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We investigate the properties of low angular momentum, relativistic, viscous, advective accretion
flows around rotating black holes that include shock waves in the presence of thermal conduction. We
self-consistently solve the governing fluid equations to obtain the global transonic accretion solutions
for a set of model parameters, namely energy (E), angular momentum (λ), viscosity (α), conduction
parameter (Φs) and cooling parameter (fc). We observe that depending on the model parameters,
accretion flow experiences centrifugally supported shock transition and the present study, for the
first time, focuses on examining the shock properties, such as shock radius (rs), compression ratio
(R) and shock strength (Ψ) regulated by the dissipation parameters (Φs, fc). We show that shock-
induced global accretion solutions persist for wide range of model parameters and identify the
boundary of the parameter space in energy-angular momentum plane that admits standing shocks
for different dissipation parameters (Φs, fc). Finally, we compute the critical conduction parameter
(Φcri

s ), beyond which shock ceases to exist. We find that Φcri
s directly depends on the black hole spin

(ak) with Φcri
s ∼ 0.029 and ∼ 0.04 for weakly (ak → 0) and rapidly (ak → 1) rotating black hole.

Furthermore, we observe that Φcri
s decreases with increasing viscosity (α), and shocked accretion

solutions continue to exist for α . 0.065 (ak → 0) and . 0.104 (ak → 1), respectively.

I. INTRODUCTION

Accretion onto black holes is indeed an appealing pro-
cess with profound astrophysical implications as it suc-
cessfully manifests the energetic electromagnetic radia-
tions emergent from X-ray binaries (XRBs) and active
galactic nuclei (AGNs) [1]. Over the past several decades,
numerous efforts have been made to develop theoretical
models aimed in understanding the underlying physical
processes in accretion flow. The seminal works of [2, 3]
played major role in developing a geometrically thin and
optically thick accretion disk that laid the foundation for
understanding the observed characteristics of accreting
systems. [4] proposed a model describing the optically
thick, geometrically slim accretion disks, where advec-
tive cooling prevails over radiative cooling at high accre-
tion rates. Later on, a model of advection-dominated
accretion flow [ADAF; 5, 6] featuring a hot, geometri-
cally thick, optically thin disk at low accretion rate (much
lower than Eddington limit) fascinated the astrophysi-
cists because of its tremendous success in studying the
black hole sources across the wide mass range including
both XRBs [7–10, and references therein] and AGNs [11–
14, and references therein].

Indeed, when the central source accretes matter at very
low rate, the temperature and density profiles of the hot
accreting matter resemble the radiatively inefficient ac-
cretion flow (RIAF) due to its reduced radiative efficiency
[13, 15]. In this scenario, the accreting plasma is ex-
pected to remain in the weakly collisional regime with
mean free paths exceeding the typical length scale of the
accretion disk structure, equivalently the gravitational
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radius rg = GMBH/c
2, where G, MBH, and c denote the

gravitational constant, the BH mass, and speed of light,
respectively [16, 17]. Because of this, thermal conduction
becomes dynamically important, allowing the accreting
matter to transport energy via heat flux, and this is the
focus of the present paper.

Meanwhile, efforts have been made to examine the ef-
fect of thermal conduction on accretion solutions adopt-
ing the self-similar formalism while investigating out-
flows [16, 18–21]. In particular, [16] indicated that ther-
mal conduction possibly seems to play a decisive role
in launching bipolar rotating outflows from radiatively
inefficient hot accretion flows. [18] reported that ther-
mal conduction serves as an additional heating source
that possibly redirects a part of the inflowing matter as
outflows. Furthermore, [22] performed numerical simu-
lations of hot accretion flows including thermal conduc-
tion and illustrates its impact on modifying the struc-
ture of the accretion flow with a steeper density profile.
[23] carried out related numerical analysis and claim that
thermal conduction can enhance wind velocity, resulting
in an approximately tenfold increase in the wind energy
flux. Very recently, [24] investigated global accretion so-
lutions and demonstrated that the presence of thermal
conduction significantly alters their transonic properties.
All of these studies collectively emphasize the pivotal role
of thermal conduction in comprehending the structure of
accretion flows around black holes.

It is worth mentioning that during the accretion pro-
cess, infalling matter undergoes a sonic state transition
from subsonic to supersonic as it crosses a critical point
before entering the black hole [25, and references therein].
Additionally, rotating matter encounters centrifugal re-
pulsion while accreting towards the black hole, leading
to the accumulation of infalling material in its vicinity.
However, the accumulation of matter cannot continue
indefinitely; beyond a certain threshold, the centrifugal
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barrier triggers a discontinuous shock transition in the
flow variables [26–30, and references therein]. It is im-
portant to note that global accretion solutions harbor-
ing shock waves are thermodynamically preferred due to
their higher entropy content compared to shock-free so-
lutions [31]. Meanwhile, the issue of shock formation in
accretion disks around black holes has been investigated
by various authors both theoretically [25–44] and by
means of numerical simulations [45–59]. All these works
draw attention as shock-induced global accretion solution
satisfactorily explains the spectro-temporal properties of
black hole candidates [60–65]. However, the investigation
of shocked accretion solutions in the presence of thermal
conduction has not yet been explored in the astrophysical
literature.

Being motivated with this, in this work, we exam-
ine the effect of the thermal conduction on the shock-
induced global accretion solutions around rotating black
hole. These solutions are especially pertinent for describ-
ing the dynamics of weakly collisional flows in black hole
systems that accrete matter at extremely low rates, such
as those observed in Sgr A* and M87 [66, 67]. In these
systems, thermal conduction becomes important result-
ing in a transport of energy flux from the inner to the
outer regions of the accretion disk [17, 68]. Since ther-
mal conduction predominantly affects the outer regions
of the disk [r & few tens of gravitational radius rg; 24],
it is highly likely that thermal conduction exerts signif-
icant influence on global accretion solutions harboring
shock waves. Considering this, we study the properties
of standing shock, namely shock radius (rs), compres-
sion ratio (R) and shock strength (Ψ) in terms of the
model parameters and find that shock continues to form
even in presence of high thermal conduction around both
weakly (ak → 0) and rapidly (ak → 1) rotating black
holes. We further identify the parameter space, spanned
by the energy and angular momentum of the flow, that
permits shocked accretion solutions, and investigate how
this parameter space is altered by the influence of ther-
mal conduction. Finally, we determine the critical value
of thermal conduction (Φcri

s ) that admits standing shocks
in dissipative accretion flow and observe that Φcri

s ex-
hibits strong dependencies on α, fc and ak.

The main structure of the paper is as follows. In Sec-
tion 2, we present the model assumption and the govern-
ing equations that describe the flow motion around black
hole. We discuss the obtained results involving shocked
accretion solutions, shock properties, shock parameter
space and critical conduction parameter for standing
shocks in Section 3. Finally, we summarize our findings
in Section Section 4.

II. GOVERNING EQUATIONS

We consider low angular momentum, axisymmetric,
viscous, advective accretion flow around a rotating black
hole. In order to describe the accretion flow, we use cylin-

drical coordinate system (r, φ, z) with the black hole re-
sides at the origin. In addition, we consider that the ac-
cretion flow maintains hydrostatic equilibrium in the ver-
tical direction (along z-direction) and therefore, flow vari-
ables are vertically integrated. Furthermore, we choose
MBH = G = c = 1, where MBH is the black hole mass,
G is the gravitational constant and c refers the speed of
light. In this unit system, radial distance (r), specific
angular momentum (λ) and specific energy (E) are ex-
pressed in units of rg = GMBH/c

2, GMBH/c, and c2,
respectively.

The spacetime geometry of a rotating Kerr-like black
hole is satisfactorily described by an effective potential
(Φeff) [69] given by,

Φeff
e =

1

2
ln

[
r∆

a2
k(r + 2)− 4akλ+ r3 − λ2(r − 2)

]
, (1)

where r denotes the radial coordinate, ak is the spin of
the black hole, and ∆ = r2−2r+a2

k. The suffix ‘e’ refers
the quantity measured at the disk equatorial plane.

The governing hydrodynamic equations that describe
the axisymmetric accretion flow in the steady state are
given by:
(a) Mass flux conservation equation:

Ṁ = 2πυΣ
√

∆ , (2)

(b) The radial momentum equation:

υ
dυ

dr
+

1

hρ

dP

dr
+
dΦeff

e

dr
= 0, (3)

(b) The azimuthal momentum equation:

υ
dλ

dr
+

1

Σr

d

dr
(r2Wrφ) = 0, (4)

and (d) The energy equation:

υ

Γ− 1

(
dP

dr
− ΓP

ρ

dρ

dr

)
= fcαr(P+ρυ2)

dΩ

dr
+

1

r

d(rFs)

dr

(5)

The local variables υ, ρ, P and Σ denote the radial ve-
locity, mass density, isotropic pressure, and vertically in-
tegrated density of the flow. In equation (4), Wrφ refers
the vertically integrated viscous stress and is given by

Wrφ = −αΠ = −α
(
W + Συ2

)
, (6)

where α is the viscosity parameter that determines the
angular momentum transport inside the disk, and W and
Π (= W +Συ2) are the vertically integrated gas pressure
and total pressure, respectively. In equation (5), Γ is the
adiabatic index, and H is the local half-thickness of the
disk, which is expressed as [70, 71],

H2 =
Pr3

ρF
, F =

1

(1− λΩ)
× (r2 + a2

k)2 + 2∆a2
k

(r2 + a2
k)2 − 2∆a2

k

,
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where Ω is angular velocity of the flow and given by,

Ω =
2ak + λ(r − 2)

a2
k(r + 2)− 2akλ+ r3

.

In the first term on the right-hand side of equation (5),
we introduce the parametric cooling factor fc (= 1 −
Qrad/Qvis), where Qvis and Qrad represent the viscous
heating and radiative cooling rates [5, 24]. In this study,
we assume fc to be constant throughout the flow, with
0 ≤ fc ≤ 1. When the flow is advection-dominated,
fc = 1. In contrast, fc = 0 indicates a flow dominated
by radiative cooling. The second term on the right-hand
side of equation (5) accounts for the energy transfer due
to saturated thermal conduction [16]. Here, Fs denotes
the saturated conduction flux [72], and is defined as Fs =

5Φsρ
(
P
ρ

)3/2

, where Φs is the dimensionless saturated

conduction parameter (hereafter conduction parameter)
having values in the range 0 ≤ Φs ≤ 1, and it controls the
effect of thermal conduction inside the disk. Note that
Φs and fc are often collectively referred to as dissipation
parameters.

We close the governing equations (2-5) using an equa-
tion of state (EoS) that relates the internal energy (ε),
pressure (P ) and density (ρ) of the accreting matter.
In reality, the thermally non-relativistic (adiabatic index
Γ = 5/3) flow at the outer edge becomes thermally rel-
ativistic (Γ = 4/3) upon reaching the inner edge of the
disk. Hence, to deal with thermally relativistic flow, we
choose a relativistic EoS in accommodating the variable
adiabatic index (Γ). For accreting fluid consisting of ions
and electrons, the relativistic EoS is given by [73],

ε = nemeρ =
ρ

τ
F, and P =

2ρΘ

τ
, (7)

where τ = 1 +mp/me and

F =

[
1 + Θ

(
9Θ + 3

3Θ + 2

)]
+

[
mp

me
+ Θ

(
9Θme + 3mp

3Θme + 2mp

)]
,

Here, mp and me denote the masses of ion and elec-
tron, respectively, and Θ (= kBT/mec

2) is the dimen-
sionless temperature, T is the temperature in Kelvin and
kB is the Boltzmann constant. We define sound speed
as Cs =

√
2ΓΘ/(F + 2Θ), where Γ [= (1 +N)/N ] refers

the adiabatic index and N [= (1/2)(dF/dΘ)] is the poly-
tropic index of the flow, respectively [42].

Following [73] and using equation (2), we calculate the
entropy accretion rate as [39],

Ṁ = υH
√

∆
[
Θ2(2 + 3Θ)(3Θ + 2mp/me)

]3/2
exp (k1),

where k1 = [F − (1 +mp/me)] /2Θ.
We simplify equations (2), (3), (4), (5) and (7) and

obtain the coupled differential equations involving flow
variables as

R0 +Rυ
dυ

dr
+RΘ

dΘ

dr
+Rλ

dλ

dr
= 0 (8)

L0 + Lυ
dυ

dr
+ LΘ

dΘ

dr
+ Lλ

dλ

dr
= 0, (9)

E0 + Eυ
dυ

dr
+ EΘ

dΘ

dr
+ Eλ

dλ

dr
= 0. (10)

The explicit mathematical expression of the coefficients
(Ri, Li, Ei, i→ 0, υ, Θ and λ) in equations (8), (9) and
(10) are intricate in nature and provided in the Appendix.

Using equations (8), (9) and (10), we obtain the wind
equation given by,

dυ

dr
=
N (r, υ, λ,Θ)

D(r, υ, λ,Θ)
, (11)

where the numerator N (r, υ, λ,Θ) and denominator
D(r, υ, λ,Θ) are functions of flow variables and their ex-
plicit expressions are provided in Appendix. In addition,
we calculate the gradient of Θ and λ as,

dΘ

dr
= Θ1 + Θ2

dυ

dr
, and

dλ

dr
= λ1 + λ2

dυ

dr
, (12)

where Θ1, Θ2, λ1 and λ2 are described in Appendix.
We self-consistently solve the coupled differential equa-

tions (11) and (12) for a set of model parameters to ob-
tain the global transonic accretion solution around black
hole. In doing so, we treat α, Φs and ak as global pa-
rameters. Further, we set a reference radius rref and the
angular momentum (λref) at rref as local parameters to
initiate the numerical integration of these equations. As
the black hole solutions are inherently transonic, the flow
inevitably passes through the critical point. Hence, fol-
lowing the approach outlined in [34], we choose critical
point (rc) as the reference radius i.e., rc = rref and inte-
grate equations (11) and (12) from rc inward up to the
horizon and then outward to a distant radius (hereafter
‘disk outer edge redge’). Subsequently, we combine these
two parts of the solution to get a comprehensive global
transonic accretion solution. It is worth mentioning that
depending on the local and global parameters, accretion
flow may contain either single or multiple critical points
[30, 74, and references therein]. A critical point that
forms close to the horizon is referred to as the inner crit-
ical point (rin), whereas a critical point situated further
from the horizon is referred to as the outer critical point
(rout). It is worth mentioning that the presence of multi-
ple critical points is a prerequisite for triggering a shock
transition in an accretion flow around black hole [29].

III. RESULTS

A. Global Transonic Accretion Solutions

In Fig. 1, we illustrate typical examples of accretion
solutions, where Mach number (M = υ/Cs) is plot-
ted as function of radial coordinate (r). The dotted
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TABLE I: Details of the flow variables corresponding to the global transonic solutions presented in Fig. 1. In column 2 − 10,
conduction parameter (Φs), critical point location (rc), angular momentum at rc (λc), velocity at rc (υc), temperature at rc
(Θc), outer edge of the disk (redge), angular momentum at redge (λedge), velocity at redge (υedge), temperature at redge (Θedge)
are presented. See the text for more details.

Solution Φs rc λc υc Θc redge λedge υedge Θedge

(rg) (rgc) c (mec
2/kB) (rg) (rgc) c (mec

2/kB)

S1 0.0 1.452 1.980 0.3611 161.567 500 3.294 0.006898 1.67759

S2 0.0025 1.507 1.953 0.3642 165.545 500 3.294 0.006770 1.67784

S3 0.0049 1.570 1.928 0.3647 165.993 500 3.294 0.006653 1.67807

S4 0.006 57.691 1.955 0.0816 5.244 500 3.294 0.006547 1.67827

FIG. 1: Plot of Mach number (M = υ/Cs) of the accreting
flow as function of radial coordinate (r) for different conduc-
tion parameters (Φs). Flows are injected from the outer edge
of the disk redge = 500 with λedge = 3.294, Eedge = 1.0036,
and α = 0.01 on to a black hole of spin ak = 0.99. Flow solu-
tions depicted using dotted (black), dashed (blue), and dot-
dashed (green) are obtained for Φs = 0.0 (S1), 0.0025 (S2)
and 0.0049 (S3), while solid (red) curve denotes solution cor-
responding to Φs = 0.006 (S4). Critical points are marked
(rin and rout) in the figure. Insets (a) and (b) zoom the loca-
tions of the critical points for clarity, and inset (c) illustrates
the pressure profiles. See the text for details.

(black) curve denotes accretion solution that connects
the black hole horizon with the outer edge of the disk
redge = 500 and it passes through the inner critical point
at rin = 1.452 with angular momentum λin = 1.980,
α = 0.01 and Φs = 0.0 while accreting on to a black hole
of spin ak = 0.99. For this solution, we note the perti-
nent flow variables at the outer boundary as λedge, υedge,
Θedge. Interestingly, when the integration (equations (11)
and (12)) is carried toward the horizon using the afore-
mentioned outer boundary values, an identical solution
(S1) is obtained. We calculate the local specific energy
(hereafter energy) of the flow as E = (υ2/2)+log(h)+Φeff

e

and at redge we have Eedge = 1.0036. Next, we switch on
thermal conduction by setting Φs = 0.0025 while keeping
the remaining model parameters unchanged at redge as
λedge = 3.294, Eedge = 1.0036, α = 0.01, and calculate
global transonic accretion solutions by suitably tuning
υedge and Θedge. The obtained result is plotted using
dashed curve (S2, blue) that passes through the inner
critical point at rin = 1.507. Note that rin is shifted out-
ward with increasing Φs (see inset (a)) and these find-
ings are in agreement with the results reported by [24].
Upon increasing the saturation constant (Φs), we con-
tinue to obtain the similar solutions containing rin up
to the limiting value Φs = 0.0049 (denoted as S3, dot-
dashed in green). Beyond this value, the global accretion
solution changes its overall character as it passes through
the outer critical point (rout) instead of the inner critical
point (rin). An example of such a solution is obtained
for Φs = 0.006, which passes through rout = 57.691 (see
inset (b)). This solution (S4) is depicted in the figure
with a solid (red) curve. Based on the above findings, we
indicate that thermal conduction plays a decisive role in
determining the nature of the accretion solutions, specif-
ically whether it passes through rin or rout. The details
of the flow variables measured at the critical point (rin

or rout) and the outer edge of the disk (redge) for these
global transonic accretion solutions are presented in Ta-
ble I. Additionally, we compute the total pressure (Π) of
the accretion solutions S1, S2 and S3, and present the re-
sults obtained in the inset (c). We find that for a fixed r,
Π increases with Φs. This happens because increasing the
saturated conduction (Φs) leads to more heat flow from
the inner hotter regions, resulting in a local increase in
both temperature and gas pressure [16].

Since the behavior of the accretion solutions passing
through the inner (rin) and outer (rout) critical points
is characteristically different, it is useful to examine the
profiles of the flow variables for these solutions. Ac-
cordingly, we compare the radial variation of the flow
variables, namely the flow radial velocity (υ), the sound
speed (Cs), the temperature in Kelvin (T ) and disk scale
height (H/r), and depict the obtained results in Fig. 2,
where the dashed (blue) and solid (red) curves denote
the results corresponding to the accretion solutions S2

and S4 presented in Fig. 1. We observe that υ of S2 re-
mains lower compared to the same of S4 particularly in
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FIG. 2: Comparison of (a) radial velocity υ, (b) sound speed
Cs, (c) temperature T , and (d) disk scale height H/r for solu-
tions obtained for different Φs. Dashed (blue) and solid (red)
curves represent results for solutions labeled S2 and S4 in Fig.
1. Filled circles denote critical points (rin and rout). See the
text for details.

the subsonic region (r . 100), despite that both solutions
start with comparable radial velocity from redge = 500 as
shown in panel (a). In order to preserve the conservation
of mass flux (see equation (2)), the density (ρ) of the flow
for S2 increases, leading to an increase in both the radial
profile of the sound speed (Cs, panel b) and the flow tem-
perature (T , panel c). This ultimately results in a higher
disk-scale height H/r, causing a relatively thicker inner
disk geometry for S2.

Next, we highlight another distinct characteristic fea-
tures of transonic accretion solutions around rotating
black hole. In Fig. 3, we demonstrate the Mach num-
ber (M) profile of the accretion solutions passing through
the inner critical point (rin) for different conduction pa-
rameter values Φs. Here, we fix the model parameters
at rin = 1.667 as λin = 1.903, α = 0.01 and ak = 0.99.
In panel (a), we set Φs = 0.0 and find that the sub-
sonic accretion flow (S5) from redge = 500 enters the
black hole supersonically after crossing the inner critical
point. Thereafter, we increase the thermal conduction as
Φs = 0.006 and because of that flow solution (S6) be-
comes closed [see 30, for details] for the same model pa-
rameters as shown in panel (b). This findings evidently
indicate that for a set of model parameters, there exist
a critical saturation constant (Φcri

s ) for which open solu-
tions becomes closed. We elaborately discuss the signifi-
cance of the critical saturation constant in Section III D.
It is noteworthy that accretion solution of this kind fails

FIG. 3: Modification of accretion solutions (M vs. r) passing
through the inner critical point (rin) for increasing conduction
parameter Φs. Here, we choose rin = 1.667, λin = 1.903,
α = 0.01, and ak = 0.99. In panels (a), (b) and (c), results
are depicted for Φs = 0.0, 0.006 and 0.03, respectively. See
the text for details.

to connect the outer edge of the disk unless it joins with
another accretion solution (similar to S4 of Fig. 1) via
shock transition resulting in a shock-induced global ac-
cretion solutions around black hole (see section III B).
As thermal conduction increases gradually, the closed
solution shrinks further, as illustrated in panel (c) for
Φs = 0.03 (S7), and ultimately vanishes for Φs > 0.11.

B. Shock-induced Global Accretion Solutions

As outlined in the previous section III A, rotating ac-
cretion flows around black hole may harbor shock waves
[25–27, 34, 42, 75, and references therein] reminiscent of
those observed in solar winds [76]. In a realistic sce-
nario, subsonic accretion flow first passes through the
outer critical point (rout) and continues to proceed to-
wards the horizon supersonically. Meanwhile, rotating
flow starts experiencing centrifugal repulsion that even-
tually triggers the discontinuous transition of the flow
variables at the subsonic branch in the form of shock
waves. The post-shock flow gradually picks up its ve-
locity and eventually enters the black hole supersonically
after passing through the inner critical point (rin). In-
deed, the formation of standing shock is possible provided
the Rankine-Hugoniot conditions (RHCs) [77] are satis-
fied. In this work, we employ RHCs across the shock
front which are expressed as the conservation of (a) mass

flux: Ṁ− = Ṁ+, (b) energy flux : E− = E+ and (c) mo-
mentum flux: Π− = Π+. Here, we consider the shock to
be thin, and ‘−’ and ‘+’ refer the quantities measured
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FIG. 4: Example of complete global accretion solution around
black hole containing shock. In panel (a), the variation of
Mach number (M) with the radial coordinate (r) is shown for
Φs = 0.006. Here, RHCs join S4 of Fig. 1 and S6 of Fig. 3
at rs = 16.142 (vertical arrow) to yield shock-induced global

accretion solution. In panel (b), entropy accretion rate (Ṁ)
is plotted with r for the solution presented in panel (a). Filled
circles denote the critical points (rin and rout). See the text
for details.

across the shock front. Furthermore, in absence of any
excess torque at the shock radius, we presume that the
angular momentum remains continuous across the shock
front, although this assumption may be violated in pres-
ence of structured magnetic fields [27, 34, and references
therein].

In Fig. 4a, we present an example of a shock-induced
global accretion solution around a rapidly rotating black
hole (ak = 0.99) in the presence of thermal conduc-
tion. We find that a transonic accretion solution pass-
ing through rout = 57.691 (S4 in Fig. 1) experiences a
shock transition at rs = 16.142 as the RHCs are satisfied
there and jumps into the subsonic branch of another so-
lution (S6 in Fig. 3) avoiding dashed part of S4 solution.
After the shock, the subsonic flow gradually gains speed
as it progresses inwards and ultimately plunges into the
black hole supersonically after passing through the inner
critical point rin = 1.667 (see Fig. 3b). This happens be-

cause the entropy accretion rate (Ṁ) in the post-shock

FIG. 5: Plot of Mach number (M) with radial coordinate
(r) for flows injected from redge = 500 with λedge = 2.351,
Eedge = 1.0015, and α = 0.01 around a rapidly rotating black
hole of ak = 0.99. The conduction parameter (Φs) and cooling
parameter (fc) are marked in the figure and the corresponding
shock radii are obtained as rs = 8.486 (solid), 11.637 (dotted),
14.619 (dashed) and 18.548 (dot-dashed). Critical points are
zoomed at the insets for clarity. See the text for details.

flow is greater than the pre-shock flow, as depicted in
Fig 4b, and high-entropy solutions are thermodynam-
ically preferred [31]. In the figure, the vertical arrow
marks the shock transition radius, while the other ar-
rows show the direction of the flow moving towards the
black hole. Due to shock compression, the convergent
post-shock flow becomes hot and dense yielding a puffed
up inner disk (equivalently post-shock corona, hereafter
PSC [41]). In order to quantify the density compression
across the shock front, we compute the compression ratio
defined as R = Σ+/Σ−, and obtain R = 1.68. In addi-
tion, we also calculate the shock strength (Ψ = M−/M+)
which determines the temperature jump across the shock
and find Ψ = 1.91. Notably, when the soft photons from
the cooler pre-shock flow interact with the hot electrons
of the PSC, they undergo inverse Comptonization, re-
sulting in the production of hard X-rays. This conjecture
clearly indicates that the emission of high-energy radia-
tion from black hole sources is inherently influenced by
the characteristics of the PSC, i.e., rs, R and Ψ, respec-
tively.

Since the shock radius determines the size of the PSC,
it is useful to study the effect of thermal conduction in
regulating the shock formation around the rapidly rotat-
ing black hole. Towards this, in Fig. 5, we illustrate how
the shock radius alters due to the increase of the con-
duction parameter (Φs) for flows with fixed outer bound-
ary. We inject matter subsonically from redge = 500 with
Eedge = 1.0015, λedge = 2.351, α = 0.01, and fc = 1.0
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TABLE II: Details of the shock-induced global accretion so-
lution in presence of thermal conduction. Column 1 − 9 re-
fer conduction parameter (Φs), cooling parameter (fc), inner
critical point (rin), angular momentum at rin (λin), outer crit-
ical point (rout), angular momentum at rout (λout), shock ra-
dius (rs), compression ratio (R), and shock strength(Ψ) for
shocked solutions presented in Figure-5. See the text for de-
tails.

Φs fc rin λin rout λout rs R S

(rg) (rgc) (rg) (rgc) (rg)

0.0 1.0 1.602 1.932 150.549 2.037 8.486 2.65 3.60

0.008 1.0 1.622 1.9106 127.644 2.003 14.619 2.30 2.91

0.008 0.5 1.633 1.9109 128.759 2.004 11.637 2.41 3.13

0.011 0.5 1.643 1.901 119.085 1.987 18.548 2.13 2.62

into a black hole of spin ak = 0.99. For Φs = 0.0, the
flow crosses the outer critical point at rout = 150.549 to
become supersonic and experiences a shock transition at
rs = 8.486 (solid vertical arrow) as the RHCs are satis-
fied there. Here, we obtain R = 2.65 and Ψ = 3.60. As
the thermal conduction is turned on (Φs = 0.008) keep-
ing the other model parameters unchanged, we observe
that shock front is pushed outward and it settles down
to a larger radius at rs = 14.619 as shown using dashed
vertical arrow. Due to thermal conduction, the local ther-
mal pressure of the accreting flow is increased (see Fig.
1), which eventually pushes the shock front outward to
maintain the pressure balance across it. For this shocked
solution, we obtain R = 2.30 and Ψ = 2.91. Next, we
turn on parametric cooling by setting fc = 0.5 and ob-
serve that the shock front shifts towards the horizon, with
a radius of rs = 11.637, as shown by the dotted verti-
cal arrow. This is not surprising, as cooling reduces the
post-shock pressure, yielding the shock to move inward.
When the conduction parameter is further increased to
Φs = 0.011 with cooling (fc = 0.5), the shock moves
outward to rs = 18.548 (as indicated by the dot-dashed
vertical arrow), as expected. Beyond a critical value of
conduction parameter Φcri

s = 0.011, shock disappears as
RHCs are not satisfied. These findings clearly indicate
that thermal conduction plays a crucial role in shock for-
mation within a dissipative accretion flow around a ro-
tating black hole. We present the model parameters and
the obtained shock properties in Table II.

In Fig. 6, we depict the variation of the shock proper-
ties, namely shock radius rs (panel a), compression ratio
R (panel b), and shock strength Ψ (panel c), as func-
tion of conduction parameter Φs for different viscosity
parameters (α). Here, we fix the outer boundary param-
eters as Eedge = 1.0015, λedge = 2.351 at redge = 500 in
all cases and choose ak = 0.99. In each panel, the aster-
isks, squares, and circles connected by solid lines repre-
sent results obtained for viscosity parameters α = 0.009,
0.0095, and 0.01, respectively, with fc = 1.0. We ob-
serve that standing shocks continue to form across a wide

FIG. 6: Variation of (a) shock location rs, (b) compression
ratio R and (c) shock strength Ψ with conduction parameter
Φs for different viscosity parameter α. Here, flows are injected
from the fixed outer edge redge = 500 with same Eedge =
1.0015 and λedge = 2.351. Asterisks, squares and circles joined
with solid lines denote results for α = 0.009, 0.0095 and 0.01,
respectively when cooling is absent (fc = 1.0). Similarly, in
presence of cooling (fc = 0.5), dotted, dashed and dot-dashed
curves represent results for α = 0.009, 0.0095 and 0.01. See
the text for details.

range of conduction parameters (Φs) in a viscous accre-
tion flow around a rapidly rotating black hole. We also
notice that for a fixed α, shock front moves further out
with the increase of Φs, as the gas pressure is enhanced
due to the increase of thermal conduction. Intriguingly,
once Φs exceeds a critical value (Φs > Φcri

s ), the shock
disappears because the RHCs are no longer satisfied. No-
tably, Φcri

s does not have an universal value as it depends
on the other model parameters (see §3.4). Moreover,
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FIG. 7: Modification of the parameter space for standing
shock due to different sets of Φs and fc. Effective regions
bounded with solid and dashed curves are obtained in ab-
sence and presence of cooling. Here, we choose α = 0.01 and
ak = 0.99. See the text for details.

we find that for a given Φs, when the effect of viscos-
ity is weak, shock forms at larger radii for flows with
fixed energy and angular momentum at the outer edge.
This happens because lower viscosity effectively dimin-
ishes the angular momentum transport outward resulting
in a stronger centrifugal barrier and hence shock front
settles at larger radii. This findings indicates that shocks
are mainly centrifugally supported. Next, we turn on the
parametric cooling (fc = 0.5) keeping the other model
parameters unchanged, and observe that shock forms at
relatively smaller radii. The results are shown using dot-
ted, dashed, and dot-dashed curves, which are obtained
for α = 0.009, 0.0095 and 0.01, respectively. Interest-
ingly, Φcri

s is found to be higher for lower values of fc,
irrespective of the viscosity parameter α. In panel (b)
and (c), we present the variation of the compression ra-
tio R and shock strength Ψ as function of Φs for the same
set of model parameters used in panel (a). We find that
for fixed α, both R and Ψ are decreased with the increase
of Φs regardless of whether cooling is present or absent.
We observe a cut-off in R and Ψ when shock ceases to
exit for Φs > Φcri

s .

C. Shock Parameter Space in energy-angular
momentum plane

As outlined in §III B that shock continues to form in a
dissipative accretion flow even in presence of significant
thermal conduction. Hence, it is important to investi-
gate the ranges of model parameters that admit shock-
induced global accretion solution when thermal conduc-
tion is taken into account. To this end, we examine the

ranges of energy (Ein) and angular momentum (λin) of the
flow measured at the inner critical point (rin) that render
shocked solutions. This is done simply because, for a dis-
sipative accretion flow around rapidly rotating black hole
(ak = 0.99), the feasible ranges of the inner critical point
and the angular momentum at the inner edge are exceed-
ingly narrow [rin . 2; 1.5 . λin . 3; 34, 78]. Accordingly,
in Fig. 7, we separate the region of the parameter space in
λin−Ein plane that allows standing shocks in dissipative
accretion flow and study how the shock parameter space
alters for increasing conduction and cooling parameters
(Φs, fc). Here, we choose α = 0.01 and ak = 0.99. In the
figure, conduction parameter (Φs) and cooling parameter
(fc) are marked, where the regions bounded with solid
and dashed curves are obtained in absence (fc = 1.0)
and presence (fc = 0.5) of cooling. We observe that in-
creasing the conduction parameter (Φs) in the absence
of parametric cooling shifts the effective region of the
parameter space toward lower angular momentum and
higher energy domains. This shift is expected because
higher thermal conduction raises the gas pressure, which
in turn enhances angular momentum transport (see equa-
tion (6)). When cooling is activated (fc = 0.5) within the
disk, the energy of the flow decreases, causing the shock
parameter space to shift toward lower energy regions, as
illustrated by the dashed curve.

D. Critical Conduction Parameter for Standing
Shock

Meanwhile, we have pointed out that when the conduc-
tion parameter (Φs) exceeds a critical value (Φs > Φcri

s ),
the accretion flow doesn’t sustain shock waves because
RHCs become unfavorable. Indeed, Φcri

s is largely de-
pends on the other model parameters. Therefore, we de-
termine Φcri

s as function of black hole spin (ak), consider-
ing both cases with and without cooling. Here, we keep
the viscosity parameter fixed as α = 0.01, and freely vary
energy (Ein) and angular momentum (λin) at the inner
critical point (rin). The obtained results are presented
in Fig. 8a, where open circles joined with solid lines
denote the variation of Φcri

s corresponding to fc = 1.0,
whereas open squares connected with dotted lines refers
the same for fc = 0.5. Figure evidently suggests that
shock-induced global accretion solutions continue to ex-
ist for wide range of Φs, and Φcri

s increases with ak.
Moreover, our findings reveals that the critical conduc-
tion parameter Φcri

s consistently exhibits higher values
when cooling is active within the flow. In particular, we
find that in absence of cooling fc = 1.0, Φcri

s = 0.029
(0.0401) for non-rotating black hole of ak = 0.0 (rapidly
rotating black hole of ak = 0.99). Similarly, when cool-
ing is present fc = 0.5, we obtain Φcri

s = 0.03 (0.0409)
for ak = 0.0 (0.99). This findings suggest that dissipa-
tive accretion flows around rapidly rotating black holes
continue to harbour shocks even in presence of higher
thermal conduction and vice versa.
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FIG. 8: Panel(a): Variation of Φcri
s with black hole spin (ak) for flows with α = 0.01. Open circles and squares joined with

solid and dashed lines denote results in absence (fc = 1.0) and presence (fc = 0.5) of cooling. Panel (b): Variation of Φcri
s

with viscosity parameter (α) for different ak values. Open circles and squares joined with solid and dashed lines are for weakly
rotating (ak = 0.0) and rapidly rotating (ak = 0.99) black holes. Here, we choose fc = 1.0. See the text for details.

Furthermore, we investigate how thermal conduction
influences the possibility of shock transitions in dissi-
pative accretion flows characterized by different viscos-
ity. In doing so, we follow the same approach delineated
above, and obtain Φcri

s for increasing values of α keeping
the black hole spin (ak) fixed. Here, we choose fc = 1.0
disregarding any cooling effects. The obtained results
are depicted in Fig. 8b, where open circles connected
with solid line are for ak = 0.0, and open squares joined
with dashed lines are for ak = 0.99. We observe that
Φcri

s monotonically decreases with the increase of α ir-
respective to ak values. This happens due to the com-
bined effects of thermal conduction and viscosity that
maintains the level of dissipation favourable to trigger
the shock transition inside the accretion flow around ro-
tating black holes. We also observe that shocks disap-
pear at relatively lower viscosity (α = 0.065) for weakly
rotating black holes (ak → 0), while for rapidly rotating
(ak → 1) black holes, shocks persist even at higher values
as α = 0.104.

IV. CONCLUSION

In this paper, we address for the first time the effects of
thermal conduction on the shock-induced viscous advec-
tive accretion flows around weakly rotating (ak → 0) as
well as rapidly rotating (ak → 1) black holes in presence
of cooling. By adopting a pseudo-Kerr effective poten-
tial that satisfactorily describes the spacetime geometry
around rotating black hole, and incorporating the rela-
tivistic equation of state (REoS), we solve the governing
flow equations and find that thermal conduction plays an

important role in triggering the shock transition and in-
fluencing its characteristics, namely shock location (rs),
compression ratio (R) and shock strength (Ψ), respec-
tively. Below, we summarize the key findings of this work
point wise.

• We self-consistently calculate the global transonic
accretion solutions around rotating black holes tak-
ing into account the effects of thermal conduction.
We observe that, depending on the conduction pa-
rameter (Φs), the accretion flow with a fixed outer
boundary either passes through the inner (rin) or
the outer (rout) critical point before entering into
the black hole (see Fig. 1).

• We find that accretion solutions passing through
rout undergo a shock transition, provided the
Rankine-Hugoniot conditions (RHCs) are satisfied
[77]. This happens because shocked solutions pos-
sess higher entropy compared to shock-free solu-
tions [31](see Fig. 4). We also observe that for a
given set of model parameters (E , λ, α, and ak),
an increase in the conduction parameter causes the
shock to form farther from the black hole. When
cooling is turned on, the shock front moves in-
ward as the post-shock flow is cooled down more
efficiently, leading to a reduction in thermal pres-
sure and causing the shock front to settle down at
smaller radii (see Fig. 5).

• The properties of the post-shock flow (i.e., PSC) -
such as its size, temperature, and density - explic-
itly depend on the shock location (rs), compression
ratio (R) and shock strength (Ψ). We observe that
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these quantities are eventually regulated by ther-
mal conduction (see Fig. 6). Indeed, due to shock
transition, post-shock flow (PSC) becomes hot and
puffed up containing swarm of hot electrons. When
soft photons from the pre-shock flow are intercepted
at the PSC, they are reprocessed via inverse Comp-
tonization processes to produce hard X-ray radia-
tions. These high energy radiations are commonly
observed from black hole X-ray binaries [60–63, 65].
Since PSC properties are regulated by Φs, we argue
that thermal conduction seems to play important
role in influencing the spectral properties of black
holes.

• Furthermore, we find that shock-induced accretion
solutions are not isolated solutions, rather they are
consistently found over a wide range of model pa-
rameters (Ein, λin, α, Φs and ak). Accordingly, for
different Φs and fc, we identify the effective region
of the parameter space spanned by λin and Ein that
allows transonic global accretion solutions contain-
ing shocks around rapidly rotating black holes (see
Fig. 7). We observe that parameter space alters
due to the increase of conduction parameter (Φs)
and cooling parameter (fc). It is important to note
that thermal conduction and cooling have oppos-
ing effects on determining the parameter space for
stationary shock waves.

• We calculate the critical conduction parameter
(Φcri

s ), beyond which shocked accretion solutions no
longer exist. We find that Φcri

s is correlated with

ak, where, in absence of cooling, Φcri
s = 0.0401

for a rapidly rotating black hole (ak → 1) and
Φcri

s = 0.029 for a non-rotating black hole (ak = 0).
Additionally, we observe that Φcri

s is higher when
cooling is present compared to the scenario with-
out cooling. Furthermore, for a fixed ak, Φcri

s is
seen to decrease monotonically with the increase of
viscosity parameter α (see Fig. 8).

Finally, we mention the limitations of this study, which
is developed based on certain assumptions. For simplic-
ity, we use parametric cooling [5] instead of incorporat-
ing realistic radiative processes, such as bremsstrahlung,
synchrotron, and Compton cooling. We neglect the ef-
fects of magnetic fields and do not account for mass loss
from the accretion disk. Indeed, all these physical pro-
cesses are relevant in the context of the accretion disc
dynamics. However. we argue that the key findings of
this study are expected to remain qualitatively consistent
despite these approximations.
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reasonable request.

Acknowledgements

Authors thank the Department of Physics, IIT Guwa-
hati, India for providing the infrastructural support to
carry out this work.

[1] J. Frank, A. King, and D. J. Raine, Accretion Power
in Astrophysics: Third Edition (Cambridge, UK: Cam-
bridge University Press, 2002).

[2] N. I. Shakura and R. A. Sunyaev, Astronomy and Astro-
physics 500, 33 (1973).

[3] I. D. Novikov and K. S. Thorne, in Black Holes (Les
Astres Occlus) (New York: Gordon & Breach, 1973), pp.
343–450.

[4] M. A. Abramowicz, B. Czerny, J. P. Lasota, and
E. Szuszkiewicz, ApJ 332, 646 (1988).

[5] R. Narayan and I. Yi, ApJ 428, L13 (1994), astro-
ph/9403052.

[6] R. Narayan and I. Yi, ApJ 452, 710 (1995), astro-
ph/9411059.

[7] A. A. Esin, J. E. McClintock, and R. Narayan, ApJ 489,
865 (1997), astro-ph/9705237.

[8] J. M. Hameury, J. P. Lasota, J. E. McClintock, and
R. Narayan, ApJ 489, 234 (1997), astro-ph/9703095.

[9] F. Yuan and W. Cui, ApJ 629, 408 (2005), astro-
ph/0411770.

[10] B. F. Liu, C. Done, and R. E. Taam, ApJ 726, 10 (2011),
1011.2580.

[11] C. S. Reynolds, T. Di Matteo, A. C. Fabian, U. Hwang,
and C. R. Canizares, MNRAS 283, L111 (1996), astro-
ph/9610097.

[12] T. Manmoto, S. Mineshige, and M. Kusunose, ApJ 489,
791 (1997), astro-ph/9708234.

[13] F. Yuan and R. Narayan, ARA&A 52, 529 (2014),
1401.0586.

[14] G. Younes, A. Ptak, L. C. Ho, F.-G. Xie, Y. Terasima,
F. Yuan, D. Huppenkothen, and M. Yukita, ApJ 870, 73
(2019), 1811.10657.

[15] S. Ichimaru, ApJ 214, 840 (1977).
[16] T. Tanaka and K. Menou, ApJ 649, 345 (2006), astro-

ph/0604509.
[17] B. M. Johnson and E. Quataert, ApJ 660, 1273 (2007),

astro-ph/0608467.
[18] M. Shadmehri, Astrophysics and Space Science 317, 201

(2008), 0808.0245.
[19] K. Faghei, MNRAS 420, 118 (2012), 1111.3569.
[20] F. Khajenabi and M. Shadmehri, MNRAS 436, 2666

(2013), 1309.5710.
[21] S. M. Ghoreyshi and M. Shadmehri, Monthly Notices

of the Royal Astronomical Society 493, 5107 (2020),
2003.04752.

[22] A. Mosallanezhad, F. Z. Zeraatgari, L. Mei, and D.-F.
Bu, ApJ 909, 140 (2021), 2101.08006.

[23] D.-F. Bu, M.-C. Wu, and Y.-F. Yuan, MNRAS 459, 746
(2016), 1603.07407.

[24] S. Mitra, S. M. Ghoreyshi, A. Mosallanezhad, S. Abbassi,



11

and S. Das, Monthly Notices of the Royal Astronomical
Society 523, 4431 (2023), 2306.02453.

[25] S. Mitra and S. Das, arXiv e-prints arXiv:2405.16326
(2024), 2405.16326.

[26] J. Fukue, PASJ 39, 309 (1987).
[27] S. K. Chakrabarti, ApJ 347, 365 (1989).
[28] S. K. Chakrabarti, ApJ 464, 664 (1996), astro-

ph/9606145.
[29] S. Das, I. Chattopadhyay, and S. K. Chakrabarti, ApJ

557, 983 (2001), astro-ph/0107046.
[30] S. Das, MNRAS 376, 1659 (2007), astro-ph/0610651.
[31] P. A. Becker and D. Kazanas, The Astrophysical Journal

546, 429 (2001), astro-ph/0101020.
[32] R. Yang and M. Kafatos, A&A 295, 238 (1995).
[33] J.-F. Lu, W.-M. Gu, and F. Yuan, ApJ 523, 340 (1999),

astro-ph/9905099.
[34] S. K. Chakrabarti and S. Das, MNRAS 349, 649 (2004),

astro-ph/0402561.
[35] T. Le and P. A. Becker, ApJ 617, L25 (2004), astro-

ph/0411801.
[36] K. Fukumura and S. Tsuruta, ApJ 611, 964 (2004),

astro-ph/0405269.
[37] P. A. Becker, S. Das, and T. Le, ApJ 677, L93 (2008),

0907.0872.
[38] S. Das, P. A. Becker, and T. Le, ApJ 702, 649 (2009),

0907.0875.
[39] R. Kumar, C. B. Singh, I. Chattopadhyay, and S. K.

Chakrabarti, MNRAS 436, 2864 (2013), 1310.0144.
[40] B. Sarkar and S. Das, MNRAS 461, 190 (2016),

1606.00526.
[41] R. Aktar, S. Das, A. Nandi, and H. Sreehari, MNRAS

471, 4806 (2017), 1707.07511.
[42] I. K. Dihingia, S. Das, and A. Nandi, Monthly Notices

of the Royal Astronomical Society 484, 3209 (2019),
1901.04293.

[43] G. Sen, D. Maity, and S. Das, J. Cosmology Astropart.
Phys. 2022, 048 (2022), 2204.02110.

[44] M. Singh and S. Das, Ap&SS 369, 1 (2024), 2312.16001.
[45] S. K. Chakrabarti and D. Molteni, ApJ 417, 671 (1993),

astro-ph/9310042.
[46] D. Molteni, G. Lanzafame, and S. K. Chakrabarti, ApJ

425, 161 (1994), astro-ph/9310047.
[47] D. Molteni, D. Ryu, and S. K. Chakrabarti, ApJ 470,

460 (1996), astro-ph/9605116.
[48] D. Ryu, S. K. Chakrabarti, and D. Molteni, ApJ 474,

378 (1997), astro-ph/9607051.
[49] G. Lanzafame, D. Molteni, and S. K. Chakrabarti, MN-

RAS 299, 799 (1998), astro-ph/9706248.
[50] S. Das, I. Chattopadhyay, A. Nandi, and D. Molteni,

MNRAS 442, 251 (2014), 1405.4415.
[51] T. Okuda and S. Das, MNRAS 453, 147 (2015),

1507.04326.
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[54] P. Suková, S. Charzyński, and A. Janiuk, MNRAS 472,

4327 (2017), 1709.01824.
[55] J. Kim, S. K. Garain, S. K. Chakrabarti, and D. S. Bal-

sara, MNRAS 482, 3636 (2019), 1810.12469.
[56] T. Okuda, C. B. Singh, S. Das, R. Aktar, A. Nandi, and

E. M. d. G. Dal Pino, PASJ 71, 49 (2019), 1902.02933.
[57] I. Palit, A. Janiuk, and P. Sukova, MNRAS 487, 755

(2019), 1905.02289.

[58] S. Debnath, I. Chattopadhyay, and R. K. Joshi, MNRAS
528, 3964 (2024), 2401.07786.

[59] TianLe-Zhao, XiaoFeng-Li, ZeYuan-Tang, and R. Ku-
mar, arXiv e-prints arXiv:2407.01859 (2024), 2407.01859.

[60] S. Chakrabarti and L. G. Titarchuk, ApJ 455, 623
(1995), astro-ph/9510005.

[61] A. Nandi, D. Debnath, S. Mandal, and S. K. Chakrabarti,
A&A 542, A56 (2012), 1204.5044.

[62] N. Iyer, A. Nandi, and S. Mandal, ApJ 807, 108 (2015),
1505.02529.

[63] A. Nandi, S. Mandal, H. Sreehari, D. Radhika, S. Das,
I. Chattopadhyay, N. Iyer, V. K. Agrawal, and R. Aktar,
Ap&SS 363, 90 (2018), 1803.08638.

[64] S. Das, A. Nandi, V. K. Agrawal, I. K. Dihingia, and
S. Majumder, MNRAS 507, 2777 (2021), 2108.02973.

[65] S. Majumder, S. Das, V. K. Agrawal, and A. Nandi, MN-
RAS 526, 2086 (2023), 2309.11182.

[66] Event Horizon Telescope Collaboration, K. Akiyama,
J. C. Algaba, A. Alberdi, W. Alef, R. Anantua, K. Asada,
R. Azulay, A.-K. Baczko, D. Ball, et al., ApJ 910, L13
(2021), 2105.01173.

[67] Event Horizon Telescope Collaboration, K. Akiyama,
A. Alberdi, W. Alef, J. C. Algaba, R. Anantua, K. Asada,
R. Azulay, U. Bach, A.-K. Baczko, et al., ApJ 930, L16
(2022).

[68] E. Quataert, ApJ 673, 758 (2008), 0710.5521.
[69] I. K. Dihingia, S. Das, D. Maity, and S. Chakrabarti,

Phys. Rev. D 98, 083004 (2018), 1806.08481.
[70] H. Riffert and H. Herold, ApJ 450, 508 (1995).
[71] J. Peitz and S. Appl, MNRAS 286, 681 (1997), astro-

ph/9612205.
[72] L. L. Cowie and C. F. McKee, ApJ 211, 135 (1977).
[73] I. Chattopadhyay and D. Ryu, ApJ 694, 492 (2009),

0812.2607.
[74] S. Das, A. Nandi, V. K. Agrawal, I. K. Dihingia, and

S. Majumder, MNRAS 507, 2777 (2021), 2108.02973.
[75] J. Fukue, MNRAS 483, 2538 (2019).
[76] T. E. Holzer and W. I. Axford, ARA&A 8, 31 (1970).
[77] L. D. Landau and E. M. Lifshitz, Fluid mechanics (New

York: Pergamon, 1959).
[78] S. K. Chakrabarti, Theory of Transonic Astrophysical

Flows (World Scientific Publishing, 1990).

Appendix: Derivation of wind equation

After some algebra, the radial momentum, azimuthal
momentum and entropy generation equations read as,

R0 +Rυ
dυ

dr
+RΘ

dΘ

dr
+Rλ

dλ

dr
= 0,

L0 + Lυ
dυ

dr
+ LΘ

dΘ

dr
+ Lλ

dλ

dr
= 0,

E0 + Eυ
dυ

dr
+ EΘ

dΘ

dr
+ Eλ

dλ

dr
= 0.

After further simplification, we have,

dυ

dr
=
N
D
,
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dΘ

dr
= Θ1 + Θ2

dυ

dr
,

dλ

dr
= λ1 + λ2

dυ

dr
,

where

N = Eλ (−RΘL0 +R0LΘ) + EΘ (RλL0 −R0Lλ)

+ E0 (−RλLΘ +RΘLλ) ,

D = Eλ (RΘLυ −RυLΘ) + EΘ (−RλLυ +RυLλ)

+ Eυ (RλLΘ −RΘLλ) .

The expressions of the coefficients used in the above
equations are given by,

Θ1 =
Θ11

Θ33
, Θ2 =

Θ22

Θ33
, λ1 =

λ11

Θ33
, λ2 =

λ22

Θ33
,

Θ11 =EλL0 − E0Lλ, Θ22 = EλLυ − EυLλ,
Θ33 =− EλLΘ + EΘLλ,

λ11 = −EΘL0 + E0LΘ, λ22 = −EΘLυ + EυLΘ,

R0 =
dΦeff

e

dr
− 3Θ

rτh
+
F3Θ

τF2h
− Θ

τ∆h

d∆

dr
,

RΘ =
1

τh
, Rλ =

F4Θ

τF2h
, Rυ = υ − 2Θ

τυh
,

E0 =
5Φs

2

(
2Θ

τ

)3/2(
1

r
− F3

F2
+

1

∆

d∆

dr

)
− rαυ2ω1

− 2rαΘω1

τ
+

3υΘ

rτ
− F3υΘ

τF2
+
υΘ

τ∆

d∆

dr
,

EΘ = −5Φs

Θ

(
2Θ

τ

)3/2

+
(1 + 2N) υ

τ

Eλ =
5ΦsF4

2F2

(
2Θ

τ

)3/2

− F4υΘ

τF2
− rυ2αω2 −

2rαΘω2

τ
,

Eυ =
5Φs

υ

(
2Θ

τ

)3/2

+
2Θ

τ
,

L0 =− 2αυ2 − 4αΘ

τ
+
rαυ2

2∆

d∆

dr
+
rαΘ

τ∆

d∆

dr
, LΘ = −2rα

τ
,

Lλ =υ, Lυ = −rαυ +
2rαΘ

τυ
,

F1 =

(
(r2 + a2

k)2 + 2∆a2
k

)
((r2 + a2

k)2 − 2∆a2
k)
, F2 =

1

(1− λΩ)
F1,

F3 =
F1λω1

(1− λΩ)2
+

1

1− λΩ

dF1

dr
, F4 =

F1Ω

(1− λΩ)2
+

F1λω2

(1− λΩ)2
,

dF2

dr
= F3 + F4

dλ

dr
,
dΩ

dr
= ω1 + ω2

dλ

dr
,

ω1 =−
2
(
a3

k + 3akr
2 + λ(akλ− 2a2

k + r2(r − 3))
)

(r3 + a2
k(r + 2)− 2akλ)

2 ,

ω2 =
r2
(
a2

k + r(r − 2)
)

(r3 + a2
k(r + 2)− 2akλ)

2 .
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