev
dv

dr
+ EΘ

dΘ

dr
+ Eλ

dλ

dr
= 0, (15)

dL
dr

= Lr + Lv
dv

dr
+ LΘ

dΘ

dr
+ Lλ

dλ

dr
= 0. (16)

We rewrite the radial momentum equation (Eq. 11) as,

Rr +Rv
dv

dr
+RΘ

dΘ

dr
+Rλ

dλ

dr
= 0. (17)

All coefficients in Eqs. 15–17, namely Ej , Lj , and Rj

(with j = r, v,Θ, λ), are provided explicitly in the Ap-
pendix A. Combining Eqs. 15-17, we obtain the wind
equation of the GRMHD flow as,

dv

dr
=

−(Rr +RΘΘr +Rλλr)

(Rv +RΘΘv +Rλλv)
=

N (r, v,Θ, λ)

D(r, v,Θ, λ)
, (18)

where

Θr =(EλLr − ErLλ)/(EΘLλ − EλLΘ),

Θv =(EλLv − EvLλ)/(EΘLλ − EλLΘ),

λr =(EΘLr − ErLΘ)/(EλLΘ − EΘLλ),

λv =(EΘLv − EvLΘ)/(EλLΘ − EΘLλ),

and N (r, v,Θ, λ) is the numerator and D(r, v,Θ, λ) is
the denominator, respectively. Furthermore, the gradi-
ent temperature and angular momentum are expressed
in terms of dv

dr as,

dΘ

dr
= Θr +Θv

dv

dr
, (19)

and

dλ

dr
= λr + λv

dv

dr
, (20)

In the presence of magnetic fields, we simultaneously
solve Eqs. 18–20 for a set of model parameters (E ,L,Φ, I)
to obtain the GRMHD accretion flow solutions around a
Kerr black hole of spin ak.
The black hole accretion process initiates from the dis-

tant outskirts of the accretion disk, where gravitational
influence begins to dominate the dynamics of the inflow-
ing matter. At the outer edge of the accretion disk
(redge), the accreting plasma exhibits negligible radial
motion (v << 1) and remains subsonic, setting the stage
for a transonic transition as it spirals inward toward the
event horizon. As the flow spirals inward, the immense
gravitational pull of the black hole accelerates the mate-
rial, causing the radial velocity to rise rapidly. Near the
event horizon (rH), the inflow velocity asymptotically ap-
proaches the speed of light (v ∼ 1), satisfying the inner
boundary conditions. The gravitational attraction of the
black hole causes the inflowing matter to undergo a tran-
sonic transition, changing from subsonic to supersonic
flow. This transition necessitates that the flow passes
smoothly through a critical point (rc) on its way to the
event horizon. At the critical point, the denominator (D)
of Eq. 18 becomes zero. Since the accretion flow remains
smooth and continuous outside the event horizon, the
numerator (N ) must also vanish at rc to maintain regu-
larity. As a result, Eq. 18 takes the indeterminate form
dv
dr

∣∣
rc

= N
D
∣∣
rc

= 0
0 . To resolve this, we apply l′Hôpital’s
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rule to evaluate the velocity gradient at the critical point
at rc. In this study, we focus on accretion solution that
possesses critical point where dv

dr |rc owns two real values
with opposite signs [93, 94]. It is worth mentioning that
such solutions have been demonstrated to be stable un-
der perturbations [93]. Among the two real values, the
negative value of dv

dr |rc corresponds to the accretion so-
lution, while the positive value corresponds to the winds
[65, 95]. In the present work, we focus exclusively on
accretion solutions.

Depending on the input parameters, the accretion flow
may contain single or multiple critical points. A critical
point located near the horizon is termed the inner critical
point (rin), while one formed far away from the horizon
is called the outer critical point (rout) [94, 95, and refer-
ences therein]. By choosing the set of input parameters

(E , L, Φ, I, ak, and Ṁ), we simultaneously solve N = 0
and D = 0 along with Eq. 7 and Eq. 8 to compute the
flow variables, such as radial velocity (vc), temperature
(Θc), and angular momentum (λc) at rc. Using these flow
variable, we integrate Eqs. 18–20 outward from rc to the
outer edge (redge) and inward to the black hole horizon
(rH). Combining these two branches yields a global ac-
cretion solution for the GRMHD flow around rotating
black hole [83, 96].

The formalism developed in this study to obtain global
GRMHD accretion solutions serves as a robust frame-
work to investigate the magnetic environment of Sgr
A∗. As the supermassive black hole at the center of our
galaxy, Sgr A∗ exhibits low-luminosity accretion, where
magnetic fields are expected to play a pivotal role in shap-
ing the structure and dynamics of the accretion flow.
By adopting suitable input parameters consistent with
observational constraints for Sgr A∗, the present model
framework allows for a self-consistent analysis of the flow
structure, including the profiles of Mach number (M),
velocity (v), density (ρ), temperature (T ), magnetic field
(B) and plasma-β. This, in turn, can provide valuable in-
sights into the physical conditions prevailing in the vicin-
ity of the event horizon and contribute to the theoreti-
cal interpretation of high-resolution observations, such as
those conducted by the Event Horizon Telescope (EHT)
collaboration [79, 80].

III. RESULTS AND ASTROPHYSICAL
IMPLICATIONS

In this section, we explore the astrophysical relevance
of our model solutions, with a particular focus on the
compact, luminous source Sgr A∗. This supermassive
black hole, located at the center of the Milky Way, is
a prominent emitter of radio waves [97, 98]. Owing to
its distinctive characteristics, Sgr A∗ serves as a natural
laboratory for testing the predictions of general relativ-
ity. Long-term observational campaigns, encompassing
precise measurements of its proper motion and the or-
bital dynamics of nearby stars, have confirmed Sgr A∗ as

a highly compact mass concentration situated approxi-
mately D ∼ 8 kpc from Earth [99, 100]. Furthermore,
direct imaging of the central source and its immediate
environment by EHT, a global array of eight radio tele-
scopes spanning six geographic locations, has produced
an image consistent with the shadow of an accreting
Kerr black hole with a mass of MBH ∼ 4 × 106M⊙
[73]. Complementary observations by the Chandra X-
ray Observatory, which detect bremsstrahlung emission
near the gas capture radius, estimate the accretion rate
at large radii (∼ 105RS , where RS is the Schwarzschild
radius) to be in the range of 10−6 − 10−5M⊙yr

−1 [101].
In contrast, Faraday rotation measurements of polar-
ized millimeter-wavelength emission near the event hori-
zon suggest a much lower accretion rate, approximately
10−9 − 10−7M⊙yr

−1 [102, 103].

The EHT collaboration investigated MAD models with
spin parameters ak = −0.94,−0.5, 0, 0.5, and 0.94, and
constrained the mass accretion rate to lie within the
range 10−9 − 10−8M⊙yr

−1, accompanied by an outflow
power of approximately 1038 erg s−1. Sgr A∗ exhibits
broadband emission extending from radio to hard X-ray
wavelengths. Comparative analysis of EHT observations
and numerical simulations suggests that the mass accre-
tion rate is of the order of ∼ 10−8M⊙yr

−1, with a bolo-
metric luminosity not exceeding 1036 erg s−1 [77]. These
findings collectively indicate that Sgr A∗ hosts a radia-
tively inefficient accretion flow, classifying it as a low-
luminosity supermassive black hole. Remarkably, EHT
imaging reveals a bright, thick emission ring with an an-
gular diameter of 51.8±2.3 µas [73]. Furthermore, lever-
aging polarized intensity maps and GRMHD simulations,
the EHT collaboration has constrained the radial profile
of the magnetic field strength in the vicinity of the event
horizon [79, 80]. Specifically, the mass-weighted average
magnetic field strength is found to be 26+3

−4 G at 7.3rg,

increasing to 67+8
−9 G at 4rg, and reaching 560+80

−80 G near
the event horizon. These results are most consistent with
MAD models featuring a high spin value of ak ∼ 0.94,
and serve as essential observational benchmarks for val-
idating theoretical models of black holes and their sur-
rounding magnetized accretion flows.

We therefore aim to investigate the viability of our
magnetized accretion solutions, discussed earlier, in light
of the recent observational constraints reported by the
EHT collaboration [80]. For this purpose, we adopt two
key inputs from their analysis, namely the mass accre-
tion rate and the radial profile of the magnetic field
strength. In addition, we consider a black hole mass
of MBH = 4 × 106M⊙ [99, 100] and a spin parame-
ter ak = 0.94 [80], consistent with values reported in
the literature. Guided by these, we explore the proper-
ties of the corresponding global GRMHD accretion solu-
tions. We depict a representative solution along with
its hydrodynamic and magnetic properties in Fig. 1.
This solution is selected such that the magnetic field
strength remains within ±10% of the EHT reported best-
fit values at 7.3rg and 4rg. Here, we choose the fol-
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FIG. 1: Example of a global GRMHD accretion solution
around a Kerr black hole that accounts the EHT inferred mag-
netic fields at 7.3 rg and 4 rg. In panel (a), variation of Mach
number (M) is depicted with radial coordinate (r), where
color denotes the flow velocity (v). Filled circle in black de-
notes the inner critical point (rin). Panel (b) shows the radial
variation of density (ρ), whereas temperature (T ) is shown
using color. Panel (c) illustrates the magnetic field (B) varia-
tion with r, while plasma-β is plotted using color. Thick grey
and red horizontal lines denote the magnetic field strengths of
67±6.7 G and 26±2.6 G, respectively that intersect GRMHD
accretion solution at 4 rg and 7.3 rg. See the text for details.

lowing model input parameters as E = 1.001, L = 2.4,
Φ = 10.5 × 10−13, I = 5 × 10−15, and a mass accretion
rate of Ṁ = 10−8M⊙yr

−1.

In Fig. 1a, we display the radial variation of the Mach
number (M), where the color bar indicates the corre-
sponding fluid velocity (v). The transition from subsonic
to supersonic flow, via the inner critical point located
at rin = 1.612rg (marked with filled black circle), is
clearly evident. The flow velocity at rin is v(rin) = 0.235
and the corresponding fast magnetosonic speed at rin is
Cf(rin) = 0.255. Fig. 1b illustrates the variation of den-
sity (ρ) as a function of radial distance (r), with the color
bar representing the temperature of fluid (T ). As the ac-
creting matter approaches the event horizon, both the
density and temperature increase significantly relative to
their values at the outer edge (redge = 103rg). The tem-
perature of the accreting plasma exceeds 1011 K in the
innermost regions of the disk, indicative of a geometri-
cally thick, optically thin, and radiatively inefficient hot
accretion flow [104, 105]. Such extreme thermal condi-
tions are characteristic of low-luminosity accretion sys-

tems and are consistent with the physical properties ex-
pected near the event horizon of Sgr A∗ [73, 106]. The
lower panel (Fig. 1c) presents the variation of the total
magnetic field strength (B) as the accretion flow pro-
gresses inward toward the horizon. The associated color
bar represents the plasma-β parameter, which quantifies
the ratio of gas pressure to magnetic pressure, thereby
offering insights into the relative dominance of magnetic
pressure over thermal pressure in different regions of the
flow [96]. Overplotted on this panel are two horizontal
shaded bands in red and grey that correspond to the
mean magnetic field strengths of 26 G and 67 G, re-
spectively, each with 10% uncertainty, as inferred from
the EHT observations. The intersections of these shaded
regions with our model GRMHD accretion solution oc-
cur at radial distances of approximately 7.3rg and 4rg
that demonstrate the consistency of our model formal-
ism with the findings from EHT collaboration [80] re-
ported for Sgr A∗. Note that as matter approaches the
black hole horizon, its velocity rises sharply (see panel
(a)) due to strong gravity, leading to decreases in density
and temperature in order to conserve the mass accretion
rate (see Eq. 6)). In an ideal MHD flow with frozen-
in magnetic fields, this drop in density with decreasing
radius results in a corresponding reduction in magnetic
field strength. Furthermore, we assess the state of the
magnetized accretion flow by computing the magnetic
flux threading the inner region near the black hole using∫ 2π

0

√
−g(utbr − urbt)dϕ ∼ 1.36 × 1025 Gcm2. This flux

remains well below the threshold for a magnetically ar-
rested disk (MAD) estimated as ∼ 3.8 × 1027 Gcm2 for
Sgr A∗ [107].

We emphasize that Fig. 1 presents only one representa-
tive example among many possible global GRMHD accre-
tion solutions that are consistent with the magnetic field
strengths observed by the EHT near Sgr A∗ at specific
radii. To systematically identify the full range of such
GRMHD accretion solutions, we explore the parameter
space in the L–Φ plane, which reveals a substantial do-
main supporting magnetic field strengths that match the
EHT-inferred values within observational uncertainties.
In doing so, we fix the black hole massMBH = 4×106M⊙
and the mass accretion rate Ṁ = 10−8M⊙yr

−1, as in-
dicated by EHT observations. Furthermore, we choose
E = 1.001, I = 5 × 10−15 and ak = 0.94, as the model
parameters. The resulting parameter space is illustrated
in Fig. 2, where we identify effective domains in the
L–Φ plane that result in magnetic field strengths within
±10% error of the EHT-reported mean values at 4rg
and 7.3rg [80]. In the figure, the region shaded in cyan
corresponds to GRMHD accretion solutions that yield
B = 67 ± 6.7G at 4rg, while the magenta shaded region
includes those solutions consistent with B = 26±2.6G at
7.3rg. It is important to emphasize that the overlapping
region (appeared as violet) in Fig. 2 represents the sub-
set of GRMHD accretion solutions that simultaneously
satisfy both magnetic field constraints inferred from the
EHT observations, namely, the magnetic field strengths
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FIG. 2: Effective domain of the parameter space in L − Φ
plane corresponding to GRMHD accretion solutions that re-
produce EHT inferred magnetic field strength. The region
shaded with cyan admits accretion solutions yielding mag-
netic field strength of 67 ± 6.7 G at 7.3rg, while magenta
shaded region corresponds to solutions matching 26 ± 2.6 G
at 4rg. Overlapping region (appeared as violet) provides ac-
cretion solutions that simultaneously satisfy magnetic fields
constraints at both radii. See the text for details.

of B = 26±2.6 G at 7.3rg and B = 67±6.7 G at 4rg. The
inset panels provide the magnified views of these overlap-
ping regions. This convergence of observational consis-
tency at two distinct radii makes these solutions partic-
ularly significant, as they offer a self-consistent frame-
work for describing the magnetized accretion environ-
ment around Sgr A∗. Therefore, the GRMHD solutions
corresponding to this overlapping parameter space are
well-suited to interpret and reproduce the magnetic field
structure reported by the EHT collaboration [80] for the
Galactic Center supermassive black hole Sgr A∗.

IV. SUMMARY AND CONCLUSIONS

In this study, we investigate the properties of the mag-
netized accretion flows around a spinning black hole by
solving the GRMHD equations within a simplified 1.5-
dimensional disk geometry under steady state conditions.
Our motivation stems from recent observations of Sgr A∗

by EHT [73–80], which offer crucial constraints on the
magnetic field distribution in the immediate vicinity of

the black hole. According to the EHT collaboration, the
magnetic field strength near Sgr A∗ is estimated to be
26+3

−4G at 7.3rg and 67+8
−9G at 4rg, assuming a Kerr black

hole with mass MBH = 4 × 106M⊙, mass accretion rate

Ṁ = 10−8M⊙ yr−1, and spin parameter ak = 0.94.
Upon imposing these key constraints, we obtain global

GRMHD accretion solutions that are consistent with the
reported field strengths within ±10% error at 7.3rg and
4rg. One such representative solution is presented that
captures the detailed characteristics of the GRMHD ac-
cretion flow, including the radial profiles of Mach number
(M), radial velocity (v), density (ρ), temperature (T ),
magnetic field strength (B), and the plasma-β parame-
ter (see Fig. 1).
To assess the generality of our findings, we systemat-

ically explore the parameter space spanned by the mag-
netic flux (Φ) and the angular momentum (L), identi-
fying the global accretion solutions that remain consis-
tent with the EHT-inferred magnetic field strengths at
both radii. This analysis reveals that a family of solu-
tions can simultaneously account for the magnetic field
values at 7.3rg and 4rg as reported by the EHT, suggest-
ing that the magnetized accretion flow around Sgr A∗

can be well described by GRMHD models within a con-
strained but physically realistic range of parameters (see
Fig. 2). With this, we indicate that the present study
provides a self-consistent theoretical framework based on
GRMHD accretion flows that supports and complements
the EHT findings in explaining the magnetized accretion
flows around Sgr A∗.
At the end, we mention that the present study involves

several simplifying assumptions. The accretion flow is
modelled in a 1.5-dimensional geometry, confined near
the disk equatorial plane, and the polar magnetic field
component (bθ) is neglected, although it is important for
launching winds, jets, and outflows. Radiative cooling is
ignored, and the flow is treated as a single-temperature
fluid, neglecting the two-temperature nature of ions and
electrons. The analysis is also restricted to the ideal
MHD limit, omitting resistive or dissipative effects. Im-
plementation of these processes is beyond the scope of
the present work and will be addressed in future studies.
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Appendix A: Conservation equations of energy and angular momentum, and radial momentum equation

Using the energy conservation equation (Eq. 7), we get,

dE
dr

= Er + Ev
dv

dr
+ EΘ

dΘ

dr
+ Eλ

dλ

dr
= 0.

The coefficients Er, Ev, Eθ, and Eλ are given by,

Er =− ∂htot

∂r
ut − htot

∂ut

∂r
+

gtϕb
r ∂bϕ

∂r

urρ
+

gttb
r ∂bt

∂r

urρ

brbt dgttdr

urρ
+

brbϕ
dgtϕ
dr

urρ
+

3br(gttb
t + gtϕb

ϕ)

2rurρ

+
∂br

∂r (gttb
t + gtϕb

ϕ)

urρ
−

∂F
∂r b

r(gttb
t + gϕϕb

ϕ)

2Furρ
+

br d∆
dr (gttb

t + gtϕb
ϕ)

2∆urρ
−

br ∂ur

∂r (gttb
t + gtϕb

ϕ)

(ur)2ρ
,

Ev =− ∂htot

∂v
ut − htot

∂ut

∂v
+

gttb
r ∂bt

∂v

urρ
+

gtϕb
r ∂bϕ

∂v

urρ
+

∂br

∂v (gttb
t + gtϕb

ϕ)

urρ
−

br ∂ur

∂v (gttb
t + gtϕb

ϕ)

(ur)2ρ

+
br(gttb

t + gtϕ)

urρv
+

brvγ2
v(gttb

t + gtϕb
ϕ)

urρ
,

EΘ =− ∂htot

∂Θ
ut +

br(gttb
t + gtϕb

ϕ)

rurΘρ
,

Eλ =− ∂htot

∂λ
ut − htot

∂ut

∂λ
+

gttb
r ∂bt

∂λ

urρ
+

gtϕb
r ∂bϕ

∂λ

urρ
−

∂F
∂λ b

r(gttb
t + gtϕb

ϕ)

2Furρ
−

∂br

∂λ (gttb
t + gtϕb

ϕ)

urρ
.

Applying the angular momentum conservation equation (Eq. 8), we obtain,

dL
dr

= Lr + Lv
dv

dr
+ LΘ

dΘ

dr
+ Lλ

dλ

dr
= 0,

where the coefficients Lr,Lv, Lθ and Lλ are expressed as,

Lr =
∂htot

∂r
uϕ + htot

∂uϕ

∂r
−

gtϕb
r ∂bt

∂r

urρ
− 3br(gtϕb

t + gϕϕb
ϕ)

2rurρ
+

∂F
∂r (gtϕb

t + gϕϕb
ϕ)

2Furρ
−

∂br

∂r (gtϕb
t + gϕϕb

ϕ)

urρ

+
br ∂ur

∂r (gtϕb
t + gϕϕb

ϕ)

(ur)2ρ
−

gϕϕb
r ∂bϕ

∂r

urρ
−

brbt
dgtϕ
dr

urρ
−

brbϕ
dgϕϕ

dr

urρ
−

br(gtϕb
t + gϕϕb

ϕ d∆
dr )

2∆urρ
,

Lv =
∂htot

∂v
uϕ + htot

∂uϕ

∂v
−

gtϕb
r ∂bt

∂v

urρ
−

gϕϕb
r ∂bϕ

∂v

urρ
−

∂br

∂v (gtϕb
t + gϕϕb

ϕ)

urρ
+

br ∂ur

∂v (gtϕb
t + gϕϕb

ϕ)

(ur)2ρ

− br(gtϕb
t + gϕϕb

ϕ)

urρv
− brvγ2

v(gtϕb
t + gϕϕb

ϕ)

urρ
,

LΘ =
∂htot

∂Θ
uϕ − br(gtϕb

t + gϕϕb
ϕ)

2Θurρ
,

Lλ =
∂htot

∂λ
uϕ + htot

∂uϕ

∂λ
−

gtϕb
r ∂bt

∂λ

urρ
−

∂br

∂λ (gtϕb
t + gϕϕb

ϕ)

urρ
−

gϕϕb
r ∂bϕ

∂λ

urρ
+

∂F
∂λ b

r(gtϕb
t + gϕϕb

ϕ)

2Furρ
.

The radial momentum equation (Eq. 11) is written as,

Rr +Rv
dv

dr
+RΘ

dΘ

dr
+Rλ

dλ

dr
= 0,
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where the coefficients Rr, Rv, Rθ and Rλ are given by,

Rr =
1

htot

(
1

grr
+ (ur)2

)
ρ

[
−2br

∂br

∂r
− grrb

r ∂b
r

∂r
(ur)2 +

1

2

(
1

grr
+ (ur)2

)
+ htotu

r ∂u
r

∂r
ρ−

3
(

1
grr

+ (ur)2
)
Θρ

rτ

∂F
∂r

(
1

grr
+ (ur)2

)
Θρ

τF
− brur ∂b

t

∂r
(gttu

t + gtϕu
ϕ)− brur ∂b

ϕ

∂r
(gtϕbt + gϕϕb

ϕ)−
(br)2 dgrr

dr

grr
− 1

2
(br)2(ur)2

dgrr
dr

+
htot(u

r)2ρdgrr
dr

2grr
+

(bt)2 dgtt
dr

2grr
+

btbϕ
dgtϕ
dr

grr
−

−(br)2 dgθθ
dr

2gθθ
− (br)2

(
gϕϕ

dgtt
dr

2(−g2tϕ + gttgϕϕ)
+

gtϕ
dgtϕ
dr

2(g2tϕ − gttgϕϕ)

)

− 2brurbt(gttu
t + gtϕu

ϕ)

(
gϕϕ

dgtt
dr

2(−g2tϕ + gttgϕϕ)
+

gtϕ
dgtϕ
dr

2(g2tϕ − gttgϕϕ)

)
− 2brurbt(gtϕu

t + gϕϕu
ϕ)(

gtϕ
dgtt
dr

2(g2tϕ − gttgϕϕ)
+

gtt
dgtϕ
dr

2(−g2tϕ + gttgϕϕ)

)
− grr(u

r)2bt

(
−
bt dgttdr

2grr
−

bϕ
dgtϕ
dr

2grr

)
+ htotu

tρ

(
−

ut dgtt
dr

2grr
−

uϕ dgtϕ
dr

2grr

)

+
(bϕ)2

dgϕϕ

dr

2grr
− 2brurbϕ

(
gttu

t + gtϕu
ϕ
)( gϕϕ

dgtϕ
dr

2(−g2tϕ + gttgϕϕ)
+

gtϕ
dgϕϕ

dr

2(g2tϕ − gttgϕϕ)

)
− (br)2

(
gtϕ

dgtϕ
dr

2(g2tϕ − gttgϕϕ)

+
gtt

dgϕϕ

dr

2(−g2tϕ + gttgϕϕ)

)
− 2brurbϕ

(
gtϕu

t + gϕϕu
ϕ
)( gtϕ

dgtϕ
dr

2(g2tϕ − gttgϕϕ)
+

gtt
dgϕϕ

dr

2(−g2tϕ + gttgϕϕ)

)

− grr(u
r)2bϕ

(
−
bt

dgtϕ
dr

2grr
−

bϕ
dgϕϕ

dr

2grr

)
+ htotu

tρ

(
−

ut dgtϕ
dr

2grr
−

uϕ dgϕϕ

dr

2grr

)
−

(
1

grr
+ (ur)2

)
Θρd∆

dr

τ∆

]
,

Rv =
1

htot

(
1

grr
+ (ur)2

)
ρ

[
−br

∂br

∂r
− grrb

r ∂b
r

∂r
(ur)2 +

1

2

∂(B2)

∂v

(
1

grr
+ (ur)2

)
+ htotu

r ∂u
r

∂v
ρ

−
2
(

1
grr

+ (ur)2
)
Θρ

τv
−

2
(

1
grr

+ (ur)2
)
Θρvγ2

v

τ
− brur ∂b

t

∂v
(gttu

t + gtϕu
ϕ)− brur ∂b

ϕ

∂v
(gtϕu

t + gϕϕu
ϕ)

]
,

RΘ =
1

τhtot
,

Rλ =
1

htot

(
1

grr
+ (ur)2

)
ρ

[
− 2br

∂br

∂λ
− grrb

r ∂b
r

∂λ
+

1

2

(
1

grr
+ (ur)2

) ∂F
∂λ

(
1

grr
+ (ur)2

)
Θρ

τF

− brur ∂b
t

∂λ
(gttu

t + gtϕu
ϕ)− brur ∂b

ϕ

∂λ
(gtϕu

t + gϕϕu
ϕ)

]
.
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