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We present the properties of relativistic, inviscid, low angular momentum, advective accretion flow in a f(R)
gravity theory that satisfactorily mimics the asymptotically flat vacuum solutions of the Einstein’s equations.
With this, we solve the governing equations describing the accretion flow and obtain the global transonic accre-
tion solutions in terms of flow energy (E), angular momentum (λ) and gravity parameter (A) that determines
the effect of f(R) gravity. We observe that depending on the model parameters, flow may contain either single
or multiple critical points. We separate the effective domain of the parameter space in λ − E plane that admits
accretion solutions possessing multiple critical points and observe that solution of this kind continues to form
for wide range of the flow parameters. We examine the modification of the parameter space and reveal that
it gradually shrinks with the decrease of A, and ultimately disappears for A = −2.34. Finally, we calculate
the disk luminosity (L) considering bremsstrahlung emission process and find that global accretion solutions
passing through the inner critical point are more luminous compared to the outer critical point solutions.

PACS numbers: —————–

I. INTRODUCTION

Accretion process around the black hole is considered as the
principle source to power the astrophysical objects, namely
micro quasars, active galactic nuclei and quasars [1]. As the
black holes classically do not emit anything, not even electro-
magnetic radiations, the study of the accretion flow in black
hole environment ought to provide the intrinsic imprints of
the central engine. Meanwhile, numerous works have been
performed on the study of accretion processes near the black
hole using different physical conditions [2–5, and references
therein]. However, only a handful of works were reported in
the context of hydrodynamical aspects of accretion flow in
modified gravity framework. In particular, major efforts were
given in studying the particle dynamics around braneworld
black holes [6, 7], slowly rotating black holes in dynamical
Chern-Simons modified gravity [8], and black holes in Hor̆ava
gravity [9, 10], to name a few. In addition, accretion physics
has also been studied in exotic backgrounds where the central
object is a boson star [11, 12], wormhole [13], gravastar [14],
quark star [15], and even a naked singularity [16, 17].

Indeed, black holes are one of the most simple compact ob-
jects with the strongest gravitational fields around them. They
are ubiquitous in the relativistic theory of gravity. Therefore,
testing the theory of gravity around such strong-field regime
is one of the ways to understand the theory properly. Towards
this, the general theory of relativity (GR) has been tested suc-
cessfully under various different situations [18]. However, GR
also has its own limitations and drawbacks. The theory fails
to explain the initial singularity in the cosmic history of the
Universe, existence of dark matter and dark energy, and the
singularity at the centre of the black holes. Among the above
mentioned facts, the acceleration of the Universe, which was
discovered by using type Ia supernovae [19] (see [20] for more
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details), still lacks a satisfactory explanation. This discovery,
despite having enormous implications in the field of cosmol-
ogy, also has great significance in fundamental physics. With
the help of WMAP and Planck results, it can be concluded
that if GR is the correct theory of gravity, then approximately
68% of the energy content of our Universe is not dark or lu-
minous matter, instead is a mysterious form of energy, known
as the dark energy. On the other hand, while the baryonic
matter content is 5%, the dark matter content of the Universe
is approximately 27%. Therefore, it perhaps will not be an
exaggeration to state that the present astrophysical and cos-
mological models are facing two crucial issues, namely the
dark energy problem (see [21] for a recent review), and the
dark matter problem [22], respectively.

So far, three main classes of models were proposed to un-
derstand the origin of cosmic acceleration, which are namely
the introduction of a cosmological constant Λ [23], different
models of the dark energy [21] and the modification of grav-
ity. Interestingly, the introduction of cosmological constant
in explaining the acceleration of the Universe requires an ex-
treme fine tuning, which seems very unlikely in a realistic sce-
nario. The second class i.e., the models of dark energy, within
the context of GR, requires the introduction of fluids with an
equation of state (EoS) P = −ε, where P and ε are the pres-
sure and energy density of the fluid, and EoS plays a crucial
role late in the matter dominated era. Needless to mention
that many such models were proposed, however most of them
were not physically convincing, and some are even problem-
atic from the fine tuning perspective. The third one, which is
the motivating force behind this work, is the modification of
gravity [24, 25, and references therein] instead of introducing
exotic matters in the theory.

One set of such models where the Ricci scalar (R) in the
Einstein-Hilbert action is replaced by an arbitrary analytic
function of R, known as the f(R) gravity models, have been
extensively studied in both astrophysical as well as cosmolog-
ical contexts [24–31]. One of the immediate implications of
such models was to examine the explanation of cosmic accel-
eration [32]. Indeed, every single form for f(R) may give rise
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to a new model of gravity, but it is crucial that these theories
are getting tested against observations. These observations
need not only be cosmological in character, it can also be as-
trophysical, or can be tests like perihelion shift of Mercury or
bending of light. Considering all these, we infer that the study
of accretion process around black holes in modified gravity
can provide a path way to test the gravity theories against ob-
servations. Meanwhile, some efforts were already given in
studying the accretion physics in the black hole backgrounds
of such f(R) gravity theories where particle dynamics [33–
35] around the black hole was considered.

With this, we mention the motivation of this work which is
two folds in nature. The first one is to study the accretion pro-
cess in a f(R) gravity background which is asymptotically flat
and the remaining one is to perform a complete hydrodynam-
ical study of the accretion process in f(R) modified gravity
scenario. It is worth mentioning at this point, that having an
asymptotically flat vacuum solution in the f(R) gravity is not
straightforward, instead it involves big challenge.

The vacuum solution of f(R) gravity for a static, spheri-
cally symmetric space-time were reported by various group
of researchers [36–39]. The axisymmetric solutions were also
obtained for such theories [40, 41]. However, for a large class
of spherically symmetric or axisymmetric models, either the
Schwarzschild-de Sitter metric turns out to be an exact solu-
tion of the field equations, or the metrics have some diverging
terms for which they can not be reduced to the Minkowski
form in the asymptotic limit. Meanwhile, the properties of
the accretion flow in the f(R) gravity with constant Ricci
scalar [35] were studied in such scenarios where asymptotic
flatness is not achieved. Very few works have focused on
the direction where exact asymptotically flat vacuum solutions
were obtained for different forms of the f(R) [42, 43]. Ac-
cordingly, we study one such asymptotically flat f(R) grav-
ity model [42] in the context of accretion processes around
black holes. At the same time, we also note that a complete
relativistic hydrodynamical study of the accretion phenomena
in the black hole background is also lacking in the literature,
with only a few exceptions [44–48]. Accordingly, we plan to
fill up this gap by considering hydrodynamic description of
the accretion flow in modified gravity backgrounds. We con-
sider a low angular momentum, inviscid accretion disk and
perform a fully relativistic hydrodynamical treatment in the
above mentioned modified gravity background. In doing so,
we assume relativistic equations of state (EoS) [49, 50] and
carry out the critical point analysis to obtain and classify the
critical points. Using the critical point properties, we solve
the governing equations to obtain the transonic global accre-
tion solutions in terms of the input parameters of the theory,
such as energy (E), angular momentum (λ), and gravity pa-
rameters (A) that regulates the gravity effect. Afterwards, we
study the parameter space in λ − E plane, where the bound-
ary of the parameter space indicates the ranges of parameters
that separate accretion solutions containing multiple critical
points. Finally, considering free-free emission, we estimate
the disk luminosity corresponding to the global accretion so-
lution and study its variation with input parameters.

The paper is organized as follows: in §II, we discuss the

modified gravity model that is used throughout the paper to
study the accretion disk properties. In §III, we present the
model formalism including assumptions and governing equa-
tions. In §IV, we discuss the accretion solutions in modified
gravity including all results. Finally, we conclude the paper
by giving a brief summary and outlook in §V.

II. DESCRIPTION OF MODIFIED GRAVITY

The energy-momentum tensor for the non-dissipative fluid
composed by ions and electrons is described by the following
equation:

Tµν = (e+ P )uµuν + Pgµν , (1)

where e, P and uµ are the energy density, pressure and four
velocity vector, respectively. Here, µ and ν represent com-
ponent of the coordinates (t, r, θ, φ), and in this work, gµν

refers the metric component which is described as gµν =
(gtt, grr, gθθ, gφφ). In order to understand the effect of mod-
ified gravity, we consider asymptotically flat spherically sym-
metric metric gµν = diag(−s(r), p(r), r2, r2 sin2 θ), where
metric component s(r) and p(r) are the functions of radial
coordinate r only. In this work, we adopt a model of modified
gravity which we describe below.

Following [42], we consider F (r) = df(R)/dR = 1+A/r,
which yields F (r) → 1 for r → ∞. Here, A is a parame-
ter (hereafter gravity parameter) with which gravity is being
modified. Indeed, the above choice of F (r) satisfies the cri-
teria of asymptotic flat vacuum solutions. Accordingly, the
metric components are given by,

s(r) = 1− 2MS

r
− A(−6MS +A)

2r2
+
A2(−66MS + 13A)

20r3

−A
3(−156MS + 31A)

48r4
+

3A4(−57MS + 11A)

56r5

−A
5(−360MS + 67A)

128r6
+ . . . ,

(2)

and

p(r) =
X(r)

s(r)
, (3)

where X(r) = 16r4

(A+2r)4 . Accordingly, f(R) is given by,

f(R(r)) = R+K1R
5/4 +K2R

3/2 + . . . , (4)

where K1 = 12
5.35/4

A3/4

(A−2)1/4
and K2 = 1

60
√

3

A3/2(A−12)
(A−2)3/2

.

III. MODEL FORMALISM

We begin with a steady, axisymmetric, inviscid, low an-
gular momentum, advective accretion flow that resides at the
equatorial plane of the central source [50–52]. In studying the
properties of the accretion flow, we adopt the theory of modi-
fied gravity and present the model equations and critical point
analysis in the subsequent sub-sections.
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A. Governing Equations for accretion flow

The conservation of the energy-momentum tensor and mass
flux provide the relevant hydrodynamical equations that de-
scribe the flow and are given by,

Tµν;ν = 0, and (ρuν);ν = 0, (5)

where ρ refers the local mass density of the flow. The time-
like velocity field satisfies the condition uµu

µ = −1. We
take the projection of the conservation equation on the spatial
hyper-surface and get the Euler equation by using the projec-
tion operator hαµ = δαµ + uαuµ as,

hαµT
µν
;ν = (e+ P )uνuα;ν + (gαν + uαuν)P,ν = 0, (6)

Here, projection operator satisfies the condition hαµu
µ = 0,

confirming that the four velocity and projection vectors are
orthogonal to each other. Projecting the conservation equation
along the direction of the four velocity, we obtain the first law
of thermodynamics as,

uµT
µν
;ν = uµ

[(
e+ P

ρ

)
ρ,µ − e,µ

]
= 0. (7)

In this work, we consider the structure of the accretion
disk to be geometrically thin and hence, the flow generally
lies around the disk equatorial plane with θ = π/2. This
leads to uθ = 0. Next, we define the three radial velocity
of the fluid in the co-rotating frame as v = γ2

φv
2
r , where,

v2
r = urur/(−utut), the azimuthal Lorentz factor γ2

φ =

1/(1 − v2
φ), the radial Lorentz factor γ2

v = 1/(1 − v2) and
v2
φ = uφuφ/(−utut). Using these definitions of velocities

in equation (6), we obtain the radial momentum equation for
α = r as

vγ2
v

dv

dr
+

1

hρ

dp

dr
+
dΦeff

e

dr
= 0, (8)

where h [= (e + P )/ρ] is the specific enthalpy, and Φeff
e rep-

resents the effective potential in the disk equatorial plane and
is given by,

Φeff
e = 1 +

1

2
ln Φ; Φ =

−gttgφφ
(gφφ + λ2gtt)

. (9)

The adopted space-time under consideration is stationary
and axisymmetric, and hence, there exits mutually perpendic-
ular two killing vectors which allow us to construct two con-
serve quantities along the direction of flow motion which are
given by,

huφ = L (constant); −hut = E (constant), (10)

where E is known as Bernoulli constant (equivalently the spe-
cific energy) of the flow and L corresponds to the angular
momentum conservation. Note that index α = t, φ in turn
renders conserve energy and angular momentum, respectively
(see equation (10)). We express the specific angular momen-
tum of the flow as λ = L/E = −uφ/ut, which is also a
conserved quantity.
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FIG. 1. Variation of the effective potential (Φeff
e ) as a function

of radial coordinate (r). Results plotted using dot-dashed (pur-
ple), dashed (green), dotted (blue) and solid (red) curves are for
A = −1.0,−0.5,−0.1, and 0, respectively. See text for details.

In order to examine the effect of modified gravity, in Fig.
1, we present the variation of the effective potential (Φeff

e ) as
function of the radial coordinate (r) for flows having angu-
lar momentum λ = 4.0. Here, dot-dashed (purple), dashed
(green), dotted (blue) and solid (red) curves are for A =
−1.0,−0.5,−0.1, and 0, respectively. We observe that Φeff

e

tends to merge with the Schwarzschild potential (A = 0) at
large r indicating the asymptotically flat vacuum solutions. In
addition, we find that when A is decreased, the existence of
the local maxima of Φeff

e near the horizon gradually dimin-
ishes. This clearly indicates that for a fixed λ, modification of
gravity eventually weakens the potential barrier.

We also calculate the radius of the inner most circular orbit
(rISCO) and the corresponding angular momentum (λISCO)
at rISCO and plot them as function of the gravity parameter
A in Fig. 2. We observe that rISCO recedes away from the
horizon as A is decreased. Similarly, λISCO is also seen to
increase with the decrease of A. Hence, it is evident that in
the modified gravity framework, flow with relatively higher
angular momentum can smoothly cross the event horizon in
comparison with the Schwarzschild black hole where A = 0.

The continuity equation (second part of the equations (5))
is expressed in terms of the mass accretion rate (Ṁ ), which is
a constant of motion and is given by,

Ṁ = −4πrurρH, (11)

where H is the local half-thickness of the accretion disk. In
this work, H is calculated assuming the flow to be in hy-
drostatic equilibrium in the vertical direction and is given by
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FIG. 2. Variation of (a) inner stable circular orbit (rISCO) and (b) the
flow angular momentum (λISCO) at rISCO as function of A. See text
for details.

[53, 54],

H =

√
Pr3

ργ2
φ

. (12)

The governing flow equations are closed with an equation
of state (EoS) that relates pressure (P ), density (ρ), and in-
ternal energy (e). Because of the black hole’s strong gravity,
the accretion flow is expected to be relativistic in nature at the
vicinity of the horizon. Hence, following Chattopadhyay and
Ryu [49], we consider an EoS for relativistic flow as,

e =
ρf(

1 +
mp

me

) , (13)

with

f =

[
1 + Θ

(
9Θ + 3

3Θ + 2

)]
+

[
mp

me
+ Θ

(
9Θme + 3mp

3Θme + 2mp

)]
,

where me and mp are the mass of the electron and ion, Θ (=
kBT/mec

2) refers to the dimensionless temperature and kB

is the Boltzmann’s constant. Using the relativistic EoS, we
delineate the polytropic index (N ), adiabatic index (Γ) and
sound speed (as) as,

N =
1

2

df

dΘ
, Γ = 1 +

1

N
, a2

s =
ΓP

e+ P
=

2ΓΘ

f + 2Θ
.

(14)

Using equation (13), we integrate equation (7) to express
the flow density (ρ) as a function of temperature (Θ) as,

ρ = Kθ3/2(3θ+2)3/4(3θ+2/χ)3/4 exp

[
me(f − 1)−mp

2Θme

]
,

(15)

where constantK is the measure of entropy. Subsequently, we
define the entropy accretion rate Ṁ [55] as

Ṁ =
Ṁ

4πK
= θ3/2(3θ + 2)3/4(3θ + 2/χ)3/4

× exp

[
me(f − 1)−mp

2Θme

]
Hrur,

(16)

It is noteworthy that for a non-dissipative flow, Ṁ remains
conserved all throughout the flow [46].

B. Wind Equation

Now, using equations (8), (11) and (13), we calculate the
radial derivative of the flow velocity in the form of wind equa-
tion as,

dv

dr
=
N
D
, (17)

where the numerator N is given by,

N =
2a2
s

Γ + 1

[
5

2r
− 1

2p(r)

dp(r)

dr
− 1

2γ2
φ

dγ2
φ

dr

]
− dΦeff

dr
(18)

and the denominator D is given by,

D = γ2
v

(
v − 2a2

s

v(Γ + 1)

)
. (19)

Further, using equations (6), (11) and (14), we obtain the
gradient of temperature as,

dΘ

dr
=
−2Θ

2N + 1

[
γ2
v

v

dv

dr
+

5

2r
− 1

2p(r)

dp(r)

dr
− 1

2γ2
φ

dγ2
φ

dr

]
.

(20)

C. Critical point analysis

Over the course of accretion on to a black hole, infalling
matter starts its journey with sub-sonic velocity (v → 0) from
the outer edge of the disk (redge). Because of the black hole’s
strong gravity, radial velocity gradually increases as the flow
moves towards the horizon (rh) and eventually makes sonic
state transition to become super-sonic after smoothly cross-
ing the critical point (rc). This is inevitable as the flow must
satisfy the ‘supersonic’ inner boundary condition at the hori-
zon. Note that, at rc, both numerator and denominator tend
to vanish simultaneously (i.e. N = D = 0) and hence, the
radial velocity gradient takes dv/dr → 0/0 form. Since flow
remains smooth along the streamline, dv/dr must be real and
finite all throughout. Hence, we compute the (dv/dr)rc by
applying the l′Hôpital’s rule. In reality, (dv/dr)rc assumes
two values: one for accretion and other for wind branch. De-
pending on the (dv/dr)rc values, critical points are classified
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FIG. 3. Variation of the specific energy (E) as function of critical
points (rc). Here, we choose λ = 3.2 and mark the gravity parameter
A = 0,−0.15,−0.32 and −0.50. Solid (red), dotted (blue) and
dashed (green) parts of a given curve refer saddle, nodal and spiral
critical points. See text for details.

in three categories. When critical points are saddle type, both
values of (dv/dr)rc are real and of opposite sign. For nodal
type critical points, the values of (dv/dr)rc are real and of
same sign, whereas for spiral type critical point, (dv/dr)rc
becomes imaginary [51, 52, 56, and references therein]. It is
noteworthy to mention that in the astrophysical context, ac-
cretion flow can pass through the saddle critical point only.

In order to evaluate the critical point location, we solve
the second part of the equation (10) by supplying the input
parameters, namely energy (E), angular momentum (λ) and
gravity parameter (A). Depending on the set of chosen pa-
rameters (E , λ, A), accretion flow may possess single or mul-
tiple critical points. Hence, while examining the transonic na-
ture of the flow, we calculate the flow energy (E) as a func-
tion of the critical point location (rc) for different A param-
eters. Accordingly, in Fig. 3, we present the obtained re-
sults, where we choose λ = 3.2 and vary the gravity param-
eter as A = 0,−0.15,−0.32 and −0.50, respectively. The
solid (red), dotted (green), and dashed (green) segments in
each curve denote saddle, nodal and spiral type critical points.
It is evident that the critical points occur in sequential order
as saddle-nodal-spiral-nodal-saddle-nodal with the increase of
rc. Note that when the saddle type critical point forms near the
horizon, it is usually called as inner critical point (rc ≡ rin),
whereas the same located at far away from the horizon is re-
ferred as outer critical point (rc ≡ rout). Further, we observe
that flow possesses multiple saddle type critical points for a
range of E and A parameter, which is essential for shock tran-
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FIG. 4. Variation of the specific angular momentum (λ) as function
of critical point location (rc) for a set of gravity parameters (A). Ob-
tained results are presented in using solid (red), dotted (blue) and
dashed (green) segments which denote saddle, nodal and spiral type
critical points. Here, we choose E = 1.0018 and gravity parameters
(A) are marked. The Keplerian angular momentum profile (λK(A))
is represented by the dot-dashed curve (purple). See text for the de-
tails.

sition (see §IV) [44, 51, 52]. Needless to mention that A = 0
renders the results identical to the Schwarzschild case.

We continue the investigation of the transonic behaviour of
the flow and in Fig. 4, we depict the variation of the angular
momentum (λ) as function of the critical point location (rc)
for a set of gravity parameters (A). Here, we choose E =
1.0018. As before, the solid (red), dotted (blue) and dashed
(green) parts of the curve denote saddle, nodal and spiral type
critical points, respectively. Setting dΦeff

e /dr = 0, we ob-
tain the Keplerian angular momentum distribution [λK(A)],
which is depicted using dot-dashed curve (purple). Figure ev-
idently indicates that λ remains sub-Keplerian all throughout
the disk between the horizon (rh) and the outer edge of the
disk (redge).

For the purpose of completeness of the critical point anal-
ysis, we examine the variation of E as a function of Ṁ for a
given set of λ and A for all possible accretion solutions. Fig.
5 shows such plot when λ = 3.2 is chosen and A is varied as
0, −0.15 and −0.32 in panel (a), (b) and (c), respectively. In
general, a transonic flow with initial flow parameters that lies
on the branch EF passes through the inner saddle type criti-
cal points and a flow with parameters belonging to the branch
GH has the outer saddle type critical point. The parameters
chosen from FG branch give the spiral type critical point. An
accretion flow avoids to possess spiral type critical point as



6

2 4 6
× 107

0.98

0.99

1.00

1.01

1.02 (a) E

F

GH

A = 0.0
2 4 6

× 107

(b) E

F

GH

A = 0.15
2 4 6

× 107

(c)

E

F
GH

A = 0.32

FIG. 5. Variation of energy (E) with the accretion rate (Ṁ) that
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radial velocity gradient at this point becomes complex. The
branches EF and GH intersect at a common point where the
accretion rates at both the critical points are equal. Such a crit-
ical accretion rate is denoted by Ṁm and the corresponding
energy is represented by Em. Note that the flow with energy
E > EG has only one inner saddle type critical point. For
Em ≤ E ≤ EG, the accretion rate Ṁout ≥ Ṁin and for
EH ≤ E ≤ Em, Ṁout ≤ Ṁin, where the subscripts ‘in’
and ‘out’ denote the quantities at the inner and outer saddle
type critical points respectively. Fig. 5 clearly suggests that
as A is decreased, the overall range of EF and FG branches
are reduced, whereas the range of GH branch is increased.
Evidently, beyond a limiting value of A, the multiple critical
points cease to exist and only the Bondi type accretion solu-
tions passing through the outer critical points remains [56, 57].

IV. ACCRETION SOLUTIONS IN MODIFIED GRAVITY

In this section, we present the transonic global accretion
solutions in modified gravity background. Moreover, we ex-
amine the role of gravity parameter (A) on the nature of the
accretion solutions, and obtain the range of input parameters
that admits transonic accretion solutions.

A. Global Transonic Solutions

Following [57], we obtain the transonic global accretion so-
lution by solving equations (10), (17) and (20). In doing so,
we use E , λ, and A as input parameters, and obtain rc and
(dv/dr)c (see $ III C). Employing these values, we integrate
(17) and (20) from rc first inward up to horizon (rh) and then
outward towards the disk edge. Finally, we join both parts of
the solution to obtain a global transonic accretion solution. In
Fig. 6, we display the typical accretion solutions for differ-
ent values of gravity parameter A, where Mach number (M )
of the flow is plotted as function of radial distance (r). In
the upper panel, we choose E = 1.0014 and A = −0.15,
and gradually vary λ from left to right. For λ = 3.0, we
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FIG. 6. Variation of Mach number (M = v/as) as function of ra-
dial coordinate (r) for A = −0.15. Solid (red) curve denote ac-
cretion solution while dotted (blue) refers wind. Top panels: Here,
E = 1.0014, and angular momentum is varied as λ = 3.0, 3.2, 3.4,
and 3.6, respectively. Bottom panels: Here, λ = 3.2 and energy is
increased as E = 1.0002, 1.0010, 1.0021, and 1.0025. See text for
the details.

find a single saddle type critical point (hereafter critical point)
at rout = 145.3561 and observe that transonic solution suc-
cessfully connects the horizon (rh) and outer edge of the disk
(redge) similar to Bondi solution [58]. We refer this solution
as global transonic solution which is of O-type [44]. Here,
critical point is marked by the filled circle (black), and solid
(red) curve denotes the accretion solution, while the dotted
(blue) curve is for wind. As the angular momentum of the
flow is increased as λ = 3.2, keeping the remaining param-
eter unchanged, we obtain multiple critical points, where in-
ner critical point has appeared at rin = 6.8508 along with
the outer critical point at rout = 140.8278. As before, the
solution passing through rout = 140.8278 yields as global so-
lution, however, the solution passing through rin = 6.8508
appears closed as it fails to connect rh and redge. Interest-
ing to note that accretion solution containing rin = 6.8508
possesses higher entropy (Ṁ) compared to solution passing
through rout, i.e., Ṁin > Ṁout (see Fig. 5). Solutions
of these kinds are likely to be viable in the sense that they
may trigger discontinuous transition of the flow variables in
the form of shock waves [51, 56, 57, 59–61, and references
therein]. Indeed, the shock-induced global accretion solutions
are potentially promising in the context of astrophysical ap-
plication, namely, in explaining the timing as well as spectral
features commonly observed from Galactic black hole sources
[62–67]. When angular momentum is increased further as
λ = 3.4, the multiple critical points continue to exist, how-
ever, the overall characters of the accretion solution changes
as the solution passing through rin = 5.8892 opens up as it
connects rh and redge, whereas the solution passing through
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rout = 135.6049 becomes closed with Ṁin < Ṁout. Global
solutions passing through rin are called as I-type [44]. For
λ = 3.6, we observe that rout disappears and open solution
passing through rin = 5.3357 only remains. In the lower pan-
els of Fig. 6, we choose λ = 3.2 and A = −0.15, and vary E .
For E = 1.0002, we find that only inner critical point exists at
rin = 6.9711 and solution passing through it becomes closed.
With the increase of energy as E = 1.0010, flow possesses
multiple critical points at rin = 6.8890 and rout = 191.6503,
where solution passing through rin remain closed while open
solution passes through rout. For E = 1.0021, multiple crit-
ical points continue to exist, however, the nature of the ac-
cretion solution alters. When energy is increased further as
E = 1.0025, outer critical point ceases to exist although open
solution passes through the inner critical point rin = 6.7540.
Overall, the above findings clearly indicates that both E and
λ seamlessly regulate the nature of the accretion solutions ob-
tained from the modified gravity background.
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FIG. 7. Modification of the accretion solution when the gravity pa-
rameter A and angular momentum λ are varied for flows with fixed
energy E = 1.001. In each panel, solid (red) and dotted (blue) curves
denote solutions corresponding to accretion and wind, respectively,
and filled circles (black) refer to critical points. The chosen param-
eter values, such as λ and A are marked in each panel. See text for
details.

In Fig. 7, we examine how gravity parameter A alters the
nature of the accretion solutions for flows with fixed energy
E = 1.001. The obtained results are presented in each panel,
where we show the variation of Mach number M as function
of r for a given set of λ and A values. Here, solid (red) and
dotted (blue) refer solutions corresponding to accretion and
wind, and filled circles denote the critical point locations. For
λ = 3.17, we obtain two different types of solutions forA = 0
and −0.5, as shown in the top panels. When angular momen-
tum is increased as λ = 3.50, three different types of solutions
are found for A = 0, −0.5, and −0.8 which are shown in the
middle panels. For further increase of angular momentum as
λ = 3.85, four types of solutions are obtained for A = 0,
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FIG. 8. Same as Fig. 7, but E is varied keeping angular momentum
fixed as (λ = 3.3). See text for details.
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A = 1.0
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A = 1.5
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A = 1.7
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A = 2.0

5.14 5.18
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FIG. 9. Modification of the parameter space in λ− E plane for mul-
tiple critical points. The region shaded in purple are for Ṁin >
Ṁout, whereas orange shaded region accounts for Ṁout > Ṁin.
The dashed line corresponds to Ṁout = Ṁin. In each panel, the
gravity parameterA is decreased from left to right which are marked.
See text for details.

−0.5, −0.8, and −1.0, as shown in the bottom panels. Need-
less to mention that A = 0 refers flow solutions corresponds
to the Schwarzschild black hole.

We continue to study the combined role of gravity param-
eter (A) and flow energy (E) in deciding the nature of the so-
lutions for flows with fixed angular momentum as λ = 3.30.
In Fig. 8, we present the obtained results, where the chosen
values of A and E are marked in each panel. From the figure,
it is evident that the gravity parameter (A) plays decisive role
in deciding the overall character of the flow solutions in the
frame work of modified gravity.

B. Parameter Space for multiple critical points

Meanwhile, we indicate in §III that depending on the input
parameters (E , λ, A), accretion flow may possess either sin-
gle or multiple critical points. It is also pointed out that in an
accretion flow around black hole, the multiple critical points
are essential for the triggering of discontinuous transition of
the flow variables in the form of shock wave [51, 56, 57, 59–
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61, and references therein]. Therefore, it is useful to iden-
tify the range of the input parameters that allows the flow to
possess multiple critical points. Accordingly, in Fig. 9, we
demonstrate the modification of the parameter space in λ− E
plane with the variation of the gravity parameter A. In each
panel, the domain enclosed by the solid (black) curve admits
the multiple critical points and the same domain is further sep-
arated by the dashed (black) curve obtained for Ṁin = Ṁout.
We observe that when A is decreased, the effective domain of
the parameter space is reduced with a marginal increase of
minimum energy and shifted towards the higher angular mo-
mentum side. Moreover, we notice that the region shaded in
orange is shrunk more than the purple shaded region and ulti-
mately it ceases to exist leaving behind only the purple shaded
region forA = −1.667. With the further decrease of the grav-
ity parameter, the purple region completely disappears when
A goes down to −2.34.

C. Radiative emission of the accretion flow

The accretion flow around black hole generally becomes
hot and dense because of the geometrical compression in-
evitable in the convergent accretion process. At this extreme
environment, the flow remains in the plasma state and it is
composed of both ions and electrons. Considering this, we
infer that the flow is likely to radiate by means of free-free
emissions [68]. The free-free emission rate per unit volume,
per unit time and per unit frequency for bremsstrahlung pro-
cess is given by,

ε(ν) =
32πe6

3mec3

(
2π

3kBmeTe

)1/2

n2
e exp−hν/kBTe g

br
, (21)

where e, me and Te are the charge, mass and temperature
of electron, kB is the Boltzmann constant, h is the Plancks
constant, ν is the frequency, and gbr is Gaunt factor [69].
In general, g

br
assumes any values between 0.2 to 5.5 [69],

and hence, we consider g
br

= 1 in this work for simplicity.
Following [70], we approximate the electron temperature as
Te =

√
me/mpT , where T refers the flow temperature. With

this, we calculate the total luminosity emitted from the accre-
tion disk as,

L = 2

∫ ∞
0

∫ redge

rH

∫ 2π

0

Hrε(νe)dν0drdφ, (22)

where νe and ν0 denote the emitted and observed frequencies,
respectively and are related as νe = (1 + z)ν0. Here z is a
red-shift factor and is given by [71],

1 + z = ut(1 + rΩ sinφ sin i), (23)

where Ω = uφ/ut refers the angular velocity of the rotating
flow and i is the inclination angle of the observer with re-
spect to the black hole. In this work, we choose i = π/4,
mass of the black hole MS = 10M�, M� being the so-
lar mass and mass accretion rate Ṁ = 0.1ṀEdd, where
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FIG. 10. Left: Variation of disk luminosity (L) as function of gravity
parameter A. In panel (a-b), we fix E = 1.0015 and open circles
connected by solid (cyan), dotted (blue) and dashed (red) are for λ =
3.4, 3.6 and 3.8, respectively. In panel (c-d), we choose λ = 3.6 and
open circles joined with solid (cyan), dotted (blue) and dashed (red)
are for E = 1.0005, 1.0015 and 1.0025, respectively. See text for
details.

ṀEdd

[
= 1.44× 1017

(
MS

M�

)]
g s−1 is the Eddington accre-

tion rate.
In Fig. 10, we demonstrate the variation of disk luminosity

as function of gravity parameter (A). In the upper panels, we
set the energy of the flow as E = 1.0015, and results are pre-
sented for different value of angular momentum (λ). In Fig.
10a, we focus only on those transonic global accretion solu-
tions that passes through rin (I-type solution), whereas results
obtained from transonic global accretion solutions containing
rout (O-type solutions) are shown in Fig. 10b. In both panels,
open circles join with solid (cyan), dotted (blue) and dashed
(red) are for λ = 3.4, 3.6 and 3.8, respectively. We observe
that disk luminosity (L) increases with A in both cases irre-
spective of the λ values. Moreover, when A is fixed, L is seen
to increase with the increase of λ. We also find that I-type
solutions render luminosity variation relatively in the wider
range in comparison to same obtained from O-type solutions.
In the lower panels, we present the luminosity (L) variation
with A for a set of E , where angular momentum is kept fixed
at λ = 3.6. We present the results obtained from I-type and
O-type solutions in Fig. 10c and Fig. 10d, respectively. Here,
open circles join with solid (cyan), dotted (blue) and dashed
(red) are for E = 1.0005, 1.0015 and 1.0025, respectively.
It is evident from the figure that flows having higher ener-
gies resulted enhanced luminosity as expected. What is more
is that the maximum luminosity obtained from O-type global
accretion solutions are generally remains smaller compared to
the minimum luminosity obtained from the I-type global ac-
cretion solutions. This finding clearly indicates that I-Type
solutions seem to be energetically more favourable over the
O-type solutions in the frame work of modified gravity.
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FIG. 11. Two-dimensional surface projection of the three-
dimensional plot of angular momentum (λ), energy (E) and disk lu-
minosity (L), where multiple critical points are present. Here, we
choose A = −1.0, and vertical colour coded bar represents the esti-
mated range of disk luminosity (L). See text for details.

For the purpose of completeness, in Fig. 11, we demon-
strate the variation of disk luminosity (L) in λ−E plane, where
two-dimensional projection of the three dimensional plot of
λ, E and L is depicted. Here, we keep the gravity parameter
fixed as A = −1.0, and freely vary λ and E in such a way that
they render multiple critical points (both rin and rout simul-
taneously). We employ the global accretion solution passing
through either rin (I-type solution) or rout (O-type solution)
to calculate the disk luminosity (L) using equation (22). In
the figure, vertical colour code indicates the range of disk lu-
minosity as 2.18× 1032 erg s−1 ≤ L ≤ 1.13× 1034 erg s−1.
We find that the luminosity is higher for the flows that pass
through the inner critical point (rin) before connecting the
horizon. Moreover, we observe the sub-division of the pa-
rameter space with sharp color contrast which is resulted due
to the entropy separation as discussed §IV.

V. CONCLUSIONS

In this work, we examine the properties of low angular mo-
mentum, advective accretion flows in the framework of f(R)
gravity. While doing this, we solve the governing equations
that describe the flow motion in the steady state and for the
first time to the best of our knowledge, obtain the global tran-
sonic accretion solutions in terms of the flow parameters, such
as energy (E) and angular momentum (λ) for different values
of the gravity parameter (A). The overall findings of this work
are summarized below.

• We find that the low angular momentum accretion flow
becomes transonic before entering into the black hole in
modified gravity model under consideration. Depend-
ing on the input parameters (E , λ, A), the accretion flow
contains either single or multiple critical points (see
Figs. 3-4). Indeed, when the gravity parameter (A) is
decreased, the possibility of obtaining the multiple crit-

ical points is decreased, and beyond its limiting value,
multiple critical points disappear leaving the outer crit-
ical point only (see Fig. 5).

• With the suitable choice of the input parameters
(E , λ, A), we obtain the global transonic accretion so-
lution(s) passing through either single (rin or rout) or
multiple critical points (rin and rout). Needless to men-
tion that the overall nature of the accretion solution
strictly depends on the input parameters (see Fig. 6).

• One of the aims of the present paper is to study the
effect of the gravity parameter A on the nature of the
global solutions. We find that for flows with fixed en-
ergy E and angular momentum λ, A plays a pivotal role
in deciding the nature of the accretion solution. When
A assumes relatively large negative values, we obtain
accretion solutions similar to Bondi type irrespective of
E and λ values (see Figs. 7-8).

• The comprehensive analysis of examining the nature of
the critical points of the accretion flow in modified grav-
ity suggests that a large region of the parameter space
in λ− E plane provides multiple critical points. Accre-
tion solutions containing multiple critical points with
Ṁin > Ṁout are potentially promising in explain-
ing the timing and spectral features of Galactic black
hole sources [62–67]. What is more is that the effec-
tive domain of the parameter space is reduced with the
decrease of A values. We also notice that the parameter
space with Ṁout > Ṁin is susceptible toA values as it
disappears expeditiously as compared to the other part
of the parameter space (see Fig. 9).

• We compute the disk luminosity (L) considering
bremsstrahlung emission process. It is evident that L
strongly depends on the input parameters (E , λ, A). In
fact, we find that for a fixed A, accretion solutions yield
higher L for flows with higher E and λ (see Fig. 10).
Further, we redraw the λ− E parameter space for mul-
tiple critical points to demonstrate the luminosity vari-
ations and indicate that the global accretion solutions
containing rin render higher disk luminosity L (see Fig.
11).

Finally, we state the limitation of this work as it is devel-
oped based on several assumptions. We do not consider the
effect of black hole rotation. We also ignore dissipative pro-
cesses such as viscosity, magnetic fields etc., although they are
expected to be relevant in the context of the accretion physics.
Of course, the implementation of all these issues is beyond the
scope of this paper which we plan to consider for future work
and will be reported elsewhere.
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sonable request.



10

ACKNOWLEDGEMENTS

Authors thank the anonymous reviewers for constructive
comments and useful suggestions that help to improve the
quality of the manuscript. Authors also thank the Department
of Physics, Indian Institute of Technology Guwahati, for pro-

viding the facilities to complete this work. SD thanks Science
and Engineering Research Board (SERB) of India for support
under grant MTR/2020/000331. The work of SC is supported
by the Science and Engineering Research Board (SERB) of
India through grant MTR/2022/000318.

[1] J. Frank, A. King, and D. J. Raine, Accretion Power in Astro-
physics: Third Edition (Cambridge, UK: Cambridge University
Press, 2002).

[2] M.-G. Park and J. P. Ostriker, Adv. Space Res. 22, 951 (1998),
arXiv:astro-ph/9811048.

[3] F. Yuan and R. Narayan, Ann. Rev. Astron. Astrophys. 52, 529
(2014), arXiv:1401.0586 [astro-ph.HE].

[4] M. A. Abramowicz and P. C. Fragile, Living Reviews in Rela-
tivity 16, 1 (2013), arXiv:1104.5499 [astro-ph.HE].

[5] J. A. Font, Living Reviews in Relativity 3, 2 (2000), arXiv:gr-
qc/0003101 [gr-qc].

[6] C. S. J. Pun, Z. Kovacs, and T. Harko, Phys. Rev. D 78, 084015
(2008), arXiv:0809.1284 [gr-qc].

[7] M. Heydari-Fard, Class. Quant. Grav. 27, 235004 (2010).
[8] T. Harko, Z. Kovacs, and F. S. N. Lobo, Class. Quant. Grav. 27,

105010 (2010), arXiv:0909.1267 [gr-qc].
[9] T. Harko, Z. Kovacs, and F. S. N. Lobo, Class. Quant. Grav. 28,

165001 (2011), arXiv:1009.1958 [gr-qc].
[10] T. Harko, Z. Kovacs, and F. S. N. Lobo, Phys. Rev. D 80,

044021 (2009), arXiv:0907.1449 [gr-qc].
[11] D. F. Torres, Nucl. Phys. B 626, 377 (2002), arXiv:hep-

ph/0201154.
[12] F. S. Guzman, Phys. Rev. D 73, 021501 (2006), arXiv:gr-

qc/0512081.
[13] T. Harko, Z. Kovacs, and F. S. N. Lobo, Phys. Rev. D 79,

064001 (2009), arXiv:0901.3926 [gr-qc].
[14] T. Harko, Z. Kovacs, and F. S. N. Lobo, Class. Quant. Grav. 26,

215006 (2009), arXiv:0905.1355 [gr-qc].
[15] T. Harko, K. S. Cheng, and Z. Kovacs, Mon. Not. Roy. Astron.

Soc. 400, 1632 (2009), arXiv:0908.2672 [astro-ph.HE].
[16] P. S. Joshi, D. Malafarina, and R. Narayan, Class. Quant. Grav.

31, 015002 (2014), arXiv:1304.7331 [gr-qc].
[17] Z. Kovacs and T. Harko, Phys. Rev. D 82, 124047 (2010),

arXiv:1011.4127 [gr-qc].
[18] C. M. Will, Living Rev. Rel. 17, 4 (2014), arXiv:1403.7377 [gr-

qc].
[19] A. G. Riess et al. (Supernova Search Team), Astrophys. J. 560,

49 (2001), arXiv:astro-ph/0104455.
[20] A. Albrecht et al., (2006), arXiv:astro-ph/0609591.
[21] P. Brax, Rept. Prog. Phys. 81, 016902 (2018).
[22] G. Bertone and D. Hooper, Rev. Mod. Phys. 90, 045002 (2018),

arXiv:1605.04909 [astro-ph.CO].
[23] T. Padmanabhan, Phys. Rept. 380, 235 (2003), arXiv:hep-

th/0212290.
[24] S. Nojiri and S. D. Odintsov, eConf C0602061, 06 (2006),

arXiv:hep-th/0601213.
[25] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010),

arXiv:0805.1726 [gr-qc].
[26] S. Capozziello, V. F. Cardone, S. Carloni, and A. Troisi, Int. J.

Mod. Phys. D 12, 1969 (2003), arXiv:astro-ph/0307018.
[27] S. Capozziello, V. F. Cardone, and V. Salzano, Phys. Rev. D

78, 063504 (2008), arXiv:0802.1583 [astro-ph].

[28] S. Nojiri and S. D. Odintsov, Phys. Lett. B 576, 5 (2003),
arXiv:hep-th/0307071.

[29] S. Nojiri and S. D. Odintsov, Phys. Rev. D 68, 123512 (2003),
arXiv:hep-th/0307288.

[30] S. Nojiri and S. D. Odintsov, Phys. Rev. D 74, 086005 (2006),
arXiv:hep-th/0608008.

[31] S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner, Phys.
Rev. D 70, 043528 (2004), arXiv:astro-ph/0306438.

[32] A. D. Dolgov and M. Kawasaki, Phys. Lett. B 573, 1 (2003),
arXiv:astro-ph/0307285.

[33] C. S. J. Pun, Z. Kovacs, and T. Harko, Phys. Rev. D 78, 024043
(2008), arXiv:0806.0679 [gr-qc].

[34] S. Soroushfar and S. Upadhyay, Eur. Phys. J. Plus 135, 338
(2020), arXiv:2003.08185 [gr-qc].

[35] D. Perez, G. E. Romero, and S. E. P. Bergliaffa, Astron. Astro-
phys. 551, A4 (2013), arXiv:1212.2640 [astro-ph.CO].

[36] T. Multamaki and I. Vilja, Phys. Rev. D 74, 064022 (2006),
arXiv:astro-ph/0606373.

[37] S. Capozziello, A. Stabile, and A. Troisi, Class. Quant. Grav.
24, 2153 (2007), arXiv:gr-qc/0703067.

[38] S. Capozziello, N. Frusciante, and D. Vernieri, Gen. Rel. Grav.
44, 1881 (2012), arXiv:1204.4650 [gr-qc].

[39] A. Shojai and F. Shojai, Gen. Rel. Grav. 44, 211 (2012),
arXiv:1109.2190 [gr-qc].

[40] S. Capozziello, M. De laurentis, and A. Stabile, Class. Quant.
Grav. 27, 165008 (2010), arXiv:0912.5286 [gr-qc].

[41] A. C. Gutierrez-Pineres and C. S. Lopez-Monsalvo, Phys. Lett.
B 718, 1493 (2013), arXiv:1211.2285 [gr-qc].

[42] S. Kalita and B. Mukhopadhyay, Eur. Phys. J. C 79, 877 (2019),
arXiv:1910.06564 [gr-qc].

[43] G. G. L. Nashed and S. Nojiri, Phys. Rev. D 102, 124022
(2020), arXiv:2012.05711 [gr-qc].

[44] I. K. Dihingia, S. Das, D. Maity, and S. Chakrabarti, Phys. Rev.
D 98, 083004 (2018), arXiv:1806.08481 [astro-ph.HE].

[45] I. Dihingia, S. Das, D. Maity, and A. Nandi, Mon. Not.
Roy. Astron. Soc. 488, 2412 (2019), arXiv:1903.02856 [astro-
ph.HE].

[46] I. K. Dihingia, D. Maity, S. Chakrabarti, and S. Das, Phys. Rev.
D 102, 023012 (2020), arXiv:2004.03195 [astro-ph.HE].

[47] G. Sen, D. Maity, and S. Das, JCAP 08, 048 (2022),
arXiv:2204.02110 [astro-ph.HE].

[48] S. Patra, B. R. Majhi, and S. Das, Physics of the Dark Universe
37, 101120 (2022), arXiv:2202.10863 [astro-ph.HE].

[49] I. Chattopadhyay and D. Ryu, Astrophys. J. 694, 492 (2009),
arXiv:0812.2607 [astro-ph].

[50] I. K. Dihingia, S. Das, and A. Nandi, Mon. Not. Roy. Astron.
Soc. 484, 3209 (2019), arXiv:1901.04293 [astro-ph.HE].

[51] S. K. Chakrabarti, Astrophys. J. 347, 365 (1989).
[52] S. Das, I. Chattopadhyay, and S. K. Chakrabarti, Astrophys. J.

557, 983 (2001), arXiv:astro-ph/0107046 [astro-ph].
[53] H. Riffert and H. Herold, Astrophys. J. 450, 508 (1995).
[54] J. Peitz and S. Appl, Mon. Not. Roy. Astron. Soc. 286, 681

(1997), arXiv:astro-ph/9612205.

http://dx.doi.org/10.1016/S0273-1177(98)00127-6
http://arxiv.org/abs/astro-ph/9811048
http://dx.doi.org/10.1146/annurev-astro-082812-141003
http://dx.doi.org/10.1146/annurev-astro-082812-141003
http://arxiv.org/abs/1401.0586
http://dx.doi.org/10.12942/lrr-2013-1
http://dx.doi.org/10.12942/lrr-2013-1
http://arxiv.org/abs/1104.5499
http://dx.doi.org/10.12942/lrr-2000-2
http://arxiv.org/abs/gr-qc/0003101
http://arxiv.org/abs/gr-qc/0003101
http://dx.doi.org/10.1103/PhysRevD.78.084015
http://dx.doi.org/10.1103/PhysRevD.78.084015
http://arxiv.org/abs/0809.1284
http://dx.doi.org/10.1088/0264-9381/27/23/235004
http://dx.doi.org/10.1088/0264-9381/27/10/105010
http://dx.doi.org/10.1088/0264-9381/27/10/105010
http://arxiv.org/abs/0909.1267
http://dx.doi.org/10.1088/0264-9381/28/16/165001
http://dx.doi.org/10.1088/0264-9381/28/16/165001
http://arxiv.org/abs/1009.1958
http://dx.doi.org/10.1103/PhysRevD.80.044021
http://dx.doi.org/10.1103/PhysRevD.80.044021
http://arxiv.org/abs/0907.1449
http://dx.doi.org/10.1016/S0550-3213(02)00038-X
http://arxiv.org/abs/hep-ph/0201154
http://arxiv.org/abs/hep-ph/0201154
http://dx.doi.org/10.1103/PhysRevD.73.021501
http://arxiv.org/abs/gr-qc/0512081
http://arxiv.org/abs/gr-qc/0512081
http://dx.doi.org/10.1103/PhysRevD.79.064001
http://dx.doi.org/10.1103/PhysRevD.79.064001
http://arxiv.org/abs/0901.3926
http://dx.doi.org/10.1088/0264-9381/26/21/215006
http://dx.doi.org/10.1088/0264-9381/26/21/215006
http://arxiv.org/abs/0905.1355
http://dx.doi.org/10.1142/9789814374552_0101
http://dx.doi.org/10.1142/9789814374552_0101
http://arxiv.org/abs/0908.2672
http://arxiv.org/abs/1304.7331
http://dx.doi.org/10.1103/PhysRevD.82.124047
http://arxiv.org/abs/1011.4127
http://dx.doi.org/10.12942/lrr-2014-4
http://arxiv.org/abs/1403.7377
http://arxiv.org/abs/1403.7377
http://dx.doi.org/10.1086/322348
http://dx.doi.org/10.1086/322348
http://arxiv.org/abs/astro-ph/0104455
http://arxiv.org/abs/astro-ph/0609591
http://dx.doi.org/10.1088/1361-6633/aa8e64
http://dx.doi.org/10.1103/RevModPhys.90.045002
http://arxiv.org/abs/1605.04909
http://dx.doi.org/10.1016/S0370-1573(03)00120-0
http://arxiv.org/abs/hep-th/0212290
http://arxiv.org/abs/hep-th/0212290
http://dx.doi.org/10.1142/S0219887807001928
http://arxiv.org/abs/hep-th/0601213
http://dx.doi.org/10.1103/RevModPhys.82.451
http://arxiv.org/abs/0805.1726
http://dx.doi.org/10.1142/S0218271803004407
http://dx.doi.org/10.1142/S0218271803004407
http://arxiv.org/abs/astro-ph/0307018
http://dx.doi.org/10.1103/PhysRevD.78.063504
http://dx.doi.org/10.1103/PhysRevD.78.063504
http://arxiv.org/abs/0802.1583
http://dx.doi.org/10.1016/j.physletb.2003.09.091
http://arxiv.org/abs/hep-th/0307071
http://dx.doi.org/10.1103/PhysRevD.68.123512
http://arxiv.org/abs/hep-th/0307288
http://dx.doi.org/10.1103/PhysRevD.74.086005
http://arxiv.org/abs/hep-th/0608008
http://dx.doi.org/10.1103/PhysRevD.70.043528
http://dx.doi.org/10.1103/PhysRevD.70.043528
http://arxiv.org/abs/astro-ph/0306438
http://dx.doi.org/10.1016/j.physletb.2003.08.039
http://arxiv.org/abs/astro-ph/0307285
http://dx.doi.org/10.1103/PhysRevD.78.024043
http://dx.doi.org/10.1103/PhysRevD.78.024043
http://arxiv.org/abs/0806.0679
http://dx.doi.org/10.1140/epjp/s13360-020-00329-4
http://dx.doi.org/10.1140/epjp/s13360-020-00329-4
http://arxiv.org/abs/2003.08185
http://dx.doi.org/10.1051/0004-6361/201220378
http://dx.doi.org/10.1051/0004-6361/201220378
http://arxiv.org/abs/1212.2640
http://dx.doi.org/10.1103/PhysRevD.74.064022
http://arxiv.org/abs/astro-ph/0606373
http://dx.doi.org/10.1088/0264-9381/24/8/013
http://dx.doi.org/10.1088/0264-9381/24/8/013
http://arxiv.org/abs/gr-qc/0703067
http://dx.doi.org/10.1007/s10714-012-1367-y
http://dx.doi.org/10.1007/s10714-012-1367-y
http://arxiv.org/abs/1204.4650
http://dx.doi.org/10.1007/s10714-011-1271-x
http://arxiv.org/abs/1109.2190
http://dx.doi.org/10.1088/0264-9381/27/16/165008
http://dx.doi.org/10.1088/0264-9381/27/16/165008
http://arxiv.org/abs/0912.5286
http://dx.doi.org/ 10.1016/j.physletb.2012.12.014
http://dx.doi.org/ 10.1016/j.physletb.2012.12.014
http://arxiv.org/abs/1211.2285
http://dx.doi.org/10.1140/epjc/s10052-019-7396-x
http://arxiv.org/abs/1910.06564
http://dx.doi.org/10.1103/PhysRevD.102.124022
http://dx.doi.org/10.1103/PhysRevD.102.124022
http://arxiv.org/abs/2012.05711
http://dx.doi.org/ 10.1103/PhysRevD.98.083004
http://dx.doi.org/ 10.1103/PhysRevD.98.083004
http://arxiv.org/abs/1806.08481
http://dx.doi.org/ 10.1093/mnras/stz1933
http://dx.doi.org/ 10.1093/mnras/stz1933
http://arxiv.org/abs/1903.02856
http://arxiv.org/abs/1903.02856
http://dx.doi.org/ 10.1103/PhysRevD.102.023012
http://dx.doi.org/ 10.1103/PhysRevD.102.023012
http://arxiv.org/abs/2004.03195
http://dx.doi.org/ 10.1088/1475-7516/2022/08/048
http://arxiv.org/abs/2204.02110
http://dx.doi.org/10.1016/j.dark.2022.101120
http://dx.doi.org/10.1016/j.dark.2022.101120
http://arxiv.org/abs/2202.10863
http://dx.doi.org/10.1088/0004-637X/694/1/492
http://arxiv.org/abs/0812.2607
http://dx.doi.org/10.1093/mnras/stz168
http://dx.doi.org/10.1093/mnras/stz168
http://arxiv.org/abs/1901.04293
http://dx.doi.org/10.1086/168125
http://dx.doi.org/10.1086/321692
http://dx.doi.org/10.1086/321692
http://arxiv.org/abs/astro-ph/0107046
http://dx.doi.org/10.1086/176161
http://dx.doi.org/10.1093/mnras/286.3.681
http://dx.doi.org/10.1093/mnras/286.3.681
http://arxiv.org/abs/astro-ph/9612205


11

[55] I. Chattopadhyay and R. Kumar, Mon. Not. Roy. Astron. Soc.
459, 3792 (2016), arXiv:1605.00752 [astro-ph.HE].

[56] S. Das, Monthly Notices of the Royal Astronomical Society
376, 1659 (2007), arXiv:astro-ph/0610651 [astro-ph].

[57] S. K. Chakrabarti and S. Das, Mon. Not. Roy. Astron. Soc. 349,
649 (2004), arXiv:astro-ph/0402561.

[58] H. Bondi, Monthly Notices of the Royal Astronomical Society
112, 195 (1952).

[59] S. Das and S. K. Chakrabarti, International Journal of Modern
Physics D 13, 1955 (2004), arXiv:astro-ph/0409664 [astro-ph].

[60] B. Sarkar and S. Das, Monthly Notices of the Royal Astronom-
ical Society 461, 190 (2016), arXiv:1606.00526 [astro-ph.HE].

[61] I. K. Dihingia, S. Das, and A. Nandi, Monthly No-
tices of the Royal Astronomical Society 484, 3209 (2019),
arXiv:1901.04293 [astro-ph.HE].

[62] S. Chakrabarti and L. G. Titarchuk, Astrophys. J. 455, 623
(1995), arXiv:astro-ph/9510005 [astro-ph].

[63] S. Mandal and S. K. Chakrabarti, Astronomy & Astrophysics
434, 839 (2005).

[64] A. Nandi, D. Debnath, S. Mandal, and S. K. Chakrabarti, As-
tronomy & Astrophysics 542, A56 (2012), arXiv:1204.5044
[astro-ph.HE].

[65] R. Aktar, S. Das, A. Nandi, and H. Sreehari, Monthly No-
tices of the Royal Astronomical Society 471, 4806 (2017),
arXiv:1707.07511 [astro-ph.HE].

[66] S. Das, A. Nandi, V. K. Agrawal, I. K. Dihingia, and S. Ma-
jumder, Monthly Notices of the Royal Astronomical Society
507, 2777 (2021), arXiv:2108.02973 [astro-ph.HE].

[67] S. Das, A. Nandi, C. S. Stalin, S. Rakshit, I. K. Dihingia,
S. Singh, R. Aktar, and S. Mitra, Monthly Notices of the Royal
Astronomical Society 514, 1940 (2022), arXiv:2205.07737
[astro-ph.HE].

[68] J. Quenby, Contemporary Physics 51, 445 (2010).
[69] W. J. Karzas and R. Latter, Astrophysical Journal, Supplement

Series 6 (1961), 10.1086/190063.
[70] I. Chattopadhyay and S. K. Chakrabarti, Mon. Not. Roy. As-

tron. Soc. 333, 454 (2002), arXiv:astro-ph/0202351.

[71] J. P. Luminet, Astron. Astrophys. 75, 228 (1979).
[72] Y. Song, Eur. Phys. J. C 81, 875 (2021), arXiv:2108.00696 [gr-

qc].

Appendix A: Derivation of Innermost Stable Circular Orbits
(ISCO)

Consider a point particle moving in a circular orbit in a
spherically symmetric space-time. The corresponding line el-
ement is given by diag(−s(r), p(r), r2, r2 sin2 θ). For circu-
lar orbit, the particle satisfies the equation given by,

V ′λ0
(r0) =

∂Vλ(r)

∂r

∣∣∣
r0,λ0

= 0, (A1)

where Vλ(r) refer to the effective potential and λ0 is the con-
served orbital angular momentum for the circular orbit of ra-
dius r0. Using the geodesics equations, we calculate λ0 as

λ0 =
√

r30s
′(r0)

2s(r0)−s′(r0)r0
. When family of circular orbit is con-

sidered, one can vary Eq. (A1) to obtain

δV ′λ0
(r0)

δr0
= V ′′λ0

(r0) +
∂V ′λ0

(r0)

∂λ0

δλ0

δr0
= 0, (A2)

where λ0 is a function of r0. Equation (A2) yields as

V ′′λ0
(r0) = −

∂V ′λ0
(r0)

∂λ0

δλ0

δr0
, (A3)

where we assume (∂V ′λ0
(r0)/∂λ0) 6= 0 for r0 = rISCO

and λ0 = λISCO. Accordingly, the ISCO condition
V ′′λISCO

(rISCO) = 0 remains equivalent to δλ0/δr0 = 0 [72].
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