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We study the properties of the relativistic, steady, axisymmetric, low angular momentum, inviscid,
advective, geometrically thin accretion flow in a Kerr-Taub-NUT (KTN) spacetime which is characterized
by the Kerr parameter (a;) and NUT parameter (n). Depending on a; and n values, KTN spacetime
represents either a black or a naked singularity. We solve the governing equations that describe the
relativistic accretion flow in KTN spacetime and obtain all possible global transonic accretion solutions
around KTN black hole in terms of the energy (€) and angular momentum (1) of the flow. We identify the
region of the parameter space in 4 — & plane that admits the flow to possess multiple critical points for KTN
black hole. We examine the modification of the parameter space due to gy and » and find that the role of a;
and 7 in determining the parameter space is opposite to each other. This clearly indicates that the NUT
parameter n effectively mitigate the effect of black hole rotation in deciding the accretion flow structure.
Further, we calculate the disc luminosity (L) corresponding to the accretion solutions around the KTN
black hole and for a given set of @, and n, we obtain the maximum luminosity (L,,,,) by freely varying 1
and £. We observe that L, decreases with the increase of n irrespective of a,. In addition, we also
investigate all possible flow topologies around the naked singularity and find that there exists a region
around the naked singularity which remains inaccessible to the flow. We study the critical point properties
for naked singularities and find that the flow possesses maximum of four critical points. Finally, we obtain
the parameter space for multiple critical points for naked singularity and find that parameter space is shrunk

and shifted to lower A and higher £ side as g, is increased which ultimately disappears.
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I. INTRODUCTION

The accretion process around the compact stars remains
the subject of intense interest for last several decades in the
astrophysical community. Understanding the electromag-
netic properties of a large class of astrophysical observa-
tions, particularly for the sources like quasars, active
galactic nuclei, and black hole x-ray binaries, the accretion
of matter has been proven to be the potentially possible
physical mechanism to date [1-5]. Generically, black holes
are considered to be the central object which are essentially
a very special class of solutions of the well-known
Einstein’s equation. One of the defining properties of black
holes is the existence of the horizons which is a surface that
encompasses the curvature singularity in a black hole
spacetime and the horizon behaves like a one way mem-
brane through which anything can enter but nothing can
come out. This interesting property helps one to invoke
unique boundary condition for the accretion flow dynamics
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near the horizon. The underlying framework of studying
the accretion of matter is based upon the principles of
relativistic hydrodynamics in gravitational background.
Once the flow properties, such as velocity, temperature,
density etc. are understood, the relevant radiative processes
can be computed and compared with the observation.
Therefore, in principle, one can put constraints on the
underlying theoretical parameters, such as the mass accre-
tion rate as well as the mass and spin of the black hole.

A vast amount of literature exists on the topic of
accretion flow which are based on different physical
conditions in the hydrodynamic regime (see [5,6] and
the references therein). However, limited works involving
hydrodynamical aspects of accretion flow have been
performed in the realm of modified gravitational back-
grounds as well as around the exotic compact objects in
general relativity. For instance, the accretion flows around
brane-world black holes [7,8], slowly rotating black holes
in dynamical Chern-Simons modified gravity [9], black
holes in Horava gravity [10,11], boson stars [12,13],
wormholes [14], gravastars [15], and quark stars [16],
etc., were studied considering particle dynamics. In addi-
tion, accretion disc properties have been studied around
naked singularities [17-19] as well.

© 2020 American Physical Society
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It may be noted that the astrophysical observations are
generally explained considering various background gravi-
tational systems which may comprise of black hole or any
other exotic compact objects. Therefore, given the advent
of high precession observations these days, it would be
viable to probe the nature of gravitational background
through the study of the accretion flow dynamics, and this
is the main motivation of our present study. Toward this, for
the first time to the best of our knowledge, we study the
properties of the general relativistic accretion flow around
the general class of gravitational backgrounds which are the
solutions of vacuum Einstein’s equation. Here, we empha-
size that depending upon the choice of parameters of the
theory, those classes of gravitational backgrounds do
represent either black holes or more exotic spacetimes
with naked singularity.

Historically, for the first time, Taub [20] reported a
gravitational background which is presently known as the
Taub-NUT spacetime. The initial motivation to construct
such a spacetime was based on the assumption of the
existence of a four-dimensional group of isometries such
that the spacetime can be interpreted as a possible vacuum
homogeneous cosmological model. Thereafter, the solution
was rediscovered by Newman, Unti, and Tamburino (NUT)
[21] as a simple generalization of the Schwarzschild
spacetime. To include rotation, the Kerr-Taub-NUT
(KTN) spacetime was formulated that generalizes the well
known Kerr metric by introducing a new parameter called
the NUT charge. Needless to mention that Kerr spacetime
is described by mass and Kerr parameter (ay, the spin
angular momentum per unit mass) of the black hole
whereas three parameters are required to uniquely specify
the KTN spacetime. These parameters are the mass, the
Kerr parameter (ay) and the NUT parameter (n, also called
NUT charge). In the limit n» — 0, the KTN spacetime
reduces to the Kerr spacetime and if g, — 0 the KTN
spacetime reduces to the Taub-NUT spacetime. Finally, if
the NUT parameter is also made to vanish in the Taub-NUT
spacetime, it reduces to pure Schwarzschild solution. In the
astrophysical context, although the Kerr spacetime is
known to be very much relevant, however it is intriguing
to explore KTN spacetime as well while studying the
accretion flows around it.

The KTN metric first appeared in the works of
Demianski and Newman [22]. Later, this class of solution
was derived and interpreted in different works by Carter
[23], Kinnersley [24], Kramer anad Neugebauer [25],
Robinson et al. [26], and Talbot [27]. The observational
possibilities of such spacetimes were first realized by
Lynden-Bell and Nouri-Zonoz [28] in terms of shifting
in spectral lines from quasars, supernovae, and active
galactic nuclei. Few discrete studies were also carried
out in order to understand the observational viability of
such spacetimes [29,30].

The interpretation of the NUT parameter has been the
subject of debate specifically with regard to the existence of
closed time like curve (CTC). The physical interpretation
that obviates the aforementioned pathological CTC was
first suggested by Bonnor [31]. The source of the metric is
interpreted as a spherically symmetric mass together with a
semi-infinite mass-less source of angular momentum along
the symmetry axis. In their original paper, Demianski and
Newman [22] interpreted the NUT parameter with a “dual
mass” or gravitomagnetic monopole. Gravitomagnetic
monopole is the gravitational analog of a magnetic mono-
pole, which is often interpreted as a linear source of pure
angular momentum [31-34]. The nondiagonal part of the
metric featuring the NUT parameter (n) as a gravitomag-
netic charge determines the gravitomagnetic properties of
the Taub-NUT spacetime. The nondiagonal term implies a
singularity on the § = 7 axis, which is known as the Misner
string. This type of singularity is completely different from
the ordinary coordinate singularity. According to Misner
[35], this singularity can be avoided by introducing a
periodic time coordinate and two different coordinate
patches. All these interpretations of the metric were abstract
and theoretical in nature. However, because of the avail-
ability of the state-of-the-art astrophysical observation
facilities now a days, nothing could be more appropriate
than taking a practical approach toward understanding
the nature of those kind of nonstandard gravitational
backgrounds.

Motivated by this, in the present work, we study the
accretion phenomena in a special class of gravitational
background, namely the KTN spacetime. Since the accre-
tion of matter around the compact object is believed to be
the driving mechanism behind most of the energetic
phenomena in the universe [36], the study of the effect
of the NUT parameter on the accretion phenomena is
expected to shed some light not only on the observational
aspects but also on the theoretical understanding of the
Einstein’s theory itself. Keeping this goal in mind, in the
present work, we consider an optically and geometrically
thin accretion disc in the KTN background. In order to
investigate the flow properties, we consider the full general
relativistic hydrodynamic framework [37] with relativistic
equation of state (EoS) [38—41]. With these considerations,
we perform the critical point analysis and obtain the
solutions in terms of energy (£) and angular momentum
(4) of the flow. Here, we choose ay and n values in such a
way that the combination represents KTN spacetime. We
then study the role of the NUT parameter in deciding the
nature of the accretion solutions. Farther, we identify the
parameter space in the A — & plane for multiple critical
points and examine how parameter space is modified with
the increase of @, and n, respectively. Moreover, we
calculate the disc luminosities corresponding to the flow
solutions characterized with a given set of (a,, n) and find
the maximum luminosity (L..) in KTN spacetime.
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Finally, we extend our work for naked singularity as well,
where we obtain the parameter space for multiple critical
points and examine how the nature of the flow solution
changes with g, and n values.

We arrange the paper in the subsequent sections as
follows. In Secs. II and III, we formulate the mathematical
building blocks to study the accretion flow and discuss the
critical point analysis. In Sec. IV, we describe the meth-
odology to calculate the flow solutions and obtain the
parameter space for multiple critical points. In Sec. V, we
present the results obtained for naked singularity. Finally, in
Sec. VI, we present the discussion and conclusion of
this work.

II. KERR-TAUB-NUT (KTN) BACKGROUND

We consider a special class of axisymmetric vacuum
solution of Einstein’s theory, which is the KTN metric
expressed in Boyer-Lindquist coordinates as [23],

ds* = g, dx"dx”,
= g, di* +2g,4dtddp+ g,,dr* + gegd* + gypdd*. (1)

where x*(=t,r,0,¢) denote coordinates and g, =
(afsin? @ — A)/%, g, =(AA—aBsin?0)/Z, g,, = Z/A,
gop =2 and gy = (B*sin® 0 — A’A)/X are the nonzero
metric components. Here, A = @, sin> @ —2ncosf, T =
(aycos@+n)>+ 12, B=al +n*+r*and A =r? = 2r+
ai — n*. Throughout this paper, we adopt the sign con-
vention as (—, +, +, +). We set the source mass Mg = 1,
and work in units where the universal gravitational constant
G =1 and the speed of light ¢ =1 is used. In this unit
system, we express length, angular momentum, and time in
terms of GMg/c?, GMg/c and GMg/c>, respectively.

The event horizon (ry) of the metric is defined as A = 0,
which gives

ru=1+4/1-a}+n* (2)

We have taken only the outer horizon as the region of our
interest. Equation (2) clearly suggests that depending on the
values of a, and n, KTN spacetime represents either black
hole with (1—ai +n*) >0 or naked singularity with
(1 —a} +n*) < 0. For n =0, KTN spacetime boils down
to the usual Kerr spacetime. One of the most important
physical implications of this background, contrary to the
conventional wisdom, is that the spin parameter @, can now
be larger than unity for black holes. This particular fact
specifically makes KTN black hole spacetime a fertile
ground for accretion study having much richer pheno-
menology as compared to usual Kerr black holes.

III. ASSUMPTIONS AND MODEL EQUATIONS

In this paper, we carry out the hydrodynamical analysis
of accretion flow based on some simple set of assumptions.
We consider the flow to be axisymmetric in accordance
with the KTN background. For simplicity, we also consider
nondissipative, optically, and geometrically thin accretion
flow in the steady state [42—44].

A. Equations of the fluid

In the framework of the relativistic accretion processes,
the nondissipative energy-momentum tensor for the
fluid composed of ions and electrons can generally be
expressed as,

T — (e + p)uﬂuv + pg;u/7 (3)

where e, p, and u* represent the energy density, pressure,
and the four velocities of any fluid element, respectively.
The timelike velocity field satisfies the following local
normalization condition u,ut = —1. Here, y and v are the
spacetime indices running from 0 — 3, and ¢* are the
components of the metric under consideration. The con-
servation of energy-momentum tensor and the mass flux
give all the hydrodynamical equations required to describe
the flow, and are given by,

™ =0, (pu),=0, (4)
where p is the local mass density of the flow. In relativistic
hydrodynamics, we employ the projection operator
hi, = 8, 4+ u'u,, where ‘i’ takes only the spatial coordi-
nates, which satisfies hL u* = 0. By taking the projection of
conservation equation on the spatial hypersurface, one
obtains the relativistic Euler equation,

hiTw,, = (e + p)u*ul, + (¢ + u'u’)p, =0, (5)

and, projecting it along u¥, we have the first law of
thermodynamics as,

v e+p
u, T = u [(T)p’ﬂ - 64 =0. (6)

To describe the flow completely, we need to know the
equation of state (EoS) of the fluid under consideration,
which relates the density (p), pressure (p), and the internal
energy (e) of the flow. Usually, the temperature of the
accretion flow can go up to ~10'°-!" K [45], particularly,
within a few Schwarzschild radius. Therefore, we consider
the relativistic EoS given by Chattopadhyay and Ryu [46],

e=nm.f="Ff. (7)

Here, n, and m, are the number density and the mass of the
electrons, p =n.m,7, 1= [2-{(1-1/y)], {=n,/n,,
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and y = m,/m,, respectively, where n, and m, are the
number density and the mass of the ions. We consider the
flow to be composed of solely by ions and electrons.
Hence, throughout our study, we set { = 1, until otherwise
stated. Finally, the extended form of f in terms of the
dimensionless temperature ©(= kgT/m,c?) is given by,

r -1+ 0 (2252 L o(20224)).
(8)

According to the relativistic EoS, the explicit expressions
of the polytropic index (N), adiabatic index (I'), and the
sound speed (a,) are given as,

1df
240’

rp  2re
e+p f+20°
9)

In Eq. (9), N and I' are expressed as a function of ®, and
therefore, these quantities would be determined self con-
sistently while obtaining the flow properties across the
length-scale of the accretion disk.

2

N = and a5 =

1
Fr=1+—;
+N

B. Governing equations for accretion disc

In our analysis, we assume geometrically thin accretion
disc around black hole in the steady state. Therefore, given
the background axisymmetry, one can generically consider
the disc to be lying on the equatorial plane with 6 = /2,
and consequently u’ ~ 0. Under this assumption, the radial
component of the relativistic Euler equation (equation (5))
takes the following form,

1 1
Mru,rr‘l'_grr%"'_urur<%+grrgrr,r>
2 gn 2 gtt
, 1 e
+u(ﬁutgrr <gﬂgtt,r_gt(/).r> +_u¢u¢grr <M_g(/’“"’)
it 2 it
(9" +u"u")
e+p P 1o

Subsequently, the second part of the equations (4), i.e., the
continuity equation can be expressed in terms of the mass
accretion rate (M), which is a constant of motion and is
given by,

M = —4zru’pH, (11)

where H is the local half-thickness of the accretion disc.
The functional form of H is obtained by following Riffert
and Herold [47], and Peitz and Appl [48], in the form,

pr

H> =",
pF

(12)

with

2 (P + ap) +2Aa;

F= ,
Yo (r’ 4+ a3)? = 2Aa;

where y; = 1/(1 —vj) and v} = uuy/(—u'u,), respec-
tively. It has been shown to be convenient and physically
transparent to study the dynamics in terms of all the flow
variable defined in the corotating frame [42,48]. In the
corotating frame, the radial three velocity is defined as v> =
yév% and thus the associated radial Lorentz factor is given
by y2 = 1/(1 — v?), where v2 = u"u,/(—u'u,). Employing
these definitions of the velocities and using the expressions
g for KTN metric in Eq. (10), we obtain

dv 1dp d®dt

2
dr +hpdr+ dr

VYo~

=0, (13)

where h[= (e + p)/p] is the specific enthalpy, @S denotes
the effective potential at the disc equatorial plane, and is
given by [49],

(n? +rH)A
—ad+n*+r?)? -

(ay — /UzA)'
(14)

1
O =14+ _In
2 ((aﬁ

In Fig. 1, we illustrate the variation of effective potential
(@) with radial coordinate (r) for a given angular
momentum A = 3.5. In the left panel of the figure, we

1.08 S| T T T TTTTT o

(a) n=0.5 (b) a,=0.5
L - a=071 - n=0.75 |
i ---4a,=06 ---n=0.50
1.04 oo a,=05_1 J\ ... n=0.25_]
[ —n=0
q):ff 1B
0.96
ooz | |ii
w‘li:wuml L L
1 10 100 100
r r
FIG. 1. Plot of effective potential ®¢T with radial distance for

angular momentum A = 3.5. In the left panel, we fix NUT
parameter n = 0.5, and solid (black), dotted (blue), small-dash
(red) and long-dash (green) curves are for Kerr parameter
a, =04, 0.5, 0.6, and 0.7, respectively. In the right panel, we
fix @, = 0.5, and solid (black), dotted (blue), small-dash (red),
and long-dash (green) curves are for n = 0, 0.25, 0.5, and 0.75,
respectively.
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demonstrate how @S varies with black hole spin (a).
Here, we choose NUT parameter n = (.5, and solid
(black), dotted (blue), small-dash (red), and long-dash
(green) curves are for Kerr parameter a, = 0.4, 0.5, 0.6,
and 0.7, respectively. Similarly, in the right panel of the
figure, we show the dependencies of ®¢f on n, where a, =
0.5 is used. Here, solid (black), dotted (blue), small-dash
(red) and long-dash (green) curves are obtained for n = 0,
0.25, 0.5 and 0.75, respectively. Figure 1 clearly indicates
that for KTN black hole spacetime, the role of a; and n are
opposite to each other in deciding the features of @<,
Because the KTN spacetime is stationary and axisym-
metric, there exists two mutually perpendicular Killing
vectors, namely d, and d,,. These two Killing vectors helps
to construct two conserve quantities along the direction of
the motion, and are given by,
huy = L(constant);

—hu, = E(constant),  (15)

where £ is the Bernoulli constant (equivalently specific
energy) of the flow. Here, u, = —y,y,/ Ag'? — ¢, where
A = —ugy/u, is the specific angular momentum of the flow
which is also a constant of motion obvious from Eq. (15).

Integrating Eq. (6) with the help of Egs. (7)—(8), we

obtain the expression of density (p) in terms of temperature
(©) as,

p = Kexp(ks)®2(30 +2)11 (30 + 2/x)2, (16)

where /C is the entropy constant and k; = 3(2 — {)/4, k,=
3¢/4, and k3= (f—17)/(2®). Following Chattopadhyay and
Kumar [50], Kumar and Chattopadhyay [51]), we define the

entropy accretion rate (M) as

M
—— = exp(k3)©%?(30 +2)"1 (30 +2/y) 2 Hru'.
4rkC
(17)

It maybe noted that M is also a constant of motion.

C. Wind equation

To obtain the wind equation, we make use of Egs. (6),
(7), (10), and (11). In fact, it is customary to express the
wind equation as follows,

dv N
—=—, 18
dr D (18)
where denominator D is given by,
2a2
D=yllv———"—]|, 19
7 {” (T + 1)} (19)

and numerator N is given by,

L, 3 1 aF]_ae
2ndr  2r 2F dr dr -~

(20)

2 [1da
I'+1|[2Adr

Here, we write n = r*/(r? + n?).
Similarly, the gradient of the temperature is obtain by
rewriting Eq. (5) using Eqgs. (9) and (11) as,

d® 20 [yidv 1 dF 1dA 1ldn 3
dr 2N+1|vdr 2F dr 2Adr 2ndr 2r|
(21)

D. Critical point analysis

In order to obtain the accretion solution, one requires to
solve Egs. (18) and (21) simultaneously by using the initial
condition of the flow. In this work, the initial condition of
the flow is characterized by a set of input parameters,
namely the radial velocity v(r), temperature ©(r), and the
angular momentum (1) of the flow along with the spacetime
parameters (ay,n). Interestingly, because of the nature of
the black hole spacetime, the accretion flow around a black
hole must be transonic, which essentially means that while
accreting toward the black hole, the flow must make
smooth transition from subsonic to supersonic velocity
at some point before entering the black hole. Such a special
point where flow changes its sonic character is called as
critical point (r.). At the critical point, the numerator and
the denominator of the wind equation (18) vanish simulta-
neously (i.e., dv/dr =0/0) where we have the critical
point conditions as N' =D = 0. To calculate the radial
velocity gradient (dv/dr), at r., we apply the 1'Hospital
rule. In general, (dv/dr), possesses two distinct values;
one of them is for accretion and the other one is for wind.
When both values of (dv/dr), are real and of opposite sign,
the critical point is called as saddle type critical point; when
(dv/dr), are real and same sign it is called as nodal type
critical point (or N-type) and when (dv/dr), are complex,
it is the spiral type (or O-type) critical point [[52], and
references therein]. It may be noted that saddle type critical
points have special importance as the global transonic
accretion flow can only pass through it. In reality, depend-
ing on the input parameters, the flow may possess single or
multiple critical points within the length scale of the
accretion disc [43,53]. When critical points form close
to the horizon, it is referred as the inner critical points (r;,)
and when they form far away from the black hole, it is
termed as the outer critical points (7qy)-

IV. ACCRETION AROUND KTN BLACK HOLE

In this section, we intend to focus on the KTN black hole
background keeping the naked singularity case aside for
discussion in Sec. V. In reality, the behavior of the accretion
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flow depends on both the parameters describing the KTN
black hole, namely Kerr (ay) and NUT parameters (n).
However, since the role of g, in studying the accretion
solution around black hole is already well explored, we
plan is to concentrate on the NUT parameter (n) only and
investigate its impact on the flow properties.

A. Properties of the critical points

Since the accretion solutions around the black holes
can only pass through the saddle type critical points, it is
useful to examine how the nature of the critical points
depends on the NUT parameters (n). For that we choose
a set of (4, ay, n) values to calculate the flow energy () at
the critical points by using the critical point conditions.
The obtained results are shown in Fig. 2 where we plot the
variation of £ with the critical point location (r.) for
different values of n. Here, we choose a; = 0.99 and
A = 2.04. In the figure, the left to right curves are obtained
for n =0, 0.25 and 0.5 respectively and n values are
marked. In a given curve, we denote the saddle, nodal and
O-type critical points by solid, dotted, and dashed line
styles, respectively. For n = 0, it is observed that the nature
of the critical points changes in systematic order as saddle
—nodal—spiral-—nodal-—saddle with the shift of the
location of the critical points from the black hole. We also
observe that there exists an energy range that allows the
flow to possess maximum of three critical points. Out of the
three critical points, one is O-type, and the other two are
either saddle type or combination of spiral and nodal types.
For £ < 1, flow contains two critical points, and between
them one is saddle or nodal type and other is O-type. When

1.15

1.1 —

1.05 =} —

0.95 — / -

0.9 — / —
- , i

0.85 A Lol
1 10 100

I‘C

FIG.2. Plotof energy as a function of critical point location (r,.)
for three different NUT parameter, namely n = 0, n = 0.25, and
n = 0.5. Here, we choose a;, = 0.99, and 1 = 2.04. Solid, dotted,
and dashed curves denote saddle, nodal, and O-type critical
points, respectively. See text for details.

energy is above a critical value, flow only owns a single
saddle type critical point located close to the horizon. For
n = 0.25, we find similar results as in the case of n = 0,
however, the energy range for multiple critical points is
reduced and the locations of the critical points are shifted
outwards for a given energy. When NUT parameter is
increased further to n = 0.5, we observe that multiple
critical points completely disappear. This clearly indicates
that there exists a critical NUT parameter (say, n°") beyond
which multiple critical points do not exist. Needless to
mention that 2" does not have any universal value, instead
it strongly depends on the other input parameters. Overall,
the above analysis suggests that NUT parameter (n) plays
an important role in deciding the properties of the accretion
flow in KTN black hole background.

B. Global transonic accretion solution

In order to solve the hydrodynamic equations, the
aforementioned criticality condition plays very important
role in identifying the appropriate boundary conditions for
the flow. Setting D = 0 and N = 0, and using £ = —hu,
[see Eq. (15)], we obtain the radial velocity (v.) and
temperature (©,) at the critical point (r.) for a given set
of (£, 4, ay, n) values. In other words, these two critical
point conditions enable us to reduce the number of input
parameters from six to four and therefore, we can start the
integration of equations (18) and (21) from the critical point
itself to obtain the global accretion solutions. Accordingly,
using the same set of (£, 4,ay,n) values as the input
parameters, we integrate Eqs. (18) and (21) from the
critical point (r,) first up to horizon and then up to a large
distance (equivalently the outer edge of the disc). Finally,
we join these two parts of the solution to obtain a global
transonic accretion solution around black hole [[41,49,54],
and references therein].

Following the above procedure, we calculate the global
flow solutions for different n values and plot them in Fig. 3.
While obtaining the solution, we fix £ = 1.0001, 4 = 2.04,
and g, =0.99, and vary NUT parameter as in panel
(@) n =0, (b) 0.25, and (c) 0.5. In each panel, the Mach
number (M = v/ay) is plotted as function of radial coor-
dinate where solid (black) and dotted (blue) curves denote
accretion and wind branches, respectively and filled circles
represent the critical points. Figure clearly shows how the
nature of the flow solutions changes with n for a given set
of (£, A, ay) values. In panel (a), the flow possesses multiple
critical points, and the solution passing through the inner
critical point (ry, = 1.3542) is closed and fails to connect
the event horizon to the outer edge of the accretion disc. On
the other hand, the solution passing through the outer
critical point (r,, = 1021.9821) smoothly connects the
event horizon to the outer edge of the accretion disc.
Interestingly, after crossing the outer critical point, accre-
tion solution may join with the solution passing through the
inner critical point via shock transition because of the fact
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n=0.50

n=0
[

log(r)

FIG. 3.

log(r)

Plot of Mach number (M = v/ay) as a function of radial distance (r). Solid (black) curve represents accretion solution and

dotted (blue) curve denotes winds. Here, we choose £ = 0.0001, 4 = 2.04, and @, = 0.99 for all panels. Results presented in panel (a),
(b), and (c) are for n = 0, 0.25, and 0.5, respectively. See text for details.

that the latter solution possesses higher entropy [[55],
references therein]. Accretion solutions of this kind are
potentially promising in the astrophysical context and will
be reported elsewhere. When NUT parameter is increased
to n =0.25 [see panel (b)], flow continues to possess
multiple critical points (ry, = 2.2010, r,, = 1022.4793),
however, the closed solution passing through the inner
critical point terminates at smaller radii. For further
increase of NUT parameter (n = 0.5), the inner critical
point vanishes and solution has the only option to pass
through the outer critical point (ry, = 1023.9684) only.

C. Parameter space with NUT charge

In this section, we begin with the study of parameter
space in 4 — & plane according to the nature of flow

1.02

1.015 |~

¢ 1.01

1.005

3.25 3.5 3.75 4 4.25

FIG. 4. Region of the parameter space in 1 — £ plane according
to the nature of the flow solutions. At the insets, all possible flow
solutions (O, A, W, I) are presented. See text for details.

solutions. To do that we fix @, = 2.23 and n = 2 and vary
both 1 and & freely to calculate various flow solutions.
Here, we restrict our investigation for £ > 1 as bounded
energy does not provide complete global accretion solu-
tions [42]. All together, four different types of flow
solutions are found and accordingly, four distinct regions
of the parameter space are identified which are marked as
“0,” “A) “W,” and “L” respectively, in Fig. 4. The
representative flow solutions from these regions are
depicted at the inset panels where the variation of Mach
number (M = v/a,) with radial coordinate is shown and
individual panels are also marked. In each panel, solid
curves denote the accretion solutions, dotted curves indi-
cate the wind solutions, and filled circles represent the
critical points. Arrows indicate the overall direction of flow
motion toward the black hole.

Next, we examine the range of flow parameters that
provides the flow solutions containing multiple critical
points around the black hole having spin @, = 0.99. While
doing this, we fix NUT parameter and vary the remaining
parameters, namely £ and 1 freely. This allows us to obtain
the parameter space spanned by £ and A which is depicted
in Fig. 5. Effective region of the parameter space separated
by solid (black), dotted (blue) and dashed (red) boundaries
are obtained for n = 0, 0.5 and 1, respectively which are
marked in the figure. It is clear from the figure that as NUT
parameter is increased, the accretion flow harbors multiple
critical points provided its energy is lower and angular
momentum is higher.

In Fig. 6, we depict the modification of parameter space
for multiple critical points as ay is varied. Here, we fix the
NUT parameter as n = 0.5 and the region bounded using
solid (black), dotted (blue) and dashed (red) curves are
calculated for a, = 0.5, 0.99 and 1.118, respectively. We
observe that as ay is increased keeping n fixed, the
parameter space for multiple critical points is shifted
toward higher energy and lower angular momentum
domain. By comparing Fig. 5 and Fig. 6, we also find
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€ 1.015

1.01
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1.5

FIG.5. Modification of the parameter space for multiple critical
points with the increase of NUT parameter (n). Region bounded
with solid (black), dotted (blue) and dashed (red) are for n = 0.0,
0.5, and 1.0, respectively. Here, we fixed the Kerr parameter
a, = 0.99. See text for details.

that n and ay, play opposite role in determining the
parameter space as expected.

More interesting and rich phenomenology comes into
play when the fast spinning KTN black holes are taken
into considerations. It has already been emphasized that
KTN black hole can accommodate spin parameter a; larger
than unity as opposed to the usual Kerr black hole pro-
vided the chosen NUT parameter satisfies the condition
1 — a? + n? > 0. Therefore, KTN spacetime opens up new
opportunities to explore large class of observations which

1.03

1.025

€ 1.015

1.01

1.005

1.5

FIG. 6. Same as Fig. 5, but NUT parameter is fixed as n = 0.5
and qy is varied as marked in the figure.

1.03

1.025 | — ry=2.00

(0.99,0)

€ 1.015

1.005

FIG. 7. Comparison of parameter space for multiple critical
points. Effective regions of the parameter space bounded with
dotted (blue) and solid (black) curves are obtained for two
different event horizon locations ry = 1.14 and ry = 2, respec-
tively. The Kerr parameter and NUT parameter (ay, n) are marked
in the figure. see text for details.

may not be possible in usual Kerr black hole spacetime (for
arecent work see [56]). Keeping this in mind, we study the
accretion flow dynamics around the rotating black holes
with Kerr parameter g, > 1, and compare the results with
that of the usual Kerr black hole (n = 0). In order to do so,
we choose different combination of Kerr and NUT param-
eters keeping the event horizon location (ry) fixed and
identify the ranges of £ and A that admit accretion solutions
containing multiple critical points. The obtained results are
depicted in Fig. 7, where we identify the region of
parameter space in 4 — &£ plane that render multiple critical
points. Here, solid and dotted boundaries refer to the two
event horizon locations as rg = 2 (solid) and ry = 1.14
(dotted). The chosen set of (ay, n) values are marked in the
figure. We notice that for a given n, as gy is increased,
accretion flow generally possesses multiple critical points
at lower angular momentum and higher energy ranges.
Furthermore, n and g, play competing role in deciding the
black hole horizon [see Eq. (2)] for KTN spacetime.
Therefore, when n > 1, ry tends to be insensitive to a
causing the parameter space for multiple critical points
indistinguishable as seen in Fig. 7.

D. Radiative properties in KTN spacetime

During the course of accretion, inflowing matter expe-
riences compression that causes the flow to become hot and
dense. Hence, the flow is expected to emit high energy
radiation. Since accretion flow is composed of both ions
and electrons, free-free emission is viable and therefore, we
consider the bremsstrahlung radiation from the accretion
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disc. Usually, the bremsstrahlung emission rate per unit
volume, per unit time, per unit frequency is estimated
as [57],

ev)

B 327e® < 2n

1/2

3m,c?

where e is the charge of the electron, £ is the Planck’s
constant, T, is the electron temperature, v is the frequency
and g, is the Gaunt factor. Note that g, is a dimensionless
quantity that varies between 0.2 to 5.5 [58] and in this
work, we consider g, = 1 for simplicity. Further, follow-
ing the work of Chattopadhyay and Chakrabarti [59],
we estimate the electron temperature (7,) as T, =
(m,/m,)'>T, where m, and m, denote the electron and
ions masses, and T refers the flow temperature. The total
luminosity emitted from the accretion disc is obtained upon
integrating e(v) over the total volume and is given by

0 Fedoe 2n
L=2 / / " / Hre(vo)dvedrdp.  (23)
0 rH 0

Here, v, refers the emitted frequency which is related to the
observed frequency (v,) as v, = (1 +2)v,, where z
denotes the red-shift factor. Following Luminet [60], we
obtain z as

1+ z=u'(1 + rQsin¢sini), (24)
where Q = u?/u' is the angular velocity and i is the
inclination angle of the black hole. In this work, we
consider i = z/4 all throughout. Furthermore, we choose
the black hole mass Mg = 10 My, where M, is the solar
mass and accretion rate 7 = 0.1M Edds M Edd being
Eddington accretion rate. With this set up, we calculate
the maximum disc luminosity (L, ). While doing so, we
choose a set of (ay, n) values and freely vary the energy (&)
and angular momentum (1) of the flow. This provides the
swarm of transonic accretion solutions [each solution is
obtained for a particular set of (ay, n, £, )] that are used in
Eq. (23) to calculate the disc luminosity (L). Upon
comparing various L values, we find the maximum disc
luminosity (L) It is noteworthy to mention that during
integration, we truncate the accretion disc at the outer edge
(Fedge) Where H/r — 0.8. The obtained results are shown
in Fig. 8, where the variation of L, is plotted as a function
of NUT parameter (n) for different a; values. In the figure,
solid, dotted, and dashed curves denote the results obtained
for a, = 0 (black), ay = 0.99 (blue), and g, = 2.0 (red),
respectively. Note that for pure Kerr black hole (n = 0),
L ..x increases with the increase of a,. On the other hand,
as n gradually increases, L,,,, decreases. Moreover, we find
that for Schwarzschild type KTN black hole (g, = 0), the
rate of decrease of L., with n is relatively smaller
compared to that of the rotating KTN black hole.

39.5

30 |-
38.5 |- [ .

38

log(L,.. erg/s)

375

37

FIG. 8. Plot of maximum luminosity (L) as a function of
NUT parameter (). Solid (black), dotted (blue) and dashed (red)
curves denote the results corresponding to @, = 0.0, 0.99 and 2.0,
respectively. Here, we choose black hole mass Mg = 10 M,
accretion rate i = 0.1Mpyq, and inclination angle i = z/4.

Overall, we observe that L, generally decreases with
increasing n irrespective of @y values and appears to merge
for large NUT parameter.

V. HYDRODYNAMICAL FLOW AROUND KTN
NAKED SINGULARITY

In this section, we study the properties of the hydro-
dynamic flow around the KTN naked singularity. The main
motivation here is to explore the role of @, and n in
deciding the nature of the critical points and the flow
solutions. To do that we follow the same methodologies as
discussed in Sec. IV.

A. Properties of critical points

In Fig. 9, we present the variation of flow energy (£) as a
function of critical point location (r,) for different angular
momentum (4). In the figure, we choose NUT and Kerr
parameters as (n,ay) = (1.24,1.55) in panel (a),
(1.24,1.60) in panel (b), (1.24,1.65) in panel (c), and
(1.24,1.70) in panel (d). In panel (a), the energy variation
plotted using solid (black), dotted (blue) and dashed (red)
are obtained for angular momenta 4 = 2.90, 2.80 and 2.70,
respectively and they are marked. Here, we consider n, a;
in such a way that it yields the KTN black hole spacetime.
These results apparently help us to understand how the
properties of the critical point alter as the spacetime
geometry is changed from KTN black hole to KTN naked
singularity. From panel (a) it is clear that for a given set of 1
and &, the flow may possess maximum of three critical
points and minimum of one critical point. When multiple
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FIG. 9. Plot of energy (£) as a function of critical point location (r..). Here we fix n = 1.24. In each panel (a-d), solid (black), dotted
(blue) and dashed (red) curves denote results for different 1 values which are marked. We choose a, = 1.55 for panel (a), ¢, = 1.60 for
panel (b), a, = 1.65 for panel (c), and a, = 1.70 for panel (d), respectively. See text for details.

critical points are present, one of them is necessarily O-type
in nature [43,53]. In panel (b), we keep the NUT parameter
same as in panel (a) (i.e., n = 1.24) and increase the Kerr
parameter to a, = 1.60, so that the spacetime contains
naked singularity. Here, the results plotted using solid
(black), dotted (blue) and dashed (red) curves are obtained
for A = 2.80, 2.70, and 2.60, respectively. We find that near
the origin, a new critical point is appeared which was
absent for black hole spacetime. In reality, this critical point
is invisible for black hole as it always remains inside the
horizon [44]. Hence, for a given set of A and &, flow can
have maximum of four critical points for KTN naked
singularity. Among them, the innermost critical point is
always O-type, and the flow can have a maximum of two
saddle type critical points. More precisely, the flow con-
tains critical points in a systematic order as O-type—saddle

type—O-type—saddle type with the shift of the location of
the critical point away from the origin. In panel (c), we
choose n =1.24 and a, = 1.65 where spacetime repre-
sents KTN naked singularity and the amount of spacetime
deformation is more compared to (b). In the plot, solid
(black), dotted (blue), and dashed (red) curves are for
A =2.60, 2.55, and 2.50, respectively. We find that there
exists the ranges of A and £ for multiple critical points
which is reduced compared to the results presented in panel
(b). Moreover, we observe that the locations of the critical
points are in general shifted outward from the origin.
Finally in panel (d), we fix n = 1.24 and g, = 1.70. This
also represents the KTN naked singularity having stronger
deformation of spacetime. Here, solid (black), dotted
(blue), and dashed (red) curves are obtained for
A =240, 2.375, and 2.35, respectively. We find that in

023012-10



STUDY OF RELATIVISTIC ACCRETION FLOW IN ...

PHYS. REV. D 102, 023012 (2020)
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FIG. 10. Modification of the parameter space for multiple
critical points as ay is increased. Here, we choose n = 1.24.
Solid (black), dotted (blue), and dashed (red) boundaries are
obtained for @, = 1.60, 1.65, and 1.675, respectively. See text for
details.

this limit, flow possesses at most two critical points where
the inner one is O-type and the other is saddle type. We
point out that possibly for the first time to the best of our
knowledge, this observation is explored in the present work
which is not seen for black hole spacetime.

B. Parameter space for multiple saddle
type critical points

From the discussion presented in Sec. VA, it is clear that
flow may harbor maximum of four critical points depend-
ing on the ay and n values. To quantify this, we identify the
region of the parameter space in the 4 — £ plane for a given
set of (ay, n) that allows the flow to possess at least two
saddle type critical points. For that we fix n = 1.24 and
calculate the parameter space for multiple saddle type
critical points for various a; values. We present the results
in Fig. 10, where the region identified with solid (black),
dotted (blue) and dashed (red) boundaries are obtained for
a, = 1.60, 1.65, and 1.675, respectively. We observe that
parameter space shrinks as well as shifts toward the lower A
and higher £ side as the gy is increased. This eventually
indicates that for a given n, the possibility of having
multiple saddle type critical points in a flow is reduced
when ay is increased.

C. Flow solutions of different kind

In order to obtain flow solution around a naked singu-
larity, we first choose @, and n values such that
1 — a} > n®. Then, we calculate the critical points corre-
sponding to flow energy £ and angular momentum A.

Following the criteria to classify the nature of the critical
points, we identify the saddle type critical points and
calculate the flow solutions passing through it. In the next
subsections, for the purpose of representation, we choose
a, = 1.60 and n = 1.24, and obtain different types (alto-
gether five types) of flow solutions for various sets of £ and
A values.

1. A-type solutions:

In Fig. 11, we present the variation of Mach number (M)
with radial coordinate (r). Here, we fix g = 1.60,
n =124, =1.001 and 1 = 2.80, and obtain four critical
points. Among them two are saddle type critical points
located at r;, = 2.2362 and r,, = 207.7773, and the other
two are O-type critical points located at r,; = 1.1229,
re, = 7.7180, respectively. Note that the nature of the
critical points appears as O-type—saddle type—O-type
—saddle type in ascending order. In order to obtain the
flow solution passing through r,,, we calculate the radial
velocity gradient (dv/dr), at ry, which yields two real
values; one is positive and other is negative. Using the
negative values of (dv/dr)., first we integrate Eqs. (18)
and (21) inward toward the naked singular point and
then outward up to the outer edge of the disc (reqqe, usually
the large distance). Finally, we join this two parts to
obtain a complete branch of solution. Here, we choose
Teage = 1000. Considering the positive values of (dv/dr),,
we repeat the above procedure to obtain the other branch of
the solution. In the figure, these two branches of the
solution is plotted using the solid (black) curve. It is

2.5 A-type

2 —

1.5
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0.5

o Lont™ Ll Ll

1 10 100 1000
r
FIG. 11. Plot of Mach number (M) as function of radial

coordinate (r). Here, we choose a =1.60, n=1.24,
&€ =1.001, and A = 2.80. Filled circles denote the critical points
which are marked. The contours are of constant entropy accretion
rate (M) which are indicated by different line styles. See text for
details.
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noteworthy that the entropy accretion rate (M) of a given
solution always remains constant. We calculate the entropy
accretion rate of the above flow solutions and obtain as

My = 2.7599 x 107. Next, we calculate the flow solu-
tions passing through the inner critical point (ry,) in the
same way as in the case of solutions passing through the
outer critical point (r,,). The noticeable difference here is
that flow does not extend up to the outer edge of the disc,
instead it becomes closed in between r.; and r,,. These
solutions are plotted using dot-big-dashed (magenta). For

this solution we find M, = 5.1207 x 10’. Now, keeping
all the remaining flow parameters unchanged, if we consider

M other than M, or M, flow solution does not possess
any critical point. In that case, one can start integration of the
Egs. (18) and (21) from any radial coordinate of interest. For

example, when M = 1.9777 x 107, we calculate the radial
velocity (v) and flow temperature (©) at r.q,. = 1000 using
Eq. (17) and employing them, we obtain the solution
depicted by doted (blue) curve. Similarly, solutions plotted
using dashed (red) and dot-small-dashed (green) curves are

obtained for M = 3.3724 x 107 and M = 6.7397 x 107,
respectively. We also observe that there exists a region
around the naked singularity which remains inaccessible to
the flow. We conjecture that during accretion, flow is
expected to pile up there and tended to rotate along a
surface around the naked singularity which we call as the
naked surface. Since the acceptable flow solution connects
the central object and the outer edge of the disc (in case of
black hole, it is event horizon to the outer edge of the disc),
solutions plotted with solid (black) and dotted (blue) curves
are physically acceptable. However, since the entropy
content of the dotted (blue) solution is lower than the solid
(black) one, nature therefore favors the flow solutions
passing through rg, only.

2. W-type solutions:

Here, we choose the input parameters as a; = 1.60,
n=1.24, € =1.001, and A = 2.90, and obtain the critical
points as r, = 1.1702 (O-type), r;, = 1.8138 (saddle
type), rep = 9.4241 (O-type), and r,,, = 206.0436, respec-
tively. In order to calculate the flow solutions, we follow the
same procedure as in Fig. 11 and depict the obtained results

(M vs r) in Fig. 12. The entropy accretion rate (M)
corresponding to the flow solutions drawn using dotted
(blue), solid (black), dot-small-dashed (green), dot-big-
dashed (magenta) and dashed (red) curves are calculated as
1.9594 x 107, 2.3597 x 107, 2.5688 x 107, 2.7503 x 107,
and 3.0846 x 107, respectively. Note that the flow solution
passing through r,, (dot-big-dashed, magenta) fails to join
with the naked surface, however, solution passing through
r;n (solid, black) smoothly connects the naked surface with
the outer edge of the disc. Moreover, this solution is
preferred over other solutions as it has high entropy
content.

2.5 Frrr T
| T W—type
27
15—
M
17
0.5
0 | coanl ol L
1 10 100 1000
r

FIG. 12. Plot of Mach number (M) as function of radial
coordinate (r). Here, we choose a =1.60, n=1.24,
€ =1.001, and 4 = 2.90. Filled circles denote the critical points
which are marked. The contours are of constant entropy accretion
rate (M) which are indicated by different line styles. See text for
details.

3. I-type solutions:

We continue our study of finding flow solutions and
choose the input parameters as a; = 1.60, n = 1.24, £ =
1.030 and A = 2.80. Here, we find that only two critical
points exist: one of them is O-type (r.;) and the other is
saddle type (7;,). We calculate the flow solutions following

3 L ' T T 1T \' L
| I-type A
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05 AN 7

o \\\\x
1 10 100

FIG. 13. Plot of Mach number (M) as function of radial
coordinate (r). Here, we choose a =1.60, n=1.24,
&€ =1.03, and 14 = 2.80. Filled circles denote the critical points
which are marked. The contours are of constant entropy accretion
rate (M) which are indicated by different line styles. See text for
details.
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the procedure as in Fig. 11. We observe that flow solution

with M = 6.9873 x 107 passes through r;, =2.0610 and
connects the naked surface to the outer edge of the disc
which is shown using solid (black) curve in Fig. 13. Other
solutions obtained for M = 6.2090 x 107 and 8.8773 x

107 are plotted with dotted (blue) and dashed (red) curves
as shown in the figure. As before solution passing through

r;, 1s preferred as it has higher M.

4. O-type solutions:

In this case, we choose the input parameters as
ay =1.60, n=1.24, £=1.001, and A =2.22 and find
two critical points. Here, we find that the flow solutions are
very much similar in character as in Fig. 13, except the
saddle-type critical point (r,,) forms far away from the
naked surface and flow solution passing through r,, =
216.2226 is extended from the naked surface to the outer
edge. In Fig. 14, the solutions plotted using dotted (blue),
solid (black) and dashed (red) curves are obtained

for M =2.2567 x 107, 2.8095 x 107, and 3.4239 x 107,
respectively.

5. I*-type solutions:

Here, we present the flow solutions for bounded ener-
gies, i.e., £ < 1. For that, we choose the input parameters as
ay =1.60, n =124, £ =0.999 and 1 = 2.80 and obtain
three critical points. Among them, two are O-type (r.; and
re) and the remaining one is saddle type (r;,). As before,
we calculate the flow solutions following the procedure
mentioned above while generating Fig. 11 and depict all the

T T T
3.5

T T T

O-type

FIG. 14. Plot of Mach number (M) as function of radial
coordinate (r). Here, we choose a =1.60, n=1.24,
€ =1.001, and 4 = 2.22. Filled circles denote the critical points
which are marked. The contours are of constant entropy accretion
rate (M) which are indicated by different line styles. See text for
details.

I'—type
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FIG. 15. Plot of Mach number (M) as function of radial
coordinate (r). Here, the solutions are obtained for bounded
energy (£ < 1) where flow parameters are chosen as a; = 1.60,
n=124, £=0.999, and 1 = 2.80, respectively. Filled circles
denote the critical points which are marked. The contours are of
constant entropy accretion rate (M) which are indicated by
different line styles. See text for details.

solutions in Fig. 15. For M =5.00129 x 107, flow sol-
ution passes through r;, = 2.2526 and becomes closed
which is shown using solid (black) curve. Solution of this
kind is physically delusive as it fails to produce global
accretion solution connecting the naked surface to the outer
edge of the disc. Other solutions which are not transonic
in nature, are obtained for M =4.00129 x 107 and
6.00129 x 107 and we plot them using dotted (blue) and
dashed (red) curve as shown in the figure.

VI. DISCUSSION AND CONCLUSIONS

In this work, we study the properties of the accretion
flow in a general axisymmetric KTN spacetime. This
spacetime either describe black hole or naked singularity
depending on the choice of Kerr parameter () and NUT
parameter (n). We consider the relativistic hydrodynamic
equations that govern the flow motion and solve them to
obtain the flow solutions around the black holes or naked
singularities in the steady state limit. We examine the role
of a, and n in deciding the nature of the critical points as
well as the flow solutions. We present our finding point-
wise below.

(1) For KTN black hole with fixed ay, there exists a
range of n that admits maximum of three critical
points. Among them, the critical point that forms
close to the horizon is always saddle type. Beyond
this range, flow is left with only one critical point
(see Fig. 2).
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(2) We calculate all possible transonic flow solutions
around a KTN black hole and separate the parameter
space in 4 — & plane according to the nature of the
flow solutions (see Fig. 4). We also observe that the
nature of the flow solutions changes as n is varied
(see Fig. 3). Considering this, we study the modi-
fication of 4 — &£ parameter space for multiple critical
points and find that for a given g, as n is increased,
the parameter space is shifted toward the higher
angular momentum and lower energy domain (see
Fig. 5). On the other hand, when ¢, is increased
keeping n fixed, the shift of the parameter space
happens in the lower angular momentum and higher
energy sides (see Fig. 6). These findings suggest that
ay and n respond in opposite way in determining the
parameter space for multiple critical points. Overall,
it appears that the NUT parameter (n) effectively
shields the black hole rotation for flows accreting on
to them.

(3) It may be noted that, for KTN spacetime, a; > 1 are
possible as opposed to the usual Kerr black holes
where a; < 1. We therefore study the A — & para-
meter space for multiple critical points considering
KTN black hole having Kerr parameter a; > 1.
Considering the various combinations of a; and n
values, we obtain a fixed event horizon ry [see
Eq, (2)], and obtain the multiple critical point
parameter space. We observe that the parameter
space is very much dependent on ry when a; and
n values are small with respect to unity, however, it
tends to become independent on ry when both ay
and n is very large (see Fig. 7).

(4) We compute the maximum luminosity (L,,) to be
emitted by the accretion flow considering the
bremsstrahlung radiative process active in the flow.
We find that L., in general decreases with the

increase of n
(see Fig. 8).

(5) We examine the critical point properties considering
the naked singularity and reveal that flow may
possess maximum of four critical points. When flow
contains four critical points, two of them must be
saddle type critical points (see Fig. 9). We calculate
A— & parameter space for multiple saddle type
critical points and find that the parameter space
shrinks and shifted toward lower A and higher £ side
as a is increased (see Fig. 10). We further obtain the
all possible transonic flow solutions where we find
that flow tends to reach an imaginary surface called
as naked surface avoiding the origin of the naked
singularity (Figs. 11-15).

Finally, we argue that our formalism may be used to
predict the possible range of NUT parameter (n) in the
astrophysical context. In order to do that, one requires the
knowledge of the source luminosity, source mass and
source spin, respectively (see Fig. 8). To keep our dis-
cussion simple, in this work, we only considered brems-
strahlung emission process neglecting the other radiative
processes, namely synchrotron emission, Compton emis-
sion, etc., although they are expected to play a role in
determining the accretion disc luminosity. Therefore, in
order to constrain the range of n, a rigorous study is
indispensable, involving all the emission processes, which
we intend to consider as a future work and plan to report
elsewhere.

irrespective to the a; values
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