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We develop and discuss a model formalism to study the properties of mass outflows that are
emerged out from a relativistic, magnetized, viscous, advective accretion flow around a rotating
black hole. In doing so, we consider the toroidal component as the dominant magnetic fields and
synchrotron process is the dominant cooling mechanism inside the accretion disk. With this, we
self-consistently solve the coupled accretion-ejection governing equations in the steady state and
obtain the shock-induced global inflow-outflow solutions in terms of the inflow parameters, namely
plasma-β (= pgas/pmag, pgas and pmag being gas and magnetic pressures), accretion rates (ṁ) and
viscosity (αB), respectively. Using these solutions, we compute the mass outflow rate (Rṁ, the ratio
of outflow to inflow mass flux) and find that mass loss from the magnetized accretion disk continues
to take place for wide range of inflow parameters and black hole spin (ak). We also observe that Rṁ

strongly depends on plasma-β, ṁ, αB and ak, and it increases as the magnetic activity inside the
accretion disk is increased. Further, we compute the maximum mass outflow rate (Rmax

ṁ ) by freely
varying the inflow parameters and find that for magnetic pressure dominated disk, Rmax

ṁ ∼ 24%
(∼ 30%) for ak = 0.0 (0.99). Finally, while discussing the implication of our model formalism, we
compute the maximum jet kinetic power using Rmax

ṁ which appears to be in close agreement with
the observed jet kinetic power of several black hole sources.

I. INTRODUCTION

The signature of jets/outflows are often observed in
accreting black hole systems of all mass scales starting
from X-ray binaries [1–4] to active galactic nuclei [AGNs;
5–8]. Indeed, jets/outflows are expected to originate from
the accreting matter itself as the black holes do not emit
matter or radiation. Furthermore, [6] indicated that jets
are emerged out from the vicinity of the central source of
M87 and these findings are further supplemented by [8].

Meanwhile, observational studies ascertain that the
launching of jets/outflows is possibly linked with the
spectral states of the accreting matter around black hole
X-ray binaries [BH-XRBs; 8–14]. In particular, steady
and powerful jets/outflows are commonly observed in
the low-hard states (LHS) and hard-intermediate states
(HIMS). On contrary, transient relativistic jets are gener-
ally seen in the soft-intermediate states (SIMS) [11, 15].
In the high-soft states (HSS), jets are not observed [14–
16]. All these findings evidently indicate that the ejec-
tion of matter is correlated with the presence of Compton
corona (hereafter post-shock corona, PSC) and hence, it
is highly likely that jets/outflows are launched from the
inner part of the disc. This conjecture seems reasonable
as [14, 17] pointed out the disk-jet coupling in explaining
the spectro-temporal properties of the outbursting BH-
XRBs.

Interestingly, it is indeed apparent that the
jets/outflows are originated from the disk itself,
however the exact physical mechanisms responsible
for jet generation still remain elusive. Intuitively, it is
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reasonable to consider that the extreme gravity of the
central source plays an important role in launching as
well powering the jets. The seminal work of [18] (BZ)
demonstrated the electromagnetic energy extraction
mechanism involving magnetic fields around rotating
black holes and indicated that such mechanism is viable
to power the jets. In addition, [19] (BP) also showed
that energy and angular momentum of the infalling
matter is magnetically removed by the field line and
eventually carried off by the outgoing matter. Further,
extensive numerical simulations of magnetohydrody-
namic (MHD) accretion flow in both non-relativistic and
relativistic regimes also confirm that jets/outflows are
produced from accretion disk [20–28]. In particular, [20]
reported that magnetic fields help in jet formation and
its collimation process. [21] studied the magnetically
driven relativistic jet from Schwardschild black hole
which is found to be of two-layered shell structure. [22]
examined the unbound outflows from accretion disk
in Kerr space-time and found that inflowing matter is
largely expelled by the centrifugal barrier, whereas black
hole rotation does not influence the matter ejection
although spin enhances the outflow strength [23]. In
case of radiatively inefficient flow, outflows are also seen
to emerge out due to the combined effects of magnetic
as well as gas pressures [24]. Further, [26] re-examined
the underlying physical mechanisms for jets and winds
generations and found that relativistic jets are driven
by the BZ mechanism while the winds are ejected due
to Blandford & Payne (BP) mechanism. In a recent
attempt, [28] numerically investigated MHD accretion
flow around spinning black hole and showed that mass
outflow rate maintains positive correlation with the
magnetic fields. All these works evidently suggest that
the magnetic fields seem to play important role in
generating jets/outflows from the accretion flow around
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the black holes.

Meanwhile, there were attempts in the theoretical front
to study the mass outflows around the black holes. To-
wards this, one of the earliest example is the advection
dominated inflow-outflow solutions (ADIOS) around a
Newtonian central object that involves the inward de-
crease of mass accretion rate resulting the mass loss
throughout the disk [29]. In parallel, efforts were also
given to investigate the mass loss considering accretion
shock-driven outflows around black holes [30, 31]. In
these works, it was emphasized that outflows are emerged
out due to strong coupling of accretion-ejection mecha-
nism where advective accretion flow plays primitive role.
In reality, during the course of accretion, rotating mat-
ter around black hole experiences centrifugal repulsion
that eventually triggers the discontinuous transition of
the flow variables in the form of shock waves. Such ac-
cretion solutions containing shocks are already studied in
both hydrodynamic [32–42] as well as magnetohydrody-
namics [21, 43–48] frameworks. Due to shock compres-
sion, convergent accretion flow becomes hot and dense
in the post-shock region (equivalently post-shock corona,
hereafter PSC) and therefore, PSC become puffed up re-
sulting an effective boundary layer around the black hole.
Because of this, an excess thermal gradient force is devel-
oped across the shock front which deflects a part of the
accreting matter in the vertical direction to form bipo-
lar outflows [49–54]. Such an appealing accretion-ejection
mechanism successfully explains the disc-jet symbiosis in-
volving increasing level of complexity around weakly ro-
tating as well as rapidly rotating black holes [30, 31, 55–
60]. However, all these works bear limitations as the
effect of structured magnetic fields in estimating mass
outflows were largely ignored although the presence of
magnetic fields is ubiquitous in black hole systems. It is
therefore timely to examine the role of structured mag-
netic fields in the generation of mass outflows from the
magnetized accretion flow around black hole.

Being motivated with this, in this paper, we study the
accretion-ejection mechanism considering a steady, rela-
tivistic, viscous, advective accretion flow threaded by the
toroidal magnetic fields around rotating black hole. For
simplicity, we adopt a recently developed effective po-
tential [61] that satisfactorily mimics the spacetime ge-
ometry around rotating black hole. With this, we self-
consistently solve the coupled inflow-outflow governing
equations and compute the mass outflow rate (Rṁ) in
terms of the inflow parameters (namely magnetic fields
(plasma-β), accretion rates (ṁ) and viscosity (αB)) and
black hole spin (ak). We observe that mass outflow rate
strongly depends on the magnetic fields as Rṁ increases
when the magnetic activity is increased inside the disk.
Further, we estimate the maximum mass outflow rate
(Rmax

ṁ ) by freely varying the model parameters of mag-
netized disk and find that rapidly rotating (ak = 0.99)
black hole yields higher Rmax

ṁ than the weakly rotating
(ak → 0) black hole. Finally, using our model formal-
ism, we attempt to explain the jet power observed from

astrophysical black hole sources.
The plan of the paper is as follows: In the next Section,

we present the assumptions and model description. In §3,
we discuss the obtained results in detail. In §4, we explore
our model formalism to explain the observed jet power
from black hole sources. Finally, we end with summary
and conclusion in §5.

II. ASSUMPTIONS AND GOVERNING
EQUATIONS

We begin with the basic equations that govern an ax-
isymmetric disk-jet system around a rotating black hole
in the steady state. In particular, we assume that the
accretion takes place along a disk geometry that remain
confined around the black hole equatorial plane, whereas
the jet geometry is described along the rotation axis of
the black hole. Here, we adopt cylindrical polar coordi-
nates (x, φ, z), where black hole resides at its origin and
disc extends along z = 0 plane. We write all the equa-
tions in MBH = G = c = 1 unit system, where MBH is
the mass of the black hole, G is the gravitational constant
and c refers the speed of light. In this system, we express
radial distance (x), angular momentum (λ) and energy
(E) in units of GMBH/c

2, GMBH/c and c2, respectively.

A. Governing equations for accretion

We consider a low angular momentum, relativistic,
magnetized, viscous, advective accretion flow around a
rotating black hole. In order to take care the effect of
strong gravity, we adopt pseudo-potential [61] that sat-
isfactorily describes the spacetime geometry around ro-
tating black hole. Following [62, 63], we consider the
magnetic fields inside the disk are turbulent in nature
and the azimuthal component of the magnetic field dom-
inants over other components. Based on the simulation
works, we consider the magnetic fields as a combination
of mean fields and fluctuating fields, which are denoted
as B = (0, 〈Bφ〉 , 0) and δB = (δBx, δBφ, δBz), respec-
tively. Here, ‘〈 〉’ implies azimuthal average. Upon az-
imuthal averaging, we assume the fluctuating fields even-
tually vanish (〈δB〉 = 0) and therefore, the azimuthal
component of magnetic fields dominate over radial and
vertical components because the latter are negligible,
| < Bφ > +δBφ| � |δBx| and |δBz|. With this, we write

the azimuthally averaged magnetic field as 〈B〉 = 〈Bφ〉 φ̂,
where Bφ stands for azimuthal component of magnetic
field [64].

In the steady state, the basic governing equations
[46, 47] that describe the motion of the inflowing mat-
ter inside the accretion disc are as follows:
(a) The radial momentum equation:

v
dv

dx
+

1

ρ

dP

dx
+
dΨeff

e

dx
+

〈
B2
φ

〉
4πxρ

= 0, (1)
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(b) The Azimuthal momentum equation:

v
dλ

dx
+

1

Σx

d

dx
(x2Txφ) = 0, (2)

(c) Mass flux conservation equation:

Ṁ = 4πvρh
√

∆, (3)

(d) The entropy generation equation:

ΣvT
ds

dx
=

hv

γ − 1

(
dpgas

dx
− γpgas

ρ

dρ

dx

)
= Q−−Q+, (4)

and (e) Radial advection of the toroidal magnetic flux:

∂ 〈Bφ〉 φ̂
∂t

= ∇×
(
~v × 〈Bφ〉 φ̂−

4π

c
η~j

)
. (5)

The variables x, v and ρ denote the radial distance, ra-
dial velocity and density of the inflow, respectively. The
total isotropic pressure is given by P = pgas + pmag,
where pgas is the gas pressure and pmag is the mag-
netic pressure. Here, the gas pressure is calculated as
pgas = RρT/µ, where R, T and µ are the universal gas
constant, local temperature of inflowing matter and mean
molecular weight, respectively. For fully ionized hydro-
gen, we consider µ = 0.5. The magnetic pressure in-
side the disk is calculated as pmag =

〈
Bφ

2
〉
/8π, where〈

Bφ
2
〉

denotes the azimuthal average of the square of
the toroidal component of the magnetic field. We define
plasma-β (= pgas/pmag) to express the total pressure as
P = pgas(β + 1)/β. The term Ψeff

e denotes the effective
potential on the disk equatorial plane and is given by,

Ψeff
e =

1

2
ln

[
x∆

a2
k(x+ 2)− 4akλ+ x3 − λ2(x− 2)

]
, (6)

where λ is the local specific angular momentum (hereafter
angular momentum), ak is the Kerr parameter that mea-
sures the spin of the black hole, and ∆ = x2 − 2x+ a2

k.
The subscript ‘e’ refers to the quantity measured on the
equatorial plane. In equation (2), we consider the verti-
cally integrated total stress which is dominated by the xφ
component of the Maxwell stress Txφ over other compo-
nents. Following the simulation work of [63], we estimate
Txφ for an advective flow possessing significant radial ve-
locity as [65]),

Txφ =
< BxBφ >

4π
h = −αB(W + Σv2), (7)

where W and Σ denote the vertically integrated pressure
and density of the inflow [66], and αB (ratio of Maxwell
stress to the total pressure) is the constant of proportion-
ality. In this work, following the seminal work of [67], we
refer αB as viscosity parameter. When the inflow velocity
becomes negligible as in the case of standard Keplerian
disk, equation (7) reduces to the original prescription of
the ‘α-model’ [67]. In equation (3), the mass accretion

rate is denoted by Ṁ and h refers the local half-thickness
of the disk. Following [68, 69], we calculate h as,

h =

√
Px3

ρF ; F =
1

1− λΩ
× (x2 + a2

k)2 + 2∆a2
k

(x2 + a2
k)2 − 2∆a2

k

, (8)

where Ω [= (2ak +λ(x−2))/(a2
k(x+2)−2akλ+x3)] is the

angular velocity of the flow. We define the sound speed
of the inflow as a =

√
γP/ρ, where γ is the adiabatic

index. Here, we assume γ to remain constant and choose
a canonical value of γ = 4/3 all throughout unless other-
wise stated. In equation (4), s and T denote the specific
entropy and the local temperature of the inflow. Here,
Q+ and Q− are the vertically integrated heating and
cooling rates, respectively. In reality, simulation stud-
ies reveal that flow is heated due to the thermalization
of magnetic energy through the magnetic reconnection
process [62, 63], and hence, the heating rate is expressed
as,

Q+ =
< BxBφ >

4π
xh
dΩ

dx
= −αB(W + Σv2)x

dΩ

dx
. (9)

On the contrary, the cooling of the accreting
matter is governed by various radiative processes,
namely bremsstrahlung, synchrotron, Comptonization of
bremsstrahlung and synchrotron photons. However, in
this work, since we deal with the magnetized accretion
flow, it is evident that the synchrotron process would be-
come effective to cool the flow. Accordingly, we obtain
the cooling rate due to synchrotron radiation [70] which
is given by,

Q− =
Sa5ρh

v

√
F
x3∆

β2

(1 + β)3
; (10)

S = 1.4827× 1018 ṁµ
2e4

m3
eγ

5/2

1

GM�c3
,

where me and e specify the mass and charge of elec-
tron, respectively. Following the work of [71], we es-
timate the electron temperature for a single tempera-
ture flow as Te =

√
me/mpTp ignoring any coupling be-

tween the ions and electrons, where mp and Tp (= T )
are the mass and temperature of ion, respectively. We
express the accretion rate as ṁ = Ṁ/ṀEdd, where

ṀEdd

(
= 1.39× 1017MBH/M� g s−1

)
represent the Ed-

dington accretion rate. It may be noted that in this work,
we ignore bremsstrahlung cooling since it is regarded as
a very inefficient cooling process [71, 72]. We also ne-
glect inverse-Comptonization as it requires two temper-
ature accretion solutions and obtaining such solutions is
beyond the scope of the present work. Finally, the ad-
vection rate of toroidal magnetic field is described using
the induction equation and its azimuthal averaged form
is presented in equation (5), where ~v refers the velocity

vector, η is the resistivity and ~j = c(∇× 〈Bφ〉φ̂)/4π de-
notes the current density. In general, as the Reynolds
number remains very large in an accretion disk due to
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its large extent, we neglect the magnetic-diffusion term.
In addition, we also ignore the dynamo term. With this,
we obtain the vertically averaged resultant equation con-
sidering the fact that the azimuthally averaged toroidal
magnetic fields vanish at the disc surface. Accordingly,
we obtain the advection rate of the toroidal magnetic flux
as [64],

Φ̇ = −
√

4πvhB0(x), (11)

where B0(x) represents the azimuthally averaged toroidal
magnetic field confined in the disc equatorial plane and
given by,

B0(x) = 〈Bφ〉 (x; z = 0) ,

= 25/4π1/4(RT/µ)1/2Σ1/2h−1/2β−1/2.

In reality, Φ̇ is not a conserved quantity, rather ex-
pected to vary with x in presence of the dynamo and the
magnetic-diffusion terms. However, in the quasi steady
state, the global 3D MHD simulation [63] suggests that

Φ̇ ∝ 1/x. Indeed, the explicit computation involving
both dynamo and the magnetic-diffusion terms are very
much complex and tedious, and hence, we introduce a
parameter ζ to adopt a parametric relation [64] as,

Φ̇
(
x; ζ, Ṁ

)
≡ Φ̇edge

(
x

xedge

)−ζ
, (12)

where Φ̇edge is the advection rate of the toroidal magnetic
flux at the outer edge of the disk (xedge). In this work,
for the purpose of representation, we choose ζ = 1 in the
subsequent analysis unless stated otherwise.

Using equations (1), (2), (3), (4), (11) and (12), and
after some algebra, we obtain the wind equation which is
given by,

dv

dx
=
N (x, v, a, λ, β)

D(x, v, a, λ, β)
, (13)

where N and D are the numerator and denominator and
their explicit expressions are given in Appendix A. Using
dv/dx (equation (13)), we express the derivatives of the
sound speed (a), angular momentum (λ) and plasma-β
as

da

dx
= a11 + a12

dv

dx
, (14)

dλ

dx
= λ11 + λ12

dv

dx
, (15)

dβ

dx
= β11 + β12

dv

dx
, (16)

where the coefficients a11, a12, λ11, λ12, β11 and β12 are
the explicit functions of flow variables which are given in
Appendix A.

The advective accretion flow around black holes must
be transonic in order to satisfy the inner boundary con-
ditions imposed by the event horizon. In reality, the flow
starts accreting with a subsonic velocity (v < a) from the
outer edge (xedge) of the disk and gradually gains radial
velocity as it moves inward. During the course of accre-
tion, flow is also compressed causing the increase of den-
sity, temperature and sound speed with decreasing radii.
Ultimately, flow crosses the event horizon with velocity
equivalent to the speed of light implying that the flow is
supersonic close to the BH. This evidently indicates that
accretion flow must smoothly pass through the critical
point (xc) where the sonic transition occurs. At the crit-
ical point, both N and D of equation (13) vanish simulta-
neously and hence, radial velocity gradient takes to form
(dv/dx)c = 0/0. Since the flow velocity remains smooth
along the streamline, dv/dx must be real and finite all
throughout. Hence, we calculate dv/dx|c by applying the
l′Hôpital’s rule as (dv/dx)xc

= [(dN/dx)/(dD/dx)]xc
.

For a physically acceptable transonic solution, flow must
contain at least one saddle-type sonic point [72, and refer-
ences therein]. Depending of the input parameters, flow
may possess multiple critical points as well which is one
of the necessary condition for shock formation [73]. In
general, inner critical point (xin) is formed close to the
horizon, whereas outer sonic point (xout) is resided far
away from the black hole.

In order to obtain the global magnetized transonic ac-
cretion solution around black hole, we simultaneously
solve the equations (13-16) for a set of flow parameters
[47, and references therein]. In this analysis, we treat αB,
ṁ and γ as global flow parameters, whereas the boundary
values of λ and β at xc are required as local flow param-
eters to solve these equations. In addition, we need ak

value as well to specify the spinning nature of the black
hole. With all these input parameters, we integrate equa-
tions (13-16) starting from xc inwards up to just outside
the BH horizon and then outwards up to xedge to obtain
a global accretion solution.

B. Governing equations for outflows

We consider that the outflow is originated from the
accretion disc and the outflow geometry is oriented along
the rotational axis of the black hole. Since a part of the
accreting matter is emerged out in the form of outflow, it
is expected that outflows are tenuous in nature. Because
of this, we ignore the effect of viscosity in outflows as the
differential rotation of the outflowing matter is likely to
be negligibly small. Moreover, as the toroidal component
of the magnetic field is considered as the dominant one
and the outflows are streamed along the axial direction,
we neglect the effect of magnetic fields while describing
outflows for simplicity. What is more is that we consider
the outflow to obey the polytropic equation of state as
Pj = Kjρ

γ
j , where the subscript ‘j’ stands for outflow

variables and Kj refers the measure of entropy of the
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outflow. Based on the above assumptions, we have the
following governing equations that describe the outflow
motion as,
(i) Energy conservation equation:

Ej =
1

2
v2

j +
a2

j

γ − 1
+ Ψeff , (17)

where Ej, vj and aj are the energy, velocity and sound
speed of the outflowing matter, respectively. Here, Ψeff

denotes the effective potential at the off equatorial plane
around the rotating black hole.
(ii) Mass conservation equation:

Ṁout = ρjvjAj, (18)

where Ṁout is the mass outflowing rate and Aj is the
area function of the outflow. Following [50], we calcu-
late Aj considering the fact that the outflowing matter
are ejected out between the surfaces of funnel wall (FW)
and centrifugal barrier (CB) [55, 56]. The FW refers the
pressure minimum surface defined by the null effective
potential as Ψeff |rFW

= 0, whereas the CB is identified as

the pressure maxima surface defined as
(
dΨeff

dx

)
rCB

= 0.

Similar to accretion process, we have the expression of
the effective potential as [61],

Ψeff =
1

2
ln

x2
j (2Yrj − 4a2

kx
2
j − YZ)

Z[−Yx2
j + 4akλjrjx2

j + λ2
j r

2
j (Z − 2rj)]

,

(19)

where rj

(
=
√
x2

j + z2
j

)
is the spherical radius of outflow,

xj = (xCB + xFW)/2, zj = zFW = zCB (see Fig. 1), Y =

(r2
j + a2

k)2−∆a2
k(xj/rj)

2 and Z = r2
j + a2

k

(
1− (xj/rj)

2
)

,

respectively.
In Fig. 1, we depict the schematic diagram of the out-

flow geometries for rotating black holes that are calcu-
lated numerically for λj = 3.0. Here, the region bounded
by the dashed (blue) curves are for extreme spin value
ak = 0.99. We compare this outflow geometry with the
same obtained from the well known pseudo-Newtonian
potential [74] (PW80) for stationary black hole (ak = 0)
and plotted using solid curves (red). From the figure,
it is evident that outflow geometries obtained for both
rotating and stationary black holes remain largely indis-
tinguishable particularly for x & 10rg. This happens
because the effect of black hole spin on the spacetime ge-
ometry rapidly reduces as radial distance increases. Since
the pseudo-Newtonian potential provides the analytical
forms of both FW and CB, it is straight forward to calcu-
late the area function (A). Hence, in this work, we adopt
the outflow geometry of stationary black hole to avoid the
rigorous numerical calculations in obtaining the outflow
geometry.

Similar to accretion, we carry out the critical point
analysis to solve the jet equations [75, and references
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50
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M

B
H
/

c2
cm

)]

O

SN R

CBFW

PW80 (ak = 0)

Dihingia et al. 2018 (ak = 0.99)

FIG. 1: Comparison of jet geometries obtained from differ-
ent pseudo-potentials. Dashed (blue) curve denote result ob-
tained for ak = 0.99 [61], whereas solid (red) curve corre-
sponds to ak = 0 [74, PW80]. Here, ON (= rFW) denotes
spherical radius of funnel wall (FW), OR (= rj) is the jet
spherical radius and OS (= rCB) is spherical radius of cen-
trifugal barrier (CB). We choose λj = 3.0. See the text for
details.

therein]. Using equations (17) and (18), we get the criti-
cal point condition for jet [76] as,

vjc = ajc =

√√√√(dΨeff

dr

)
rjc

[
1

Aj

(Aj

dr

)
rjc

]−1

, (20)

where rjc denotes the jet critical point, and vjc and ajc are
the matter speed and sound speed at rjc. Here, r = rCB.
In general, since jet streamline and jet area vector re-
main misaligned, we incorporate the projection factor√

1 + (dxj/dzj)2 while calculating the jet area function

as Aj = 2π(x2
CB − x2

FW)/
√

1 + (dxj/dzj)2 [76]. Using
the sonic point condition, we solve the outflow equations
(17 and 18) and obtain outflow/jet solution uniquely for
a given set of Ej and λj. In order to obtain the self-
consistent accretion-ejection solution, we couple the ac-
cretion and outflow solutions in the next section and sub-
sequently, we examine the outflow properties in terms of
the inflow parameters (β, αB and ṁ).
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C. Disk-jet connection

In reality, the rotating matter experiences centrifugal
repulsion while accreting towards the black hole. When
centrifugal force is comparable to the gravity, matter
starts accumulating in the vicinity of the black hole. Be-
cause of this, a puffy torus like structure is formed that
acts like an effective boundary layer around black holes
(equivalently post-shock corona, hereafter PSC), trigger-
ing the shock transition (xs). Indeed, the fast moving
pre-shock flow converts its kinetic energy to heat up the
post-shock region. This excess thermal gradient force
leads to eject a part of the accreting matter as bipo-
lar outflow/jet in the vertical direction. As discussed in
§II B, we assume the outflow to be guided by the CB and
FW surfaces [50]. Since the accretion and ejection pro-
cesses are coupled via PSC, in this work, we solve the
inflow-outflow equations self-consistently using the shock
conditions. In presence of mass loss, the shock conditions
[47, 56, 77] for vertically averaged accretion flow are given
as (a) the energy flux conservation: E+ = E−, (b) the

mass flux conservation Ṁ+ = Ṁ−−Ṁout = Ṁ−(1−Rṁ),
(c) the momentum flux conservation: W+ + Σ+v

2
+ =

W− + Σ−v
2
− and (d) the magnetic flux conservation:

Φ̇+ = Φ̇−, respectively. Here, the suffix ‘− (+)’ de-
notes pre(post)-shock quantities across the shock front,

E [= v2/2 + a2/(γ − 1) +
〈
B2
φ

〉
/(4πρ) + Ψe

eff ] refers the

local inflow energy, and Rṁ (= Ṁout/Ṁ−) is the mass
outflow rate. In the present formalism, as the outflow/jet
must originate from the PSC, we assume that it emerges
with same local E , λ and ρ of the post-shock flow im-
mediately after the shock. Accordingly, we have the out-
flow/jet variables at the jet base as Ej = E+, λj = λ+ and
ρj = ρ+. Using these boundary values, we numerically
solve jet equations (17 and 18) starting from the critical
point and obtain the outflow variables (vjb, ajb,Ajb) at
the jet base (xs). Subsequently, using equations (3 and
18), we compute the mass outflow rate (Rṁ) as,

Rṁ =
vjbAjb

4πa+v−

(
Σ+

Σ−

)(
γF
∆x3

s

)1/2

. (21)

In order to obtain the self-consistent accretion-ejection
solutions, we solve the coupled inflow-outflow equations
simultaneously adopting the following approach [55, 56].
To begin with, we consider Rṁ = 0, and compute the
virtual shock location (x∗s) by supplying the model input
parameters (see §2.1). Once x∗s is known, we assign the
jet variables (i.e., Ej, λj and ρj) to solve the jet equations
and calculate Rṁ by using equation (21). We use this
value of Rṁ to calculate the updated shock location. We
continue this successive iteration until the shock location
converges, and accordingly, we obtain the mass outflow
rate Rṁ.
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FIG. 2: Typical example of GIOS, where the variation of in-
flow Mach numbers M (outflow Mach number Mj), inflow
velocity v (outflow velocity vj), inflow density ρ (outflow den-
sity ρj) and inflow temperature T (outflow temperature Tj) are
depicted as function of x (rj). Here, we choose the global pa-
rameters as ṁ = 0.001, αB = 0.01, and ak = 0.99, whereas the
local inflow parameters at xin = 1.3375 is fixed as λin = 2.05,
Ein = 4.322 × 10−3, and βin = 300, respectively. Solid (red)
and dashed (blue) curves denote the inflow and outflow solu-
tions and filled circles refer the critical points. Arrows indi-
cate the direction of flow motion and vertical arrow shows the
shock location. See the text for details.

III. RESULTS

In this work, we are interested to examine the mass loss
from magnetized accretion disk. Towards this, in the sub-
sequent sections, we mainly focus on the self-consistent
accretion-ejection solutions around rotating black hole.
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A. Global inflow-outflow solution (GIOS)

In Fig. 2, we illustrate a typical example of the cou-
pled global inflow-outflow solution (GIOS), where both
inflow and outflow variables are plotted with radial coor-
dinates (x and rj). In doing so, we use lower x-axis and
left y-axis to demonstrate the inflow variables, whereas
upper x-axis and right y-axis are used to display the
jet variables. Here, we choose ṁ = 0.001, αB = 0.01,
ak = 0.99 and MBH = 10M�, and supply the local in-
flow parameters at the inner critical point xin = 1.3375
as λin = 2.05, Ein = 4.322 × 10−3, and βin = 300, re-
spectively. With this, we self-consistently obtained GIOS
and depict the variation of inflow Mach number (M) and
outflow Mach number (Mj) using solid (red) and dashed
(blue) curves in Fig. 2a. During the course of accre-
tion, subsonic inflowing matter from the outer edge of
the disk (xedge = 500) becomes supersonic after crossing
the outer critical point at xout = 96.64 and continues to
proceed towards the black hole. Meanwhile, supersonic
matter starts experiencing centrifugal repulsion that trig-
gers the discontinuous transition of the inflow variables
in the form of shock waves at xs = 14.826 in presence of
mass loss. Indeed, after the shock, a part of the inflowing
matter is deflected to form outflows and the remaining
matter enters in to the black hole supersonically after
crossing the inner critical point at xin = 1.3375. We find
that GOIS renders the energy and angular momentum
of the outflow as Ej = 6.179 × 10−3 and λj = 2.06 that
provides the jet critical point at rjc = 147.83, and ulti-
mately, we obtain the mass outflow rate as Rṁ = 0.11.
In the figure, filled circles refer the location of the crit-
ical points, arrows indicate the over all direction of the
flow motion and the vertical arrow represents the shock
radius (xs). In Fig. 2b, we present the variation of v and
vj corresponding to the solution presented in Fig. 2a.
We observe that v drops abruptly across the shock front,
however, it again increases as the flow proceeds further
while entering in to the black hole. On the other hand,
vj is seen to increase as outflow moves away from the
BH and it tends to achieve a terminal speed exceeding
0.075c at rj = 500. Next, in Fig. 2c, we show the pro-
files of ρ and ρj for the same solution as shown in Fig.
2a. It is evident that convergent accreting matter expe-
riences shock compression and hence, ρ jumps up during
the shock transition. We also observe that ρj decreases
with rj. Finally, we demonstrate the temperature (T and
Tj) variations of inflow and outflow in Fig. 2d. Across
the shock, supersonic matter jumps in to the subsonic
branch, and because of this, kinetic energy is converted
to thermal energy yielding the increase of temperature
at the PSC. As the outflow is launched from the PSC,
outflow temperature is high at the jet base, however, Tj

decreases as jet moves away from the black hole.

100 1000 5000
βin

0.1

0.15

0.2

R
ṁ

ṁ = 0.015
ṁ = 0.01
ṁ = 0.005

FIG. 3: Variation of mass outflow rate (Rṁ) as function of
βin for different accretion rate (ṁ). Open circles joined with
dotted, dashed and solid lines are for ṁ = 0.005 (green),
0.01 (blue) and 0.015 (red), respectively. Here, ak = 0.9 and
αB = 0.01. The inflow parameters fixed at inner critical points
are Ein = 5.8× 10−3 and λin = 2.34. See the text for details.

B. Effect of magnetized accretion on outflow rate

In Fig. 3, we depict the variation of Rṁ as a func-
tion of βin for a set of ṁ values. Here, we choose the
global parameters as ak = 0.9 and αB = 0.01, and fix
the inflow parameters at the inner critical point (xin) as
Ein = 5.8 × 10−3 and λin = 2.34. The obtained results
plotted using dotted (green), dashed (blue) and solid
(red) curves correspond to ṁ = 0.005, 0.01 and 0.015,
respectively. We observe that for a fixed ṁ, the out-
flow rate (Rṁ) increases as βin decreases. This finding
suggests that as the disc becomes more magnetized, the
possibility of mass loss from the disc increases. Indeed,
when magnetic fields are increased, the cooling becomes
more efficient resulting the decrease of energy E(x) as
flow accretes. Accordingly, for lower βin, flow starts ac-
creting from the outer part of the disk with higher energy
just to maintain identical Ein and hence, flow possesses
higher energy at the shock. Such an increase of energy at
the PSC drives more matter from the post-shock region
as outflows, resulting an increase in Rṁ. We also notice
that for a given βin, Rṁ increases with the increase in ṁ.
This happens because, higher ṁ enhances the cooling of
the accreting matter that yields the local energy of the
flow higher at PSC for fixed Ein. This eventually causes
the excess driving to deflect more matter at PSC in the
form of outflow.

Next, we examine how Rṁ varies with βin for a set of
different inflow angular momentum λin fixed at xin. Here,
we choose input parameters as Ein = 5.8 × 10−3, ṁ =
0.01, ak = 0.9 and αB = 0.01. The results are depicted in
Fig. 4 where dotted (green), dashed (blue) and solid (red)
curves are for λin = 2.32, 2.34 and 2.36, respectively. We
observe that for a given βin, higher angular momentum
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FIG. 4: Variation of mass outflow rate (Rṁ) with βin for
different λin. Open circles joined with dotted, dashed and
solid lines are for λin = 2.32 (green), 2.34 (blue) and 2.36
(red), respectively. Here, we choose ṁ = 0.01, ak = 0.9,
αB = 0.01 and Ein = 5.8× 10−3. See the text for details.
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FIG. 5: Rṁ variation with βin for a set of αB values. Open
circles joined with dotted, dashed and solid lines are for αB =
0.005 (green), 0.01 (blue) and 0.015 (red), respectively. Here,
ak = 0.9 and ṁ = 0.01. The inflow parameters at inner
critical point are chosen as Ein = 5.8 × 10−3 and λin = 2.34.
See the text for details.

flow provides higher Rṁ. This is not surprising as the
higher λin enhances the centrifugal repulsion that pushes
the shock front away from the horizon resulting expanded
PSC. Since PSC basically acts as the jet base, this leads
to the net outflow rate higher. Moreover, we also find
that Rṁ increases with βin for fixed λin which is very
much expected (see Fig. 3). With this, we emphasize
that both Ein and λin play crucial role in determining
the mass outflow rate (Rṁ) from a magnetized accretion
disk.

In Fig. 5, we compare the variation of Rṁ with βin

1000 5000
βin

0.1

0.15

0.2

R
ṁ

ak = 0.910
ak = 0.905
ak = 0.900

FIG. 6: Variation of Rṁ with βin for different black hole spin
(ak). Open circles joined with dotted, dashed and solid lines
are for ak = 0.9 (green), 0.905 (blue) and 0.91 (red). Here,
ṁ = 0.01, αB = 0.01, Ein = 5.8 × 10−3 and λin = 2.34,
respectively. See the text for details.

for different values viscosity parameters (αB). In obtain-
ing the results, we choose Ein = 5.8 × 10−3, λin = 2.34,
ak = 0.9 and ṁ = 0.01. In the figure, dotted (green),
dashed (blue) and solid (red) curves represent results ob-
tained for αB = 0.005, 0.01 and 0.015, respectively. We
observe that for a fixed βin, the increase of αB leads to
the decrease of Rṁ. It may be noted that viscosity plays
dual role for flows accreting on to a black hole. In one
hand, αB transports angular momentum outwards, while
in other hand, flow gains energy due to viscous dissipa-
tion as it accretes towards the black hole. Therefore, the
combined effects of viscosity operates inherently in gen-
erating outflow from the accretion disc. We notice that
higher αB causes a moderate increase of angular momen-
tum at xs, whereas sharp decrease of flow energy E(xs)
is observed (as Ein is kept fixed at xin). This apparently
weakens the jet driving at the PSC yielding the subse-
quent decrease of Rṁ for flows with higher viscosity. Fur-
thermore, when αB is fixed, Rṁ increases monotonically
with the decrease of βin. This is not surprising because
for a convergent flow of fixed inner boundary, the energy
at the PSC increases as cooling is increased that results
the inevitable increase of Rṁ.

It is useful to study the role of black hole spin (ak) in
generating the outflows from an accretion disc. For this,
we compute mass outflow rate (Rṁ) by varying ak values.
Here, we choose the input parameters as Ein = 5.8×10−3,
λin = 2.34, ṁ = 0.01 and αB = 0.01, respectively. The
obtained results are illustrated in Fig. 6, where dotted
(green), dashed (blue) and solid (red) curves denote re-
sults corresponding to ak = 0.90, 0.905 and 0.91, re-
spectively. Note that we consider marginal variation of
ak while comparing the Rṁ values. This is done sim-
ply to ensure that the flow angular momentum λin ren-
ders self-consistent GIOS for the chosen range of ak val-
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FIG. 7: Variation of maximum outflow rate (Rmax
ṁ ) as func-

tion of βin for ak = 0 (red) and ak = 0.99 (blue). Here, we
choose αB = 0.005 and ṁ = 0.01. See the text for details.

ues. We find that for a fixed βin, Rṁ increases with ak.
In this analysis, we carry out the computation of Rṁ
keeping the input parameters fixed at the inner bound-
ary (i.e., at xin). Hence, when ak is increased keeping
λin fixed, the shock front recedes away from the horizon.
This happens because of the spin-orbit coupling embed-
ded in the effective potential describing the black hole
spacetime, where marginally stable angular momentum
anti-correlates with ak [78]. As a result, the inflowing
matter is intercepted by the enhanced effective area of
PSC and increased Rṁ is resulted.

Next, we put efforts to compute the limiting value of
mass outflow rate, i.e., the maximum value of Rmax

ṁ .
While doing this, we keep the accretion rate and viscosity
parameter fixed as ṁ = 0.01 and αB = 0.005, and freely
vary the Ein and λin to calculate Rmax

ṁ in terms of βin and
ak. The obtained results are depicted in Fig. 7, where
the variation of Rmax

ṁ is plotted with βin. Here, open cir-
cles joined with solid (in red) and dashed (in blue) lines
are for ak = 0 and 0.99, respectively. From the figure, it
is evident that rapidly rotating black hole yields higher
Rmax
ṁ (∼ 7% higher) compared to the stationary black

hole irrespective to βin values. Noticeably, these results
are in contrast with the results of gas dominated disc
where Rmax

ṁ exhibits marginal variation (∼ 1%) with ak

[57]. We further observe that Rmax
ṁ reaches to ∼ 30%

(24%) for ak = 0.99 (0.0). All these findings clearly sug-
gest that magnetized accretion disc around highly spin-
ning black hole is more likely to exhibit higher mass loss
than the weakly rotating black hole. What is more is
that for fixed ak, Rmax

ṁ remains largely insensitive to the
βin except for low βin domain.

We further calculate the maximum mass outflow rate
(Rmax

ṁ ) as function of black hole spin (ak) for different
βin. Here, we choose ṁ = 0.01, and αB = 0.005, and
freely vary Ein and λin. The obtained results are pre-
sented in Fig. 8, where open circles and squares denote
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ṁ = 0.2411 + 0.0618 a2

k
Rmax

ṁ = 0.2155 + 0.0677 a2
k

FIG. 8: Variation of maximum outflow rate (Rmax
ṁ ) as func-

tion of ak for βin = 30 (red) and βin = 100 (blue). Here, we
choose αB = 0.005 and ṁ = 0.01. Solid and dashed curves
denote the fitted functions as marked in the figure. See the
text for details.
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ṁ = 0.050
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FIG. 9: Variation of βmin
in (minimum value of plasma-β at

xin) as function of ak for different mass accretion rate (ṁ).
Here, we choose αB = 0.005. Open circles joined with dotted,
dashed and solid lines denote results for ṁ = 0.025 (green),
0.05 (blue) and 0.1 (red), respectively. See the text for details.

the results corresponding to βin = 30 and 100, respec-
tively. As expected, we observe that Rmax

ṁ increases with
ak (see Fig. 7). Thereafter, using these results, we empir-
ically obtain a functional form Rmax

ṁ = A+Ba2
k, where A

and B are constants that predominantly depend on βin.
We find that for βin = 30 (100), these constants yield
as A = 0.2411 (0.2155) and 0.0618 (0.0677), and the
corresponding parabolic function is shown by the solid
(dashed) curve.

In this work, the magnetic activity of the magnetized
accretion disc is regulated using plasma-β parameter.
Therefore, it would be essential to analyse the maximally
magnetized accretion disc that renders mass loss by quan-
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tifying the minimum value of plasma-β (i.e., βmin
in ). Ac-

cordingly, we vary Ein and λin freely and identify βmin
in

for a set of (αB, ṁ, ak) yielding non-zero Rṁ. For the
purpose of representation, we choose αB = 0.005 and
find βmin

in in terms of ak and ṁ. The obtained results
are depicted in Fig. 9, where open circles joined with
dotted (green), dashed (blue) and solid (red) lines are
for ṁ = 0.025, 0.05 and 0.1, respectively. Figure clearly
indicates that mass loss from magnetized accretion disc
around rotating black hole continues to happen for the
spin range 0 ≤ ak < 1. We find that for a given ṁ,
βmin

in increases with ak. More precisely, we notice that
when black holes rotates slowly, outflows are generated
from accretion disc even in presence of intense magnetic
field, where magnetic pressure tends to become compa-
rable with the gas pressure (βmin

in ∼ few 10). On the
contrary, the ejection of matter in the form of outflow is
mostly possible from the gas pressure dominated disc (in
presence of feeble magnetic fields) around rapidly rotat-
ing black holes. Moreover, we observe that for a fixed
ak, βmin

in increases with ṁ indicating the fact that disc
accreting at low rate can sustain more magnetic fields
while deflecting matter as outflows.

So far, we have investigated the role of model param-
eters, namely ṁ, αB, βin and λin in regulating the mass
outflow rate (Rṁ) originated from the magnetized disc.
Indeed, these outflows can explain the features of per-
sistent radio emissions often observed from the galac-
tic black hole sources (GBHs) in their low-hard state
(LHS) and hard-intermediate state (HIMS). Keeping this
in mind, in §4, we make use of the coupled accretion-
ejection formalism to elucidate the radio-jet power com-
monly observed from the BH systems.

IV. ASTROPHYSICAL IMPLICATIONS

In this section, we attempt to explain the observed jet
luminosity using our theoretical model formalism. Since
the present work pertains to steady outflows, we focus
on those sources where persistent jets are observed. In-
deed, persistent jets are generally observed in the low-
hard spectral states (LHS) of the galactic black holes
(GBHs) [10, 11, 14, 15, 17]. These steady jets are gen-
erally compact and yet to be separated from the central
source [1, 123, 124]. Keeping this in mind, we select 12
BH-XRBs in LHS provided their simultaneously or quasi-
simultaneously X-ray and radio observations are readily
available. Moreover, the physical parameters of these
sample sources, namely mass (MBH), distance (D) and
spin (ak) are constrained (see Table I). Utilizing all these,
we estimate the jet kinetic power (Ljet) adopting the fol-
lowing approach.

We calculate the mass accretion rate Ṁacc (equiva-

lently Ṁ−) of the black hole as

Ṁacc =
LX

ηaccc2
g s−1, (22)

where LX denotes the X-ray luminosity and ηacc refers
the accretion efficiency factor. We obtain the X-ray lu-
minosity from the literature for most of the sources, and
for the remaining sources, we estimate source luminosity
as LX = 4πD2FX knowing the X-ray flux (FX , 1 − 10
keV) from the observations, where D being the source
distance. We express the mass accretion rate in unit of
Eddington rate (ṀEdd = 1.39× 1017MBH/M� g s−1)

ṁ =
Ṁacc

ṀEdd

= 2.398× 10−17

(
LX
c2

)(
MBH

M�

)−1

= 3.01× 10−16
(FXD

2

c2

)(MBH

M�

)−1

,

where we consider ηacc = 0.3 yielding the maximum ra-
diative efficiency [125].

Meanwhile, we notice that for a fixed ak, mass out-
flow rate (Rṁ) increases as the magnetic activity inside
the disk is increased (see Fig. 7). Motivating with this,
we intend to compute the maximum outflow rate (Rmax

ṁ )
(equation (21)) from a maximally magnetized accretion
disk while explaining the observed jet luminosity. In do-
ing so, we employ the accretion-ejection model formalism
and obtain Rmax

ṁ corresponding to the minimum value of
plasma-β (βmin

in ) at xin by freely varying energy (Ein) and
angular momentum (λin) of the flow. Here, we choose
αB = 0.005. Subsequently, using ṁ and ak for a given
black hole, we compute the maximum jet kinetic power
(Lmax

jet ) from the theoretical model as

Lmax
jet = Rmax

ṁ Ṁacc c
2 erg s−1. (23)

Next, we compare Lmax
jet with observation. While doing

so, we estimate the jet power from the radio luminosity
using the empirical relation [126–129] given by,

Lobs
jet = 4.79× 1015L

12/17
R erg s−1, (24)

where LR denotes radio luminosity computed using radio
flux (Fν) measured at frequency ν as LR = 4πD2νFν .
Here, radio data has been taken at a frequency ν ∼ 5
GHz. In this work, we obtain LR from the literature
and using equation (24), we calculate Lobs

jet for a given
black hole. In Table I, we tabulate the details of the se-
lected sources, where columns 1-12 denote source name,
mass (MBH), distance (D), spin (ak), X-ray flux (FX),
X-ray luminosity (LX), accretion rate (ṁ), βmin

in , Rmax
ṁ ,

Lmax
jet , Lobs

jet and relevant references, respectively. Note
that for few sources, the spin parameters are not known
constrained and hence, we estimate Lmax

jet considering the
limiting values, such as ak → 0 (weakly rotating) and
ak = 0.99 (rapidly rotating). For MAXI J1820+070
and IGR J17091−3624, we consider average mass calcu-
lated using their available mass range. Similarly, for IGR
J17091−3624 and XTE J1859+226, the distance is not
well constrained and hence, we use their average value.
It is evident from Table I that for most of the sources,
namely XTE J1550−564, MAXI J1820+070, Cyg X−1,



11

TABLE I: Comparison between observed and model predicted jet kinetic power. Columns 1-7 represent source name, source
mass, distance, spin, observed X-ray flux, X-ray luminosity and mass accretion rate, respectively. Quantities in columns 8 and
9 indicate plasma-βmin

in parameter and corresponding maximum outflow rate. Quantities in columns 10 and 11 denote model
predicted maximum jet kinetic power and the observed jet kinetic power. In column 12, we provide references in order of MBH,
D, ak, X-ray flux and radio flux, respectively, except the sources marked with † for which the spin is unknown.

Source MBH D ak FX LX ṁ βmin
in Rmax

ṁ Lmax
jet Lobs

jet References

(M�) (kpc) (10−10 erg s−1) (1037 erg s−1) (ṀEdd) (1036erg s−1) (1036erg s−1)

XTE J1550−564 9.1 4.4 0.78 57.8 1.34 0.039 28 0.258 11.45 6.31 [79],[79],[80],[81],[81]

GRO J1655−40 6.3 3.2 0.98 5.7 0.0070 0.003 4 0.316 0.75 1.61 [82],[83],[84],[81],[81]

MAXI J1820+070 5.73− 8.34 2.96 0.2 276.5 2.90 0.109 43 0.220 21.10 15.84 [85],[86],[87],[88],[89]

GX 339−4 10.08 8.4 0.97 2.0 0.17 0.0045 6 0.283 1.60 3.00 [90],[91],[92],[�],[93]

Cyg X−1 14.8 1.86 0.99 115.0 0.48 0.0085 21 0.295 4.64 3.81 [94],[95],[96, 97],[81],[81]

IGR J17091−3624 10.6− 12.3 11− 17 0.27 11.4 2.67 0.062 25 0.239 21.22 13.81 [98],[99],[100],[99],[99]

XTE J1859+226 6.55 6− 11 0.6 — 0.45 0.018 8 0.266 3.92 2.30 [101],[102, 103],[104],[105],[105]

MAXI J1348−630† 11 2.2 0 — 3.60 0.087 31 0.221 26.46 6.60 [106],[107],[108],[108]

11 2.2 0.99 — 3.60 0.087 236 0.280 33.52 6.60 [106],[107],[108],[108]

MAXI J1535−571 6.47 4.1 0.99 — 12.4 0.510 1394 0.278 114.76 29.00 [109],[110],[111],[112],[112]

MAXI J0637−430† 8 10 0 — 2.25 0.075 26 0.232 17.41 0.79 [113],[114],[115],[115]

8 10 0.99 — 2.25 0.075 204 0.280 21.02 0.79 [113],[114],[115],[115]

V404 Cyg 9.0 2.39 0.92 — 0.82 0.024 29 0.286 7.73 15.21 [116],[117],[118],[119],[119]

H 1743−322 11.21 8.5 0.7 — 1.32 0.031 19 0.267 11.61 7.44 [120],[121],[121],[122],[122]

�Aneesha et al. (2024)(under review).
†Spin is not constrained, and hence, both non-rotating (ak = 0.0) and rapidly rotating (ak = 0.99) limits are considered.

IGR J17091−3624, XTE J1859−226, MAXI J1348−630,
MAXI J1535−571, MAXI J0637−430 and H 1743−322,
the observed jet kinetic power (Lobs

jet ) lies within the the-
oretical estimates of maximum jet kinetic power (Lmax

jet ).
For the remaining sources, such as GRO J1655−40, GX
339−4 and V404 Cyg, Lmax

jet tends to agree with Lobs
jet

within the same order of estimates. With this, we ar-
gue/indicate that the present accretion-ejection model
formalism seems to be potentially viable to explain the
radio jet power of these selected sources. What is more
is that the accretion disk around GRO J1655−40, GX
339−4 and XTE J1859+226 are appears to be strongly
magnetized (βmin

in < 10), whereas MAXI J1535−571
seems to gas pressure dominated (βmin

in > 100).

V. SUMMARY AND CONCLUSION

In this work, we study mass loss in the form of the
outflows from a magnetized, viscous, advective accretion
disk around a rotating BH in presence of synchrotron
cooling, for the first time to the best of our knowledge.
While doing this, we consider the accretion disk to be
threaded by the toroidal magnetic fields [46, 47, 64] and
also confined around the BH equatorial plane. Depending
on the model parameters, such a disk may contain cen-
trifugally supported shocks yielding a post-shock corona
(PSC) surrounding the BH, where a part of the mag-
netized accreting matter is deflected to produce bipolar
outflows. These outflows are emerged out from the disk
along the rotational axis of BH guided by the funnel wall
and centrifugal barrier [50]. Further, in order to avoid

the general relativistic complexity, we adopt a recently
developed effective potential [61] that satisfactorily mim-
ics the spacetime geometry around the rotating BH. The
main findings of this study are summarized below.

• We compute the mass outflow rate (Rṁ) from a
magnetized accretion flow around the rotating BHs
by solving the coupled accretion-ejection equations
self-consistently. In order to examine the effect of
magnetic fields on the matter ejection process, we
introduce plasma-β parameter defined as the ratio
of gas pressure to magnetic pressure. We observe
that magnetized accretion disk continues to eject
matter in the form of outflow for wide ranges of
model parameters, namely accretion rate (ṁ), vis-
cosity (αB), angular momentum of the flow (λ),
spin of the black hole (ak) and magnetic fields
(plasma-β).

• We notice that for a set of model parameters, the
mass outflow Rṁ increases as the magnetic activity
is increased inside the disk (see Figs. 3, 4, 5, 6).

• We estimate the maximum mass outflow rate
(Rmax

ṁ ) from a magnetized disk and find that Rmax
ṁ

remains always higher for rapidly rotating black
hole (ak → 0.99) compared to the stationary black
hole (ak = 0.0) irrespective to the plasma-β param-
eter. Moreover, we observe that for magnetic pres-
sure dominated disk, Rmax

ṁ reaches up to ∼ 30% for
ak → 0.99, whereas Rmax

ṁ ∼ 24% for ak → 0 (see
Fig. 7).
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• We analyse the maximally magnetized disk
(parametrized with βmin

in ) around BH that ren-
ders outflow. We find that for slowly rotating BH
(ak → 0), accretion flow threaded with intense
magnetic field (βmin

in ∼ few 10) admits mass loss,
whereas the outflows are likely to launch from the
vicinity of rapidly rotating BH (ak → 1) for rela-
tively large βmin

in (see Fig. 9).

• We use the accretion-ejection formalism to explain
the observed jet kinetic power (Lobs

jet ) of several BH-
XRBs in their low-hard spectral states. Employing
our theoretical model formalism, we compute max-
imum jet kinetic power (Lmax

jet ) and find that Lmax
jet

for the selected sample sources are in agreement
with Lobs

jet (see Table I).

Finally, it is essential to mention the limitations of this
work. We consider an effective potential to describe the
spacetime geometry around a rotating black hole instead
of using proper general relativistic treatment. Notably,
pseudo-potential approach provides good agreement in
the calculation of shock radius with a deviation of 6−12%
for 0 ≤ ak ≤ 0.99 [61]. Therefore, in this work, a similar
error (∼ 10%) is anticipated in the calculation of Rṁ, al-
though the precise error estimation is beyond the scope
of the present work. Further, we assume the accretion
disk to be threaded by the toroidal magnetic fields ne-
glecting the poloidal components, and also ignore mag-

netic fields in the outflows. We further use adiabatic
index (γ) as a global constant, rather than calculating
it self-consistently based on the temperature profile of
the flow following relativistic equation of state. More-
over, we consider only synchrotron cooling process ne-
glecting bremsstrahlung emission and Compton emission
processes. Indeed, all these physical processes are rele-
vant in the context of the accretion-ejection mechanism,
and hence, we plan to take up these issues as future works
and will be communicated elsewhere.
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The data underlying this paper will be available with
reasonable request.
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Appendix

Using equation (3) in equations (1), (2), (4) and equa-
tion (11) in equation (12), we get

Ev
dv

dx
+ Ea

da

dx
+ Eλ

dλ

dx
+ Eβ

dβ

dx
+ E0 = 0 (25a)

lv
dv

dx
+ la

da

dx
+ lλ

dλ

dx
+ lβ

dβ

dx
+ l0 = 0 (25b)
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Rv
dv

dx
+Ra

da

dx
+Rλ

dλ

dx
+Rβ

dβ

dx
+R0 = 0 (25c)

bv
dv

dx
+ ba

da

dx
+ bλ

dλ

dx
+ bβ

dβ

dx
+ b0 = 0 (25d)

The coefficients of equations (25a - 25d) are expressed
in the form of

Ev =
(
γv2−a2
γv

)
, Ea = a/γ, Eλ =

(
a2

2γF
∂F
∂λ |x

)
, Eβ = 0

and E0 = a2

2γF
∂F
∂x |λ − 3a2

2γx − a2∆′

2γ∆ + dΨeff

dx + 2a2

γ(1+β)x ; ∆′ =
d∆
dx = 2(x− 1)

lv = αBx
(

1 − ga2

γv2

)
, g = In+1

In
, la = 2αBxga

γv , lλ = −1,

lβ = 0 and l0 = αB

γv (ga2 + γv2)(2− x∆′

2∆ )

Rv = a2

γ
β

1+β , Ra = γ+1
γ−1

a2v
γ

β
1+β , Rλ =

−
(
a2v
γ

β
1+β

1
2F

∂F
∂λ |x + 2αBIn

γ (ga2 + γv2)x∂Ω
∂λ |x

)
,

Rβ = a2v
γ(γ−1)(1+β)2 and R0 = a2v

γ
β

1+β

(
∆′

2∆ + 3
2x −

1
2F

∂F
∂x |λ

)
− sa5

v

√
F
x3∆

β2

(1+β)3 − 2αBIn
γ (ga2 + γv2)x∂Ω

∂x |λ

bv = 1/v, ba = 3/a, bλ = −1
2F

∂F
∂λ |x, bβ = −1/(1 + β)

and b0 = 2ζ
x − ∆′

2∆ + 3
2x − 1

2F
∂F
∂x |λ

The coefficients mentioned in equations (14), (15) and

(16) are as follows, a11 = − Eλl0+E0
Ea+Eλla , a12 = −Eλlv+Ev

Ea+Eλla
λ11 = a11la + l0, λ12 = a12la + lv
β11 = − b0+bλλ11+baa11

bβ
, β12 = − bv+bλλ12+baa12

bβ

By utilizing the aforementioned coefficients, the nu-
merator and denominator of equation (13) can be ex-
pressed as

N (x, v, a, λ, β) = −(R0 +Raa11 +Rλλ11 +Rββ11)

D(x, v, a, λ, β) = (Rv +Raa12 +Rλλ12 +Rββ12)
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