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Abstract: We investigate the structure of relativistic, low-angular momentum, inviscid
advective accretion flow in a stationary axisymmetric Kerr-like wormhole (WH) spacetime,
characterized by the spin parameter (ak), the dimensionless parameter (β), and the source
mass (MWH). In doing so, we self-consistently solve the set of governing equations describing
the relativistic accretion flow around a Kerr-like WH in the steady state, and for the first time,
we obtain all possible classes of global accretion solutions for transonic as well as subsonic
flows. We study the properties of dynamical and thermodynamical flow variables and examine
how the nature of the accretion solutions alters due to the change of the model parameters,
namely energy (E), angular momentum (λ), ak, and β. Further, we separate the parameter
space in λ − E plane according to the nature of the flow solutions, and study the modification
of the parameter space by varying ak and β. Moreover, we retrace the parameter space
in ak − β plane that allows accretion solutions containing multiple critical points. Finally,
we calculate the disc luminosity (L) considering free-free emissions for transonic solutions
as these solutions are astrophysically relevant and discuss the implication of this model
formalism in the context of astrophysical applications.
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1 Introduction

Accretion is believed to be the fundamental mechanism [1] that successfully explains the
origin as well as the nature of the characteristic radiations that are emerged out from the
astrophysical sources, namely quasars [2, 3], active galactic nuclei [4, 5], and black hole X-ray
binaries [6]. In the standard general relativistic framework, a massive compact object at the
center of the accreting system plays a central role in this accretion process. Out of different
theoretical possibilities as central objects, black hole (BH) makes the phenomena extremely
interesting because of its unique underlying characteristics at the event horizon. Hence,
many theoretical studies on accretion process have been confined to those systems, where BH
assumes the role of central object [7–9]. However, from the observational point of view, it is
not the BH that can be observed directly. Therefore, in the theoretical front, the candidate
for the gravitating central object can be any consistent solution of general relativity that
seems to mimic the black hole space-time in the asymptotic region. Accordingly, in this
endeavour, the primary motivation would be to study the properties of the accreting system
in the strong gravity regime, which is yet to be proved strictly to be Einsteinian.

Meanwhile, recent observations of black hole shadows by the Event Horizon Telescope
(EHT) [10–13] have opened up the possibility of detecting the direct signature of strong gravity.
In this domain, there has been a significant surge for the investigation of various exotic
gravitational objects in recent years. Specifically, an exotic gravitational background obtained
within the framework of general relativity could be intriguing to explore in the context of the
strong gravity regime through accretion processes. It is worth mentioning that BHs need
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not be the only accreting objects in the universe, instead there maybe other categories of
hypothetical objects, such as naked singularity (NS) and wormhole (WH), which can not
be ruled out by theory and/or experiment till date. Indeed, WHs are the valid solutions
of Einstein’s equations similar to BHs, and hence, it has been an active area of research to
study the accretion phenomenon around them. Meanwhile, numerous attempts along this
line were carried out adopting different gravitational theories, such as higher dimensional
braneworld gravity [14, 15], Chern-Simons modified gravity [16], Hořava gravity [17], more
exotic boson stars [18, 19], wormholes [20], gravastars [21], quark stars [22]. Needless to
mention that all these works were performed considering an incomplete description of the
accretion flow, particularly taking into account only the particle dynamics [8, 9, 23, 24].
Recently, a full general relativistic hydrodynamic treatment is reported [25, 26] for a special
class of background called Kerr-Taub-NUT (KTN) spacetime and a complete set of accretion
solutions, and their properties are discussed.

Keeping this in mind, in the present paper, we take up another class of spacetime called
Kerr-like WH which has recently gained widespread interest in the astrophysical context [27].
After the very first proposal of Einstein and Rosen [28] with unsuccessfully countering the
non-local nature of quantum mechanics, famously known as Einstein-Rosen bridge, significant
efforts have been imparted over the years to understand such exotic object in purely Einstein’s
framework [29, 30], adding minimally coupled scalar field with negative kinetic term [31, 32].
In general relativity framework, exotic matter violating null, weak, and strong energy
conditions [33–38] has been observed to play crucial role in generating WH solution. These
include models which are supported by the phantom energy, the cosmological constant [39–42],
modified theories of gravity such as higher order curvature theory [43], non-minimal curvature-
matter coupling in a generalized f(R) modified theory of gravity [44], modified theories, e.g.,
Einstein-Gauss-Bonnet [45], Born-Infeld gravity [46], Einstein-Cartan [47]. WHs generically
come with a throat that connects two different asymptotic regions, and away from the throat,
the WHs mimics black hole spacetime [48]. There have been several works on the possibility
to distinguish the classical WHs from BHs by means of various diagnostics, such as the
shadow of an accretion disc, gravitational lensing, gravitational waves, etc., [20, 46, 49–56].
However, a complete hydrodynamical analysis of accretion process are still pending in WH
background. This motivates us to investigate the hydrodynamic properties of accretion flow
around Kerr-like WH in full general relativistic framework.

This paper is organized as follows. In section 2, we describe the background geometry.
In section 3, we present the underlying assumptions and governing equations. We present
the method to find the global transonic and subsonic solutions around WH in section 4. In
section 5, we present the obtained results. We discuss the radiative emission properties in
section 6. Finally, we summarize our findings with conclusions in section 7.

2 Background geometry

We begin with a stationary, axisymmetric, Kerr-like WH spacetime [27], where the spacetime
interval is expressed as,

ds2 = gµνdxµdxν

= gttdt2 + grrdr2 + 2gtϕdtdϕ + gϕϕdϕ2 + gθθdθ2.
(2.1)
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Here, the coordinate r globally defines the WH spacetime in the following ways. We impose
a discrete Z2 symmetry on r such that, rth ≲ |r| ≤ ∞, where rth denotes throat radius. The
wormhole spacetime is globally static, and the time-like Killing vector remains time-like
everywhere. In particular, for wormhole, the Killing vector is defined as, ηµ = (1, 0, 0, Ωth),
where Ωth = − (gtϕ/gϕϕ)th = ak

2rth(1+β2)2 is the angular velocity of the wormhole. At the
throat (rth), ηµηµ = −ve implies that the Killing vector is time-like for Kerr-like wormhole.
Hence, the time-like trajectory (ηµηµ = −ve) at r > rth remains time-like (ηµηµ = −ve)
at r = rth as well, and two sides of the spacetime are patched at rth, where r varies from
rth to ∞ in both side of the throat. Accordingly, the time-like vector remains time-like
everywhere in both side of the wormhole. It is worth mentioning that in case of Kerr BH,
the time-like trajectory at r > rh (rh being the BH horizon) becomes a null trajectory at
r = rh and turns into space-like for r < rh.

Considering the symmetric WH, the metric components in both sides of the WH throat
are obtained in terms of Boyer-Lindquist coordinates [57], which are given by,

gtt|± = −
(

1 − 2r

Σ

)
; gtϕ|± = −2akr sin2 θ

Σ ;

grr|± = Σ
∆ ; gθθ|± = Σ;

gϕϕ|± =
(

r2 + a2
k + 2a2

kr sin2 θ

Σ

)
sin2 θ,

where, Σ = r2 + a2
k cos2 θ, ∆ = r2 − 2r(1 + β2) + a2

k, ak is the spin parameter (equivalently
Kerr parameter), and β is the dimensionless parameter. Here, ‘±’ denotes two sides of the
WH under consideration, and we refer ‘+’ to Zone-I and ‘−’ to Zone-II as illustrated in
figure 1. For a limiting value β = 0, the Kerr-like WH turns out to be a Kerr black hole.

In these analysis, we follow the sign convention as (−, +, +, +) and adopt a unit system
MWH = G = c = 1, where MWH denotes the WH mass, G is the universal gravitational
constant, and c is the speed of light. In this unit system, length, time, and angular momentum
are expressed in units of GMWH/c2, GMWH/c3, and GMWH/c, respectively. The property of a
stationary axisymmetric spacetime is the existence of two commuting killing vectors along (t, ϕ)
directions. The other two components (r, θ) are mutually orthogonal to each other. Setting
the condition grr = 1/grr = 0, we calculate the throat radius as rth = 1+β2+

√
(1 + β2)2 − a2

k.
In this work, we consider traversable WH, where, depending on the appropriate boundary
conditions, accreting matter from one Zone can smoothly pass to the other Zone via throat.
Hence, in order to study the properties of accretion flow, we analyze the governing equations
for both sides (Zone-I and Zone-II) of the throat.

3 Assumptions and governing equations

We consider a low angular momentum, steady, inviscid, axisymmetric, advective accretion
flow around a WH. In addition, the flow is assumed to remain confined at the equatorial
plane of the central object and flow does not suffer energy dissipation due to various physical
processes, namely viscosity, radiative cooling and magnetic fields.
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Throat

Figure 1. Artistic impression of a symmetric WH spacetime that includes Zone-I and Zone-II
connected via throat.

In the general relativistic hydrodynamic framework, the energy-momentum tensor and
four current are given by,

T µν = (e + p)uµuν + pgµν and jµ = ρuµ, (3.1)

where e, p, ρ, and uµ denote the internal energy density, pressure, mass density and four
velocities of the perfect fluid, respectively and the spacetime indices µ and ν run from 0 to 3.

The hydrodynamical accretion flow is governed by conservation of energy-momentum
and mass flux equations, which are given by,

T µν
;ν = 0 and (ρuν);ν = 0. (3.2)

Here, the time-like velocity field obeys the condition uµuµ = −1. We use the projection
operator defined as hi

µ = δi
µ + uiuµ to take the projection of the conservation equation on

the spatial hypersurface and obtain the Euler equation as,

hα
µT µν

;ν = (e + p)uνuα
;ν + (gαν + uαuν)p,ν = 0. (3.3)

Note that the projection operator also satisfies the condition hα
µuµ = 0 which ensures that

the projection operator and the four velocity remain orthogonal to each other. Further, we
project the conservation equation along uµ and obtain the first law of thermodynamics as,

uµT µν
;ν = uν

[(
e + p

ρ

)
ρ,ν − e,ν

]
= 0. (3.4)

In this work, we assume the flow to remain confined around the disk equatorial plane and
hence, we choose θ = π/2 which leads to uθ = 0. Further, following [58], we define the three
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Figure 2. Variation of effective potential (Φeff
e ) as function radial coordinate (|r|; modulus is used for

the simultaneous representation of Zone-I and Zone-II) for angular momentum λ = 2.20. Dashed (red),
dot-dashed (blue) and solid (magenta) curves denote results corresponding to ak = 0.98, 0.985, and
0.99, respectively, and dotted (green) vertical lines indicate the respective throat radius as rth = 1.2137,
1.1890, and 1.1603. See the text for the details.

radial velocity of the fluid in the co-rotating frame as v2 = γ2
ϕv2

r , where γ2
ϕ = 1/(1 − v2

ϕ),
v2

ϕ = (uϕuϕ)/(−utut), and v2
r = (urur)/(−utut), respectively. The radial Lorentz factor

γ2
v = 1/(1 − v2) and the total bulk Lorentz factor is γ = γϕγvγθ. With the above definitions

of velocities, we obtain the radial component of the momentum equation from eq. (3.3)
for α = r as,

vγ2
v

dv

dr
+ 1

hρ

dp

dr
+ dΦeff

e
dr

= 0, (3.5)

where h [= (e + p)/ρ] is the specific enthalpy, Φeff
e refers the effective potential [59] at the

disk equatorial plane and is given by,

Φeff
e = 1 + 1

2 ln
[

r(a2
k + r(r − 2))

a2
k(r + 2) − 4akλ + r3 − λ2(r − 2)

]
. (3.6)

Needless to mention that the overall characteristics of the accretion flow crucially depend
on the nature of the gravitational potential outside WH under consideration. Hence, we
examine the effective potential (Φeff

e ) in figure 2, where the variation of Φeff
e with radial

coordinate (r) is illustrated for a fixed angular momentum λ = 2.20. In the figure, the
obtained results are plotted with dashed (red), dot-dotted (blue) and solid (magenta) curves
for ak = 0.98, 0.985, and 0.99, respectively. The dotted (green) vertical lines denote the
throat radius (rth) of WH that solely depends on both ak and β, respectively. Here, we
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choose β = 0.05 and find rth = 1.2137, 1.1890, and 1.1603 for the chosen spin parameters
(ak) in increasing order. Note that the horizontal solid (back) line separates Zone-I from
Zone-II on both sides of the WH throat. Figure evidently indicates that the potential is
symmetric in both sides (Zone-I and Zone-II) of WH throat.

Using eq. (3.4), we obtain the entropy generation equation along the radial direction as,(
e + p

ρ

)
dρ

dr
− de

dr
= 0. (3.7)

The stationary and axisymmetric spacetime under consideration is associated with two
Killing vectors due to its symmetries. This yields two conserved quantities, which are given by,

−hut = E ; huϕ = L, (3.8)

where, E is the Bernoulli constant (equivalently specific energy) and L is the bulk angular
momentum per unit mass of the flow. We express the specific angular momentum of the flow
as λ = L/E = −uϕ/ut, which is also a conserved quantity for an inviscid accretion flow.

We integrate eq. (3.2) to obtain another constant of motion in the form of mass accretion
rate (Ṁ) and is given by,

Ṁ = −4πrρurH. (3.9)

In this work, we express the mass accretion rate in dimensional form as ṁ = Ṁ/ṀEdd, where
ṀEdd (= 1.44 × 1018(MWH/M⊙) gm s−1) is the Eddington accretion rate, M⊙ being the solar
mass. In eq. (3.9), H refers the local half-thickness of the accretion disk. Following [60, 61],
we compute H assuming the flow to maintain hydrostatic equilibrium in the vertical direction,
and is given by

H =
√

pr3

ρF
; F = 1

1 − λΩ × (r2 + a2
k)2 + 2∆a2

k
(r2 + a2

k)2 − 2∆a2
k

, (3.10)

where Ω [= (2ak + λ(r − 2))/(a2
k(r + 2) − 2akλ + r3)] is the angular velocity of the ac-

creting matter.
We close the equations (3.2) and (3.9) adopting the relativistic equation of state

(REoS) [62] that relates internal (e), pressure (p) and mass density (ρ) as,

e = ρf

τ
, p = 2ρΘ

τ
, (3.11)

with τ = 1 + mp/me and

f =
[
1 + Θ

(9Θ + 3
3Θ + 2

)]
+
[

mp

me
+ Θ

(
9Θme + 3mp

3Θme + 2mp

)]
,

where mp and me denote the masses of ion and electron, respectively, and Θ (= kBT/mec2)
is the dimensionless temperature. In accordance with REoS, the speed of sound is expressed
as Cs =

√
2ΓΘ/(f + 2Θ), where Γ [= (1 + N)/N ] refers the adiabatic index and N [=

(1/2)(df/dΘ)] is the polytropic index of the flow, respectively [63]. Using eq. (3.7), we
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estimate the measure of entropy by calculating the entropy accretion rate (Ṁ) [25, 62],
which is given by,

Ṁ = exp(k1)Θ3/2 (2 + 3Θ)3/4
(

3Θ + 2mp

me

)3/4
urrH, (3.12)

where k1 = [f − (1 + mp/me)] /2Θ. Note that for a non-dissipative flow characterized with a
given set of energy (E) and angular momentum (λ), Ṁ remains conserved all throughout
the disk.

We simplify eqs. (3.5), (3.7), (3.8), (3.9) and (3.11) and obtain the wind equation as,

dv

dr
= N

D
, (3.13)

where the numerator (N ) is given by,

N = 2C2
s

Γ + 1

( 1
2∆

d∆
dr

+ 3
2r

− 1
2F

dF

dr

)
− dΦeff

e
dr

, (3.14)

and the denominator (D) is given by,

D = γ2
v

(
v − 2C2

s

v(Γ + 1)

)
. (3.15)

Further, using eqs. (3.9), (3.10) and (3.13), we calculate the radial gradient of the dimensionless
temperature as,

dΘ
dr

= −2Θ
2N + 1

[
1

2∆
d∆
dr

+ 3
2r

+ γ2
v

v

dv

dr
− 1

2F

dF

dr

]
. (3.16)

4 Solution methodology

During the course of accretion around WH, rotating flow from the outer edge (redge) of the
disk in Zone-I (Zone-II) starts accreting subsonically (v < Cs). Because of the strong gravity
of WH, inward moving flow gradually gains its radial velocity and depending of the input
parameters, namely E , λ, ak and β, flow may become super-sonic after crossing the critical
point (rc; flow of this kind is called transonic flow) or remain subsonic all throughout before
approaching to the WH throat (rth). Thereafter, flow is diverted to Zone-II (Zone-I) with
identical velocity (v), temperature (Θ) and accretion rate (Ṁ) at rth of Zone-I (Zone-II),
and continues to proceed away from the WH till redge. It is noteworthy that a transonic
(subsonic) flow in Zone-I remains transonic (subsonic) in Zone-II, and vice versa.

4.1 Transonic accretion solutions

In general, the accretion flow around WH remains smooth everywhere (rth ≲ r ≤ redge),
and hence, the flow radial velocity gradient (dv/dr) must be real and finite along the flow
streamline. However, equation (3.15) clearly indicates that the denominator (D) may vanish
at some points. If so, numerator (N ) also vanishes there. Such a special point, where
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N = D = 0, is called as critical points (rc). Setting the condition D = 0, we obtain the
radial velocity (vc) of the flow at the critical point (rc) as,

vc =
√

2
Γc + 1Csc. (4.1)

Similarly, the condition N = 0 yields the sound speed (Csc) at rc as,

C2
sc = Γc + 1

4

(
dΦeff

e
dr

)
c

( 1
2∆

d∆
dr

+ 3
2r

− 1
2F

dF

dr

)−1

c
. (4.2)

In equation (4.1) and (4.2), quantities with subscript ‘c’ are evaluated at the critical point (rc).
As the radial velocity gradient (dv/dr) takes 0/0 form at rc, we apply L′Hôpital’s rule

to evaluate (dv/dr)c at rc. For a given set of input parameters (E , λ, ak and β), (dv/dr)c
yields two values. When both (dv/dr)c are real and of opposite sign, the critical point
is called as saddle type, whereas nodal type critical point is obtained if (dv/dr)c are real
and of the same sign. For spiral type critical point, (dv/dr)c are imaginary. Needless to
mention that saddle type critical points are stable, whereas both nodal and spiral types
critical points are unstable [64]. Hence, saddle type critical points are specially relevant in
the astrophysical context as transonic accretion solution can only pass through them. Now
onwards, we refer saddle type critical points as critical points only unless stated otherwise.
Furthermore, depending on the input parameters, flow may possess more than one critical
points. When critical point forms close to throat, it is called as inner critical point (rin) and
when it forms far away from the throat is referred as outer critical point (rout).

In order to obtain the self-consistent transonic solution around WH, we simultaneously
solve eq. (3.13) and eq. (3.16) for a given set of input parameters (E , λ, ak, β) in Zone-I
(Zone-II). In doing so, we first integrate eq. (3.13) and eq. (3.16) starting from the critical
point (rc) up to the outer edge of the disk (redge) and then from rc to rth. Finally, we
join these two segments of the solution to obtain the global transonic solution in Zone-I
(Zone-II). It is worth mentioning that for a traversable WH, an accretion solution in Zone-I
appears to be analogous in Zone-II.

4.2 Subsonic accretion solutions

Unlike transonic solution, subsonic solution does not pass through the critical point and
hence, to obtain such solution uniquely, we require entropy accretion rate (Ṁ) as additional
parameter along with the other input parameters. Therefore, for a set of input parameters
(E , λ, ak, β, and Ṁ), we integrate eq. (3.13) and eq. (3.16) starting from the outer edge of
the disk (redge) up to rth. To start the integration, we tune the flow radial velocity (vedge) at
redge to calculate Θedge using equation (3.12), that renders smooth subsonic solution in the
range rth ≲ r ≤ redge in Zone-I (Zone-II). Note that for a given set of (E , λ, ak, β), one can
obtain a set of subsonic solutions around WH for different Ṁ values.

5 Results

In this section, we present the results obtained form our model formalism that include the
global solutions, parameter space and the emission properties of the accretion flow around WH.
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Zone-II

Figure 3. Variation of Mach no (M = v/Cs) as function of the modulus of radial coordinate (|r|)
around WH. Here, we choose E = 1.02, λ = 1.90, ak = 0.99, and β = 0.05, respectively. Solid (blue)
and dashed (red) curves represent solutions corresponding to accretion and winds. Filled circles (black)
refer to the inner critical points (rin) and dotted vertical line (green) denotes throat radius of WH.
See the text for the details.

5.1 Global transonic solutions

In figure 3, we present a typical global transonic accretion solution where Mach number
(M = v/Cs) of the flow is plotted as function of the radial coordinate (r). Here, we choose ak
= 0.99, and β = 0.05, and the solutions are computed for flows of energy E = 1.02 and angular
momentum λ = 1.90. For the chosen set of input parameters, we find that in Zone-I (upper
panel), flow starts accreting subsonically from the outer edge of the disk at redge = 100 and
gains radial velocity as it moves inward due the strong attraction of WH gravity. Eventually,
flow changes its sonic state to become supersonic at the inner critical point at rin = 1.7160
and continues to accrete until it reaches the WH throat at rth = 1.1603. In the figure, we
present the accretion solution using the solid (blue) curve. The corresponding wind solution
(from rth to redge) is also depicted as shown by the dashed (red) curve. For the purpose of
completeness, we present the flow solutions for Zone-II in the lower panel which is the mirror
image of the flow solutions presented in the Zone-I. Now onwards, to avoid repetitions, we
shall exclusively present the flow solutions in Zone-I only, unless stated otherwise.

In figure 4, we display the variation of other flow variables with the radial coordinate (r)
corresponding to the accretion solution presented in figure 3. In figure 4a, we depict the profile
of density (ρ) variation for convergent accretion flow and observe that ρ increases as the flow
moves towards WH. We put effort to represent the density profile using a power-law and the
best fit is obtained as ρ ∝ r−(n+2/5), where n ∼ 1. This finding is consistent with the results
reported in [1, 65]. Next, we show the radial profile of pressure (p) and temperature (T ) of
the flow in figure 4b-c, and attain the optimal power-law fit as p ∝ r−(n+1) and T ∝ r−(n−1/3),
respectively. It is noteworthy that we observe poor fitting of the flow variables at the inner
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Figure 4. Variation of (a) density (ρ), (b) pressure (p), and (c) temperature (T ) of the accretion
flow as function of radial coordinate (r). Here. model parameters are chosen same as in figure 3. In
each panel, dashed (red) curve represents the best fit power-law profile of the flow variables and filled
circle (black) denotes the critical point rin = 1.7160. The vertical dotted lines (green) denote throat
radius rth = 1.1603. See the text for the details.

part of the disk close to WH. This possibly happens due to that fact that the simple power-law
fit fails to capture the complex nature of the flow characteristics in the vicinity of the WH.

5.2 Classification of global transonic solutions

Indeed, the nature of the transonic accretion solutions depends on the energy (E) and
angular momentum (λ) of the flow around WH. Towards this, in figure 5a, we separate
the effective domain of the parameter space in λ − E plane according to the nature of the
transonic accretion solutions around WH. Here, we choose ak = 0.99 and β = 0.05, and
identify four distinct regions in the parameter space that provide O-type, A-type, W-type
and I-type transonic accretion solutions. For the purpose of representation, we depict the
typical examples of transonic accretion solutions from these four regions in panels (b-e) of
figure 5, where M is plotted as function of r. These solutions are obtained for different
sets of (λ, E) chosen from the marked regions of the λ − E parameter space. In each panels,
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Figure 5. Sub-division of parameter space in λ − E plane according to the nature of the flow solutions
around WH (panel a). Here, we choose ak = 0.99 and β = 0.05. Four distinct regions marked as
O-type, A-type, W-type and I-type are identified and typical flow solutions (M vs. r) from these
regions are depicted in panels (b-e), where solid (blue) and dashed (red) curves denote accretion and
winds. Filled circles (black) refer critical points (rin and/or rout) and vertical dotted lines (green)
denote throat radius rth = 1.1603. See the text for the details.

solid (blue) and dashed (red) curves represent flow solutions corresponding to accretion and
wind, and filled circles denote the critical points (rin and/or rout). In panel (b), we present
the O-type solution which are obtained for (λ, E) = (1.70, 1.005) and the solution possesses
outer critical point at rout = 52.8253 before advancing towards the WH throat (rth). We
calculate A-type solution for (λ, E) = (1.95, 1.005) and the obtained results are shown in
panel (c). The solution of this kind contains both inner and outer critical points, and we find
rin = 1.5384 and rout = 50.0378. The entropy accretion rate at rin and rout are computed
as Ṁ(rin) ≡ Ṁin = 8.66 × 107 and Ṁ(rout) ≡ Ṁout = 7.337 × 107, respectively. Note that
accretion solution passing through rout successfully connects the outer edge of the disk (redge)
and the WH throat (rth), where solution containing rin fails to do so. Next, we obtain W-type
solution for (λ, E) = (1.96, 1.01) that yields rin = 1.4995 and rout = 23.1166 (see panel (d)).
We find that for W-type solutions, entropy accretion rate at rout is higher than the entropy
accretion rate at rin as Ṁout = 11.474 × 107 and Ṁin = 8.2 × 107. We also notice that
accretion solution possessing rout can not extend up to the WH throat (rth), however, it
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Figure 6. Modification of transonic accretion solutions (M vs r) with the increase of ak as marked
in each panel. Here, we fix the model parameters as E = 1.0084, λ = 2.1, and β = 0.05, respectively.
Solid (blue) curves denote accretion solutions, whereas dashed (red) curves are for winds. Filled circles
refer critical points (rin and/or rout). Dotted vertical line denotes the throat radius as (a) rth = 1.6196,
(b) rth = 1.5387, (c) rth = 1.4639, (d) rth = 1.3226 and (e) rth = 1.1942. See the text for the details.

seamlessly connects redge and rth when passing through rin. Finally, the results corresponding
to I-type solution is shown in panel (e) which possesses only inner critical point (rin), and
results are obtained for (λ, E) = (1.9, 1.02) with rin = 1.7160.

5.3 Modification of global transonic solutions

It is intriguing to examine the role of ak in deciding the nature of the accretion solution around
WH. In order for that we fix the model parameters as E = 1.0084, λ = 2.1, and β = 0.05 and
calculate the flow solutions by tuning ak. The obtained results are depicted in figure 6, where
solid curve denotes accretion solution and dashed curve is for wind. In panel (a), we obtain
O-type solution for ak = 0.79 having outer critical point at rout = 26.7261 and throat radius
at rth = 1.619. When ak is increased as 0.847, we find that inner critical point appears at
rin = 3.7780 along with the outer critical point at rout = 26.5471, as shown in panel (b). For
ak = 0.89, flow continue to possess multiple critical points at rin = 2.7921 and rout = 26.4077
(see panel c) and the overall character of the solution remains qualitatively same as in panel
(b). As mentioned earlier that for accretion solutions of this kind, Ṁin > Ṁout. When ak
is increased further as 0.95, the character of the solution alters, although it continues to
possess multiple critical points at rin = 1.9050 and rout = 26.2056 (see panel d). For accretion
solutions similar to this, we obtain Ṁout > Ṁin. Beyond a critical limit, such as ak = 0.984,
we notice that the outer critical point disappears and the flow solution passed through the
inner critical point only at rin = 1.3860, as depicted in panel (e).

For the purpose of completeness, we examine the effect of β in deriving the flow solutions.
Towards this, we choose the model parameters as E = 1.0137, λ = 1.881 and ak = 0.99,
and vary β to compute the solutions. In figure 7, we present the obtained results where β

is increased in succession. We observe that β = 0.01 provides A-type solution possessing
multiple critical points at rin = 1.9016 and rout = 16.5016, as shown in figure 7a. As β is
increased to 0.14, the nature of the accretion solution alters to W-type with rin = 1.6829
and rout = 16.4300 (see figure 7b). For β = 0.15, the outer critical point disappears and we
obtain solution containing only inner critical point at rin = 1.6202.
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Figure 7. Same as figure 6, but for different β as marked in each panel. Here, we fix the model
parameters as E = 1.0137, λ = 1.881, and ak = 0.99, respectively. Dotted vertical line denotes the
throat radius as (a) rth = 1.1418, (b) rth = 1.2634 and (c) rth = 1.2782, respectively. See the text for
the details.

5.4 Subsonic accretion solutions

As already mentioned, besides the transonic solutions, subsonic solutions are also exist around
WH. Accordingly, we examine the nature of the subsonic solutions for flows with fixed
model parameter (E , λ, ak, β). For this, we begin with a reference I-type transonic accretion
solution obtained for E = 1.02, λ = 1.90, ak = 0.99 and β = 0.05 (see figure 5e). The
entropy accretion rate for this solution is computed as Ṁ = 13.755 × 107. Now, we follow the
method described in section 4.2 to calculate the subsonic accretion solution around WH by
decreasing Ṁ while keeping all the remaining model parameters unchanged. The obtained
results are depicted in figure 8, where the results presented with dashed (red), dot-dashed
(blue), dot-dot-dashed (magenta), dot-dot-dot-dashed (green) and small-big-dashed (cyan)
curves are obtained for Ṁ = 13 × 107, 10 × 107, 7 × 107, 4 × 107, and 1 × 107, respectively.
Interestingly, we observe that for a given set of model parameters (E , λ, ak, β), Ṁ always
remains lower for subsonic solutions compared to the transonic solution (solid curve in black),
which predominantly indicates that transonic solutions are thermodynamically preferred over
the subsonic solutions because of their high entropy content. Further, in figure 9, we present
the subsonic solution associated with the O-type transonic accretion solution. Here, the
results are obtained by varying the entropy accretion rate as Ṁ = 7.5 × 107, 7 × 107, 5 × 107,
3 × 107, and 1 × 107, keeping other model parameters fixed as E = 1.70, λ = 1.005, ak = 0.99
and β = 0.05. As in figure 8, here also we observe that Ṁ is lower for subsonic solutions
compared to the transonic accretion solution (solid curve in black) suggesting that transonic
accretion solution are preferred over the subsonic solutions.

5.5 Modification of parameter space for multiple critical points

It is noteworthy that depending on the model parameters, transonic flow possesses either single
or multiple critical points. Following this, we identify the ranges of λ and E that render multiple
critical points while keeping ak and β fixed (see figure 5). However, it is useful to examine the
modification of λ − E parameter space due to the change of ak and β values. Towards this, in
figure 10a, we present how the effective domain of the parameter space alters due to the change
of ak for a fixed β value as 0.05. For completeness, we present results for both co-rotating
as well as counter-rotating cases. Regions bounded with solid (magenta), dashed (red), dot-
dashed (green), dot-dot-dot-dashed (blue), and small-big-dashed (cyan) curves are obtained for
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Figure 8. Variation of Mach number (M) as a function of radial coordinate (r) for subsonic solutions
associated with I-type transonic accretion solution. Here, we choose the model parameters as E = 1.02,
λ = 1.90, ak = 0.99 and β = 0.05. Dashed (red), dot-dashed (blue), dot-dot-dashed (magenta),
dot-dot-dot-dashed (green) and small-big-dashed (cyan) curves are for Ṁ = 13×107, 10×107, 7×107,
4 × 107, and 1 × 107, respectively. Solid (black) curve refers the I-type transonic accretion solution
(see figure 5e) possessing entropy accretion rate as Ṁ = 13.755 × 107. Dotted vertical line denotes the
throat radius rth = 1.1603. See the text for the details.

ak = 0.99, 0.89, 0.79, 0.0, and −0.99, respectively. From the figure, it is evident that transonic
acrretion solutions continue to exist around WH with spin in the range −0.99 ≤ ak ≤ 0.99.
Each parameter space is further subdivided using dotted curve that separates A-type solutions
(left side) from the W-type solutions (right side). We also observe that flow continues to possess
multiple critical points for higher ak, provided λ is relatively lower. This is expected because
of the fact that the marginally stable angular momentum generally decreases with the increase
of ak due to the spin-orbit coupling embedded in the spacetime [66]. Similarly, in figure 10b,
we present the variation of the parameter space for different β. Here, we fix ak = 0.99, and
boundaries drawn with dot-dashed (green), dashed (red) and solid (magenta) curves separate
the regions for β = 0.05, 0.10 and 0.15, respectively. We observe that for a fixed ak, the
effective domain of the parameter space is shrunk with the increase of deformation parameter β.

Moreover, it is compelling to analyze the range of β that renders multiple critical points
as well. In doing so, for the purpose of representation, we fix the energy of the flow as
E = 1.004, and freely vary angular momentum (λ) to find its minimum value (λmin) yielding
multiple critical points for β ≥ 0 and 0 ≤ ak < 1. Here, we focus on λmin as it coarsely
interprets the limiting value describing the quasi-radial nature of the flow containing multiple
critical points. The obtained results are plotted in figure 11, where two-dimensional projection
of the three-dimensional plot spanned with ak, β and λmin. In the figure, vertical colorbar
denotes the range as 1.8 ≤ λmin ≤ 2.65. Figure evidently indicates that the range of β is
decreased with the increase of ak, and λmin anti-correlates with ak.
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solution (see figure 5b). Here, we choose E = 1.70, λ = 1.005, ak = 0.99 and β = 0.05. Dashed (red),
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throat radius rth = 1.1603. See the text for the details.
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Figure 10. Parameter space for multiple critical points in λ − E plane for different (a) ak and (b) β

values. In panel (a), we choose β = 0.05 and the regions bounded with solid (magenta), dashed (red),
dot-dashed (green), dot-dot-dot-dashed (blue), and small-big-dashed (cyan) curves are obtained for
ak = 0.99, 0.89, 0.79, 0.0, and −0.99, respectively. Similarly, in panel (b), we fix ak = 0.99, and solid
(magenta), dashed (red) and dot-dashed (green) curves separate the region for β = 0.15, 0.10 and
0.05, respectively. Dotted curve separates the A-type and W-type solutions in each parameter space.
See the text for the details.
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Figure 12. Variation of λmax with β for three different values of αk yielding solutions possessing
multiple critical points. Open circles, squares and asterisks joined with solid lines represent results
corresponding to ak = 0.0, 0.50, and 0.99, respectively. See the text for the details.

Next, we put effort to calculate the upper limit of angular momentum (λmax) that
renders multiple critical points. The obtained results are presented in figure 12, where we
illustrate the variation of λmax as function of β for different ak values. Open circles, squares
and asterisks joined with solid lines denote the results obtained for ak = 0.0, 0.5 and 0.99,
respectively. Here, energy of the flow is varied freely. We observe that for a fixed ak, λmax
monotonically decreases with the increase of β, and as ak is increased, the allowed range
of β for multiple critical points decreases. We also notice that for a given β, when ak is
higher, λmax becomes lower and vice versa.
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Figure 13. Variation of disk luminosity (L) as function of β for different ak. In panel (a), results
corresponding to I-type accretion solutions are depicted for flow with E = 1.02 and λ = 1.90. Open
circles, squares and asterisks joined with solid lines are for ak = 0.99, 0.94, and 0.89, respectively. In
panel (b), results same as panel (a) are shown, but for O-type accretion solutions, where E = 1.004
and λ = 1.85 are chosen. See the text for the details.

6 Radiative emission properties

In this section, we examine the disk luminosity (L) focusing on free-free emission as it is
regarded as one of the relevant radiative mechanism active inside the convergent single
temperature accretion flow [67, 68, and references therein]. Accordingly, we calculate L as,

L = 2
∫ ∞

0

∫ redge

rth

∫ 2π

0
(Hr)ϵ(νe)dνodrdϕ. (6.1)

Here, ϵ(ν) denotes the bremsstrahlung emissivity at frequency ν and is given by [69],

ϵ(ν) = 32πe6

3mec3

( 2π

3kBmeTe

)1/2
Z2

i nenie
−hν/kBTegbr, (6.2)

where me and e are mass and charge of the electron, kB is the Boltzmann constant, h is the
Planck’s constant, ν is the frequency, Zi is the ion charge, and gbr is the Gaunt factor [70]
assumed to be unity. In this work, we consider single temperature flow and following [71], we
estimate electron temperature as Te =

√
(me/mi)T , where T denotes the flow temperature

and mi is the ion mass. The emitted frequency (νe) is related to the observed frequency
(νo) as νe = (1 + z)νo, where z denotes the red-shift factor. Following [72], we determine
z considering fixed inclination angle i = π/4 for Kerr-like WH. In addition, we choose
MWH = 10M⊙ and ṁ = 0.1 while computing disk luminosity.

We present the obtained results in figure 13, where the variation of disk luminosity (L)
with β for different ak is depicted. The results corresponding to I-type and O-type solutions
are presented in panel (a) and (b). In both panels, open circles, squares and asterisks joined
with solid lines denote results for ak = 0.99, 0.94 and 0.89, respectively. We find that for
a fixed ak, L increases with the increase of β. Similarly, when β is kept fixed, L is seen to
increase for higher ak. Overall, we observe that for a fixed set of (ak, β), I-type solutions yields
higher disk luminosity compared to the same obtained from O-type solutions. This happens
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because I-type solutions exhibit higher density profile compared to the O-type solutions as
I-type flow remains subsonic in the range rin < r ≤ redge.

We also put an effort to explain the luminosity of a compact object Cygnus X-3, using
our model formalism. Indeed, the nature of the compact object in Cygnus X-3, whether
it is a black hole or a neutron star, remains an open question till date [73, and references
therein]. Earlier, [74] investigated the X-ray and radio states of Cygnus X-3 and found that the
correlation between radio and X-ray emissions closely resembles the features generally observed
in black hole binaries (such as GRS 1915+105, XTE J1550-564), yet differs significantly from
those seen in neutron star binaries. In a subsequent effort, [75] examined the nature of the
central source in Cygnus X-3 and indicated that central source possibly be a black hole of
mass 2.4+2.1

−1.1M⊙ based on radio, infrared and X-ray data. However, the possibility of neutron
star was not ruled out. Very recently, the Imaging X-ray Polarimetry Explorer (IXPE) has
revealed Cyguns X-3 as a hidden Galactic ultra-luminous X-ray (ULX) source [76, 77]. All
these studies evidently indicate that the nature of the central source in Cygnus X-3 remains
unclear and inconclusive. Keeping this in mind, in the present analysis, we attempt to
explain the disk luminosity of Cygnus X-3 during its hypersoft state considering the source
as a rotating Kerr-like wormhole. Cygnus X-3 displays intense luminosity, predominantly in
X-ray wavelengths. This sustained brightness, amidst its erratic behavior, hints at underlying
mechanisms continuously fueling its emissions. Moreover, Cygnus X-3 exhibits a unique
hypersoft state characterized by its bolometric X-ray flux reaching peak values in the range
2 − 8 × 10−8 erg cm−2 s−1 [78, 79]. Adopting the source distance of 7.4 kpc [80], the source
luminosity is estimated as LS ∼ 1 − 5 × 1038 erg s−1 [81]. In order to explain LS , we compute
the ‘model predicted’ disk luminosity (L) arising from free-free emission for transonic accretion
solutions around WH. In doing so, we use the source mass as MWH = 2.4M⊙ [75], and for the
purpose of representation, we consider typical accretion rate ṁ = 0.1, source spin ak = 0.99
and β = 0.001. The obtained results are presented in figure 14, where we illustrate the
two-dimensional projection of the three-dimensional plot of λ, E and log(L erg s−1). In the
figure, the vertical colorbar denotes the disk luminosity in the range 35 ≤ log(L erg s−1) ≤ 39.
In the figure, we identify a region bounded with dotted curves that yields the luminosity
1 × 1038 ≲ L ≲ 5 × 1038 erg s−1. These findings evidently indicate that our analysis in
turn renders the representative values of the luminosity (LS) of Cygnus X-3. Moreover, we
argue that present model formalism seems to be potentially promising in explaining the
luminosity of compact X-ray sources.

7 Summary and conclusions

In this work, we study the low angular momentum, inviscid, advective accretion flow around
a stationary axisymmetric Kerr-like WH spacetime. The Kerr-like WH is characterized by
the spin parameter (ak) and dimensionless parameter (β) along with its mass (MWH). In
doing so, we examine the steady state accretion solutions which are obtained by solving
the governing equations describing the accretion flow confined around the disk equatorial
plane. Further, we investigate the role of ak and β in regulating the accretion dynamics.
With this, we summarize our key findings in the below.
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Figure 14. Two-dimensional projection of the three-dimensional plot of E , λ and log(L erg s−1) for
transonic flow due to free-free emission. The colorbar denotes the range of luminosity values. The
region enclosed by the dotted curve yields disk luminosity consistent with the observed luminosity of
Cygnus X−3 during its hypersoft state. See the text for the details.

• We calculate the transonic accretion solution (I-type) that passes through the inner
critical point rin around WH (see figure 3). We find that the radial profile of the
flow variables corresponding to this solution, such as density (ρ), pressure (p) and
temperature (T ) follow power-law distributions as ρ ∝ r−(n+2/5), p ∝ r−(n+1) and
T ∝ r−(n−1/3) with n ∼ 1 inside the disk (see figure 4). However, solution deviates from
self-similarity close to rth mainly due to the non-linearity present in the WH spacetime.

• Further, for the first time to the best of our knowledge, we obtain the complete set
of transonic accretion solutions (O-type, A-type, W-type and I-type) around WHs
by tuning the model parameters, namely energy (E), angular momentum (λ), spin
parameter (ak), and β. We find that a given type of accretion solutions are not isolated
solutions as these solutions continue to exist for wide range of model parameters. We
also separate the domains of the parameter space in λ − E plane according to the nature
of the accretion solutions (see figure 5). Furthermore, we investigate the impact of ak
(β) values in altering the parameter space for multiple critical points. Our findings
reveal that when ak (β) is increased keeping β (ak) fixed, the parameter space shifts
towards the higher energy and lower angular momentum domain (see figure 10).

• We examine the role of ak and β in obtaining the transonic accretion solutions. We
observe that for fixed E , λ, and β (ak), accretion solution alters its character as ak
(β) is increased (see figure 6 and figure 7). This findings evidently indicate that both
ak and β play pivotal role in deciding the nature of the transonic accretion solutions
around WH.

• We further emphasize that subsonic accretion solutions are also possible around WH
(see figure 8–9). However, for fixed E , λ, ak and β, these solutions possess lower entropy
content compared to the transonic solutions. Hence, we argue that transonic solutions
around WH are thermodynamically preferred over the subsonic solutions.
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• We compute the disk luminosity (L) considering bremsstrahlung emission and observe
strong dependency of L on both ak and β. It becomes evident that for a fixed β (ak),
increasing ak (β) leads to higher L for both I-type and O-type transonic accretion
solutions. In addition, we note that I-type solutions yield higher L compared to O-type
solutions (see figure 13).

• We indicate that our model successfully elucidates the luminosity of compact X-ray
source Cygnus X-3 during its hypersoft state. Based on this finding, we mention that
the present model formalism offers the valuable insights of the accretion flow dynamics
around WH that could drive the energetic emissions observed from enigmatic compact
X-ray sources.

Finally, we state that this work is developed based on some assumptions. We neglect
the effect of viscosity that usually takes care the angular momentum transport inside the
disk allowing the matter to accrete towards the WH. We avoid magnetic fields although it
is ubiquitous in all astrophysical sources. We also ignore the massloss from the disk which
seems relevant in explaining disk-jet symbiosis commonly observed in Galactic black hole
X-ray binaries. Indeed, implementation of these physical processes is beyond the scope of the
present work. However, we intend to address them in our future endeavours.
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