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ABSTRACT
We study the relativistic, time-independent, low angular momentum, inviscid, advective
accretion flow around Kerr black hole. Considering the relativistic equation of state (REoS),
we examine the transonic properties of the flow and find that there exists an upper bound of the
location of the physically accepted critical point (rmax

out ). However, no such limit exists when
an ideal gas equation of state (IEoS) is assumed to describe the flow. Further, we calculate
the global accretion solutions that contain shock waves and separate the domain of parameter
space in angular momentum (λ) and energy (E) plane. We find ample disagreement between the
shock parameter spaces obtained for REoS and IEoS, respectively. In general, post-shock flow
(equivalently post-shock corona) is characterized by shock location (rs) and compression ratio
(R, measure of density compression across the shock front) which are uniquely determined
for flow with given input parameters, namely (E, λ). Using rs and R, we empirically compute
the oscillation frequency (νQPO) of the shock front which is in general quasi-periodic (QP) in
nature and retrace the domain of shock parameter space in the rs–R plane in terms of νQPO

for REoS around the weakly as well as rapidly rotating black holes. Finally, we indicate the
relevance of this work to explain the plausible origin of high frequency QPO and its connection
with the spin (ak) of the Galactic black hole sources.
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1 IN T RO D U C T I O N

Accretion of gas on to a black hole is widely considered to be the
underlying source of energy in most energetic astrophysical objects
in the universe, namely X-ray binaries (XRBs) and active galactic
nuclei (Frank, King & Raine 2002). In general, these objects often
exhibit spectral and temporal variabilities in X-rays that eventually
carry the imprints of the physical processes active in the accretion
flow surrounding the black holes. In particular, the spectral state
transitions from low/hard state to high/soft state via intermediate
states are observed in black hole XRBs and these sources also
display the signature of quasi-periodic oscillations (QPOs) as well
(Belloni, Psaltis & van der Klis 2002; Chakrabarti et al. 2002;
Homan & Belloni 2005; Remillard & McClintock 2006; Nandi
et al. 2012; Iyer, Nandi & Mandal 2015; Nandi et al. 2018).

So far, several efforts were made to understand the origin of
the above mentioned X-ray variabilities. Tagger & Pellat (1999)
examined the accretion-ejection instability and pointed out that
such instability can explain the QPO features. Titarchuk & Os-
herovich (2000) suggested the global disc oscillation mechanism
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that possibly causes the persistent QPOs observed in the black
hole systems. Ingram & Done (2011) studied the evolution of
X-ray timing properties (i.e. QPOs) by means of the fluctuations
associated with the hot flows at the inner part of the disc. On the other
hand, Svensson & Zdziarski (1994), Esin, McClintock & Narayan
(1997), and Done & Kubota (2006) studied the spectral properties
of the accretion flow considering Compton corona coupled with the
standard Keplerian Disc (Shakura & Sunyaev 1973).

Adopting a self-consistent approach, Chakrabarti and his col-
laborators (and references therein Chakrabarti & Titarchuk 1995;
Mandal & Chakrabarti 2005a,b; Nandi et al. 2012; Debnath,
Chakrabarti & Mondal 2014; Iyer et al. 2015; Nandi et al. 2018) have
also been investigating both spectral and temporal properties of the
Galactic black hole sources since more than two decades where they
particularly examine the importance of shock wave in accretion flow.
This accretion flow model is developed based on the solution of Two
Component Advective Flow (TCAF) paradigm that invokes the role
of the post-shock flow (i.e. PSC, equivalent to ‘Compton corona’),
where due to shock compression, density and temperature become
relatively higher compared to the pre-shock flow. In reality, soft
photons from the pre-shock flow are intercepted by the hot electrons
at PSC and are reprocessed via inverse Comptonization mechanism
to produce hard radiations. When PSC modulates, the emergent hard
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radiations also oscillate that eventually exhibits QPO features (Das
et al. 2014; Suková & Janiuk 2015; Lee et al. 2016). Interestingly,
the same PSC region deflects a part of the inflowing matter in the
transverse direction of the flow motion to originate bipolar outflows
(Chakrabarti 1999; Das et al. 2001a; Das & Chattopadhyay 2008;
Aktar, Das & Nandi 2015; Aktar et al. 2017). In the absence of
PSC, accretion flow behaves similarly as in the standard thin disc
(Shakura & Sunyaev 1973), where outflow generation ceases to
exist. Overall, in this model, PSC plays a vital role in determining
the emergent flux of the high energy radiations as well as the mass
outflow rate from the disc (Chakrabarti & Titarchuk 1995; Nandi
et al. 2018).

Meanwhile, the study of the shock waves in the accretion
flow around black holes is being carried out by the numerous
group of workers both theoretically as well as numerically (Fukue
1987; Chakrabarti 1989; Yang & Kafatos 1995; Molteni, Ryu &
Chakrabarti 1996; Ryu, Chakrabarti & Molteni 1997; Lu, Gu &
Yuan 1999; Becker & Kazanas 2001; Fukumura & Tsuruta 2004;
Das 2007; Kumar et al. 2013; Das et al. 2014; Okuda & Das 2015;
Suková & Janiuk 2015; Sarkar & Das 2016; Aktar et al. 2017;
Dihingia, Das & Mandal 2018). Very recently, Kim et al. (2017,
2018) showed the formation of shocks in the accretion flow around
black holes using general relativistic hydrodynamical numerical
simulation. In addition, Nishikawa et al. (2005) and Fukumura
et al. (2016) also examined the shock solutions in the GRMHD
framework under suitable physical conditions. In general, in an
accretion disc, rotating matter experiences centrifugal barrier while
falling towards the black hole. Depending on the flow parameters,
centrifugal repulsion becomes strong enough to trigger the discon-
tinuous transition of the flow variables in the form of shock waves.
Since PSC is formed because of the shock transition, it is generally
characterized by the shock variables, namely shock location (rs)
and compression ratio (R). In a way, both rs and R are interrelated
and also associated with a given accretion solution that harbours
shock wave (Das, Chattopadhyay & Chakrabarti 2001b; Das 2007;
Chattopadhyay & Kumar 2016; Sarkar & Das 2016; Aktar et al.
2017; Dihingia, Das & Mandal 2018). In addition, in an accretion
disc, the flow is expected to be in the thermally relativistic domain
(i.e. adiabatic index � → 4/3) at the inner part of the disc whereas
it remains thermally non-relativistic (i.e. � → 5/3) at a distance
far away from the black hole horizon (Frank et al. 2002). None the
less, for simplicity, rs and R are generally computed for accretion
flows obeying an ideal equation of state (hereafter IEoS), where
the value of the adiabatic index (�) remains constant all throughout
the flow (and references there in Abramowicz & Chakrabarti 1990;
Yang & Kafatos 1995; Chakrabarti 1996; Lu et al. 1999; Das et al.
2001b; Chakrabarti & Das 2004; Fukumura & Tsuruta 2004; Das
2007; Sarkar & Das 2016; Aktar et al. 2017; Dihingia et al. 2018).
Recently, Kumar & Chattopadhyay (2017) studied the accretion-
ejection solutions using general relativistic prescription; however,
no attempts were made to compute the limiting range of rs and R and
their correlation for the relativistic accretion flows around rotating
black holes.

Being motivated with these, in this work, we aim to study the
structure of the relativistic accretion flows around the Kerr black
holes, where inflowing matter is described with a relativistic equa-
tion of state (REoS). Here, adiabatic index (�) of the flow no longer
remains fixed as it was the case in many earlier works; instead � is
determined here self-consistently based on the thermal properties of
the flow (Chattopadhyay & Ryu 2009). To begin with, we consider
low angular momentum inviscid transonic accretion flow in the
steady state and examine its transonic properties considering both

REoS and IEoS. Further, we calculate the shock induced global
accretion solutions around rotating black holes and identify the
effective region of the parameter space in energy (E) and angular
momentum (λ) plane that permits shock solutions. On comparing
the shock parameter spaces obtained for REoS and IEoS, ample dis-
agreement is seen. Further, we empirically compute the frequency of
QPO (νQPO) of the shock front (Chakrabarti & Manickam 2000; Iyer
et al. 2015). Since rs and R are uniquely determined for a shocked
accretion flow having fixed (λ, E), we identify the shock parameter
space in rs–R plane in lieu of the canonical λ–E plane where we
study the two-dimensional projection of three-dimensional plot of
{rs, R, νQPO}. With this, in this work, we study the importance
of REoS over IEoS while obtaining the accretion solutions and
also investigate the rs − R correlation for shocked accretion flow
around Kerr black holes. Finally, we discuss the implication of the
present formalism to study the high frequency QPO (HFQPO) and
its possible association with the spin of the Galactic black hole
sources.

The paper is organized as follows. In Section 2, we present the
governing equations of the relativistic accretion flow. In Section 3,
we discuss the critical point analysis. In Section 4, we present the
results, where critical point properties, global accretion solutions
including shocks, shock properties are discussed. In Section 5, we
discuss the astrophysical implication of our formalism. Finally, in
Section 6, we present the concluding remarks.

2 MODEL EQUATI ONS AND ASSUMPTI ONS

In this work, the accretion disc around a rotating black hole is
considered to be steady, thin, axisymmetric, and non-dissipative in
nature. Assumption of inviscid accretion flows around the black hole
is supplemented in Appendix A. The black hole is characterized by
its mass MBH and spin ak = J/MBH, where J is the angular momentum
of the black hole. Throughout the study, we use a unit system as
G = MBH = c = 1, where G and c are the gravitational constant and
speed of light. In this unit system, length, angular momentum, and
time are expressed in terms of GMBH/c2, GMBH/c, and GMBH/c3,
respectively.

2.1 Equations of the fluid

The non-dissipative energy momentum tensor for fully ionized fluid
is expressed in terms of energy density (e), pressure (p), and four
velocities (uμ) and is given by

T μν = (e + p)uμuν + pgμν, (1)

where μ and ν are indices run from 0 → 3, gμν are the components
of the metric. The conservation of mass flux and the conservation
of energy momentum tensor constitute the governing equations of
hydrodynamics which are given by

T μν
;ν = 0, (ρuν);ν = 0, (2)

where ρ is the mass density of the flow. Now, we define the
projection operator hi

μ = δi
μ + uiuμ that satisfy hi

μuμ = 0 with ‘i’
runs from 1 → 3. This condition helps us to project the Navier–
Stokes equation into three vector equations as

hi
μT

μν
0 ;ν = (e + p)uνui

;ν + (giν + uiuν)p,ν = 0. (3)

In addition, the scalar equation which is essentially identified as the
first law of thermodynamics is computed as

uμT μν
;ν = uμ

[(
e + p

ρ

)
ρ,μ − e,μ

]
= 0. (4)
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In this work, we intend to study the accretion flow around a Kerr
black hole and therefore, we chose Kerr metric in Boyer–Lindquist
coordinates as

ds2 =gμνdxμdxν,

=gttdt2 + 2gtφdtdφ + grrdr2 + gθθ dθ2 + gφφdφ2,
(5)

where xμ(≡ t, r, θ , φ) denote coordinates and gtt = −(1 − 2r/
),
gtφ = −2akrsin 2θ /
, grr = 
/�, gθθ = 
, and gφφ = Asin 2θ /

are the non-zero metric components. Here, A = (r2 + a2

k )2 −
�a2

k sin2 θ , 
 = r2 + a2
k cos2 θ , and � = r2 − 2r + a2

k . In this
work, we follow a convention where the four velocities satisfy
uμuμ = −1.

To obtain the accretion solutions, one requires to use the
equation of state (EoS) describing the relation among the ther-
modynamical quantities, namely density (ρ), pressure (p), and
internal energy (e), respectively. Since the temperature of the
accretion flow generally exceeds ∼1010 K at least within few tens of
Schwarzschild radius (and references therein Sarkar & Das 2016),
in this work, we consider a simplified EoS for REoS consisting of
electrons, positrons, and ions (Chattopadhyay & Ryu 2009) and is
given by

e = nemef = ρ

τ
f . (6)

Here, ρ = nemeτ , τ = [2 − ζ (1 − 1/χ )], ζ = np/ne, and χ = me/mp,
respectively, where ni’s and mi’s are the number density and the
mass of the species. Throughout this study, we consider the flow to
be composed with electrons and ions only and we set ζ = 1, until
otherwise stated. Subsequently, the explicit form of f is obtained as

f = (2 − ζ )

[
1 + �

(
9� + 3

3� + 2

)]
+ ζ

[
1

χ
+ �

(
9� + 3/χ

3� + 2/χ

)]
,

(7)

where � (= kBT/mec2) is the dimensionless temperature. In this
context, we define the polytropic index (N), adiabatic index (�),
and the sound speed (as) as

N = 1

2

df

d�
; � = 1 + 1

N
; and a2

s = �p

e + p
= 2��

f + 2�
. (8)

The essence of REoS is that during accretion, the flow variables
determines the � variation as expected.

It may be noted that because of simplicity, the EoS widely used
in the literature is described with a fixed adiabatic index � (IEoS)
and is given by

e = p

� − 1
+ ρ = ρ

τ
f , (9)

where f = 2N� + τ . For the purpose of completeness, it would
be worthy to compare results obtained for both REoS and IEoS,
respectively.

2.2 Governing equations for accretion disc

In this work, since a geometrically thin accretion disc is assumed,
it is justified to consider the accreting matter to be confined at the
disc equatorial plane. Accordingly, we choose θ = π /2 and uθ ∼
0. Using these conditions, the radial component of the equation (3)

takes the form as

urur
,r + 1

2
grr gtt,r

gtt

+ 1

2
urur

(
gtt,r

gtt

+ grrgrr,r

)

+ uφutgrr

(
gtφ

gtt

gtt,r − gtφ,r

)
+ 1

2
uφuφgrr

×
(

gφφgtt,r

gtt

− gφφ,r

)
+ (grr + urur )

e + p
p,r = 0. (10)

In addition, the continuity equation (second part of equation 2)
can be rewritten as the mass accretion rate which is given by

Ṁ = − 4πrurρH, (11)

where Ṁ represents the accretion rate that we treat as global
constant. Moreover, H refers the local half-thickness of the disc
which has the functional form (Riffert & Herold 1995; Peitz &
Appl 1997) as

H 2 = pr3

ρF , (12)

with

F = γ 2
φ

(r2 + a2
k )2 + 2�a2

k

(r2 + a2
k )2 − 2�a2

k

,

where γ 2
φ = 1/(1 − v2

φ) and v2
φ = uφuφ/(−utut ). We define the

radial three velocity in the co-rotating frame as v2 = γ 2
φ v2

r and
thus we have γ 2 = 1/(1 − v2), where v2

r = urur/(−utut ).
We adopt a stationary metric gμν which has axial symmetry.

This enables us to construct two Killing vector fields ∂ t and ∂φ

that provide two conserved quantities for the fluid motion in this
gravitational field and are given by

huφ = constant; −hut = constant = E, (13)

where h [ = (e + p)/ρ] is the specific enthalpy of the fluid, E is the
Bernoulli constant (i.e. the specific energy of the flow) and ut =
−γ γφ/

√
gtφλ − gtt , where λ (= −uφ /ut) denotes the conserved

specific angular momentum.

3 CRI TI CAL POI NT A NA LY SI S

Simplifying equations (4), (6), (10), and (11), we obtain the wind
equation in the co-rotating frame as

dv

dr
= N

D , (14)

where the numerator N is given by

N = − 1

(r − 2)r
+ γ 2

φ

2ak

r2�
λ + γ 2

φ

4a2
k

(r − 2)r2�

− γ 2
φ �λ

2a2
k − (r − 3)r2

r2�
+ 2akγ

2
φ �

(r − 3)r2 − 2a2
k

(r − 2)r2�

+ 2a2
s

� + 1

[(
r − a2

k

)
r�

+ 5

2r
− 1

2F
dF
dr

]
, (15)

and the denominator D is given by

D = γ 2

[
v − 2a2

s

v(� + 1)

]
. (16)

Using equation (14) in equation (4), we calculate the derivative
of the dimensionless temperature as

d�

dr
= − 2�

2N + 1

[(
r − a2

k

)
r�

+ γ 2

v

dv

dr
+ 5

2r
− 1

2F
dF
dr

]
. (17)
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In case of accretion process around the black holes, since the
inflowing matter smoothly accretes all throughout starting from
the outer edge of the disc (i.e. subsonic) up to the horizon (i.e.
suppersonic), the radial velocity gradient (equation 14) must be
real and finite always. However, equation (16) indicates that the
denominator (D) may vanish at some points and therefore, to keep
dv/dr finite, numerator (N) must also tend to zero there. These
spatial points where both N and D simultaneously tend to zero (i.e.
dv/dr = 0/0) are called as critical points and the conditions N = 0
and D = 0 are known as critical point conditions. Using condition
D = 0, we obtain the expression of Mach number (M = v/as) at the
critical point (rc) as

Mc ≡ M(rc) =
√

2

�c + 1
, (18)

Setting N = 0, we have

v2
c = NN

ND

, (19)

with

NN =
[

1

(r − 2)r
− 2akγ

2
φ λ

r2�
+ γ 2

φ �λ
[
2a2

k − (r − 3)r2
]

r2�

]
c

−
[

4a2
k γ

2
φ

(r − 2)r2�
+ 2aγ 2

φ �
[
(r − 3)r2 − 2a2

k

]
(r − 2)r2�

]
c

,

and

ND =
[(

r − a2
k

)
r�

+ 5

2r
− 1

2F
dF
dr

]
c

,

where subscript ‘c’ denotes the quantities evaluated at the critical
point (rc). By solving equations (18) and (19) with help of equa-
tion (8), we calculate �c and vc at the critical point. These values
serve as the initial conditions to integrate equations (14) and (17).
Before integrating these equations, the values of dv/dr|c need to be
determined that eventually provide the essence of the critical point
characteristics. It is noteworthy that dv/dr|c usually assumes two
values: when both values of dv/dr|c are real and of opposite sign,
critical points are known as saddle type; if dv/dr|c takes two value
of same sign, critical points are known as nodal type; and the spiral-
type critical point is obtained when dv/dr|c becomes imaginary
(Holzer 1977). To calculate dv/dr|c, we employ lH´ospital rule and
the explicit expression is obtained as

dv

dr

∣∣∣∣
c

= N1 − D2 ±
√

(N1 − D2)2 + 4D1N2

2D1
, (20)

where N1, N2, D1, and D2 are the functions of the flow variables
which are given in Appendix B. It may be noted that saddle type
critical points are specially important in accretion disc as they
are stable (Kato et al. 1993) and accretion flow smoothly passes
through it (Liang & Thompson 1980; Abramowicz & Zurek 1981;
Chakrabarti 1989) before entering into the black hole. Thus, in a
realistic scenario, accretion flow must contain at least one saddle
type critical point. In the subsequent sections, we refer all the saddle
type critical points as critical points unless otherwise stated.

Figure 1. Plot of energy at the critical point (E) as a function of critical
point location (rc) for three angular momentum λ = 2.00, 1.90, and 1.80
(bottom to top) in both the panels with ak = 0.99. Here, results presented
in the upper and lower panels are for the REoS and IEoS, respectively. For
IEoS, we choose � = 1.4. Solid, dash, and dotted curves represent results
corresponding to the saddle, nodal, and spiral-type critical points. See text
for details.

4 R ESULTS AND DI SCUSSI ONS

4.1 Nature of critical points

In order to calculate the location of critical points, we solve the
second part of equation (13) by supplying the global parameters E,
λ, and ak, respectively. Depending on the choice of the parameters,
the flow may contain either single or multiple critical points through
which it enters into the black hole (Fukue 1987; Chakrabarti 1989).
In this section, we investigate the transonic nature of the accretion
flow and in Fig. 1, we present the variation of the flow energy (E)
as function of logarithmic critical point locations (rc) for various
angular momentum around a black hole having spin ak = 0.99.
The obtained results are plotted for REoS and IEoS in the upper
panel (Fig. 1a) and lower panel (Fig. 1b), respectively, and in each
panel, various curves from top to bottom are for different angular
momentums which are given by λ = 1.8, 1.9, and 2.0, respectively.
In case of IEoS, we consider � = 1.4 as a representative value. The
solid, dashed, and dotted parts of the curve represent the saddle type,
nodal type, and spiral-type critical points. We observe that for REoS,
all three types of critical points are present in systematic order: for
example, saddle – spiral – nodal – saddle – nodal as the critical point
locations are increased. On the contrary, nodal type critical point
is absent for IEoS. Moreover, we observe that for a given angular
momentum, there exists a range of energy that provides multiple
critical points in the flow. Among them, the closest one from the
black hole is called as the inner critical point (rin), and the furthest
one is called as the outer critical point (rout). Since only saddle type
critical points are physically acceptable, we find an upper limit of
outer critical point (rmax

out ) for REoS whereas rout remains unbounded
for IEoS. Usually, since accretion flow encounters discontinuous
shock transition in between rin and rout (Chakrabarti 1989), the
maximum possible shock radius (rmax

s ) will have an upper bound for
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Relativistic inviscid accretion flow 3213

Figure 2. Comparison of parameter spaces for multiple critical points in
λ–E plane. Region bounded by the solid curve is for REoS and the region
bounded by dot–dashed, small-dash, and long-dash curves are for IEoS with
� = 4/3, 1.4, and 1.5, respectively. The domain of each parameter space is
further subdivided using dotted curve that corresponds to accretion solutions
having equal entropy at the inner and outer critical points. See text for details.

REoS. In case of IEoS, since rmax
out is practically limitless, rmax

s also
becomes unbounded. In reality, the accretion flow remains thermally
non-relativistic (i.e. � → 5/3) at far away distances from the black
hole as the temperature of the accretion flow is small. When the flow
proceeds towards the black hole, its temperature increases due to
compression and eventually flow becomes thermally relativistic (i.e.
� → 4/3) at the inner part of the disc. Note that REoS describes
the above features of the accretion flow very much satisfactorily
and thus we do not find any transonic accretion solution (absence
of saddle type critical points) in the non-relativistic regime. These
findings are consistent with results reported in Chakrabarti (1990).
In case of IEoS, as � is considered to be constant (and 4/3 ≤ � <

5/3), rout continues to exist even at the outer edge of the disc. In the
inset, we zoom a small part of the curves for clarity purposes only.

4.2 Parameter space for multiple critical points

In this section, we study the parameter space in λ–E plane for
the accretion flow that contains multiple critical points. In Fig. 2,
we identify the effective region of the parameter space bounded
by the solid curves for REoS whereas the region separated using
dot–dashed (� = 4/3), dashed (� = 1.4), and long-dashed (� =
1.5) are obtained for IEoS. Note that all four parameter spaces are
further subdivided based on the ratio of entropies (η = Ṁin/Ṁout)
measured at inner and outer critical points. Dotted curve in every
parameter space corresponds to η = 1: above and below the dotted
curve we have η < 1 and η > 1, respectively. It is also clear that
the multiple critical point parameter space for REoS only display a
partial overlap with the remaining cases and hence, we point out that
any observable computed using IEoS is expected to be erroneous.

Figure 3. Comparison of accretion solutions containing shock waves for
REoS and IEoS. In the upper panel (a), variation of Mach number is
presented as function of radial coordinate (r). Here, input parameters are
chosen as E = 1.001, λ = 1.98, and ak = 0.99, respectively. In both cases,
flows are injected at r = 103 with adiabatic index � = 1.4896. Solid and
dashed curves are used to depict the results corresponding to REoS and
IEoS. In the lower panel (b), variation of � is plotted with r. See text for
details.

4.3 Global accretion solution with shock

In the previous section, we have shown that depending on the
flow parameters, such as energy (E) and angular momentum (λ),
accretion flow may possess both inner (rin) and outer (rout) critical
points. Interestingly, flow cannot smoothly pass through both critical
points simultaneously unless it makes a transition in between them.
In actuality, inflowing matter from the outer edge of the disc first
crosses rout to change its sonic state from subsonic to supersonic and
continues to proceed. Meanwhile, centrifugal repulsion becomes
comparable against gravity that causes the accumulation of matter
around the black hole. Due to this, a virtual barrier is developed
that eventually triggers the discontinuous transition of the flow
in the subsonic branch as a shock wave. After the shock, flow
velocity gradually increases and again becomes supersonic at rin

before falling into the black hole. For shock, the following shock
conditions (Taub 1948) are needed to be satisfied which are given
by

[ρur ] = 0, [(e + p)utur ] = 0,

and [(e + p)urur + pgrr ] = 0, (21)

where quantities within the square brackets denote their differences
across the shock front. In this work, we denote the location of the
shock transition as rs which measures the size of the post-shock
corona (i.e. PSC). It may be noted that solutions of this kind that
passes through rout, rs, and rin successively are known as global
transonic shocked accretion solutions.

In Fig. 3, we compare two typical accretion solutions correspond-
ing to REoS and IEoS where both solutions harbour shock waves.
In Fig. 3(a), we depict the variation of Mach number (M) with radial
distance (r) where the input parameters are chosen as E = 1.001,
λ = 1.98, and ak = 0.99, respectively, and subsonic flow is injected
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from r = 103 with � = 1.4896. Results plotted using solid and
dotted curves are for REoS and IEoS, respectively. For REoS, the
flow becomes supersonic after passing through the outer critical
point at rout = 210.3884 and continues its journey towards the black
hole. Meanwhile, inflowing matter starts experiencing centrifugal
repulsion and eventually encounters discontinuous shock transition
in the subsonic branch at rs = 14.5090 as the shock conditions are
satisfied there. This is indicated by the solid vertical arrow. Just
after the shock transition, flow momentarily slows down and then
gradually picks up its radial velocity due to gravitational attraction.
Ultimately, the flow enters into the black hole supersonically after
crossing the inner critical point at rin = 1.4696. Similar to REoS,
we observe the flow to pass through the shock (shown by the dotted
arrow) for IEoS also, however, the outer critical point, shock, and
inner critical point are obtained at different locations as rout =
215.5590, rs = 120.5611, and rin = 1.4132, respectively. In Fig. 3(b),
we show the profile of adiabatic index (�) as function of r. As
expected, � remains constant (= 1.4869) all throughout for IEoS
whereas it decreases as the flow accretes towards the black hole
for REoS. In general, accreting matter is compressed due to shock
transition and consequently, density of the flow shoots up across the
shock front which is measured by defining the compression ratio as
R = σ+/σ−, where σ = ρH and ‘+’ and ‘−’ signs denote quantities
calculated at immediate post-shock and pre-shock region. In the
case of the above two solutions for REoS and IEoS, R is calculated
as 2.91 and 1.22, respectively. It may be noted that the location of
the shock renders the size of the PSC where the soft photons from
the pre-shock flow interact with the hot electrons of PSC via inverse
Comptonization process to produce hard radiations (and references
therein Nandi et al. 2018). Thus, according to our model, both
shock location and compression ratio seem to play a decisive role
in determining the spectral features of the accretion disc around the
black holes (Chakrabarti & Titarchuk 1995; Mandal & Chakrabarti
2005b). Since the accretion disc structures calculated using REoS
and IEoS are not in agreement and REoS is developed based on
the physically motivated formalism, we, therefore, point out that it
would be appropriate to utilize the accretion solutions yielded from
REoS to study the observable properties of the black hole sources.

4.4 Parameter space for shock

In this section, we examine the range of the flow parameters, namely
energy (E) and angular momentum (λ) that admits shock induced
global accretion solutions around the rotating black holes. In Fig. 4,
we identify the effective domain of the parameter space for the
shock in the λ–E plane where the region bounded by the solid
curve is obtained for REoS. In addition, we also separate the
shock parameter space for IEoS where dot–dashed, dashed, and
long-dashed boundaries denote the results for � = 4/3, 1.4, and
1.5, respectively. In all the cases, we choose ak = 0.99. Clearly,
noticeable disagreement is seen among the shock parameter spaces
obtained for REoS and IEoSs.

We continue to study the shock parameter space around rotating
black hole having different spin values. In Fig. 5, we present the
shock parameter space for ak = 0.99, 0.9, 0.5, 0.0, and −0.99 (left to
right), respectively, where two-dimensional projection of the three-
dimensional plot spanned with λ, E, and rs is shown. In the figure,
vertical colour-coded bar in the right side refers the range of rs

calculated using REoS where we obtain the minimum value of shock
location as rmin

s = 3.7314 and the maximum value of shock location
as rmax

s = 1071.5519. We observe that the effective bounded region

Figure 4. Parameter space for shock in λ–E plane. Region bounded with
solid curve is for REoS and the same bounded by dot–dashed (� = 4/3),
dashed (� = 1.4), and long-dashed (� = 1.5) are for IEoS. Here, we choose
ak = 0.99. See text for details.

Figure 5. Two-dimensional projection of the three-dimensional plot of
angular momentum (λ), energy (E), and shock location (rs) for ak = 0.99,
0.9, 0.5, 0 and −0.99 (left to right). In the right, vertical colour-coded bar
denotes the range of rs calculated for REoS. See text for details.

of the shock parameter space gradually shifts towards the lower
angular momentum side as the spin of the black hole ak is increased.
These findings are in agreement with the results of Aktar et al. (2015)
and Kumar & Chattopadhyay (2017). From the figure, it is clear that
shocks generally form close to the horizon for the rapidly rotating
black holes (ak = 0.99). Moreover, for a given ak and λ, shocks can
also form at smaller radii when E is decreased. On the other hand,
for fixed ak and E, shocks, in general, settle down at larger radii for
flows with higher λ. This clearly infers that centrifugal repulsion
seems to play a crucial role in deciding the shock transition in the
accretion disc.

Next, we demonstrate the shock parameter space in λ–E plane in
terms of compression ratio (R) calculated using REoS. As before,
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Relativistic inviscid accretion flow 3215

Figure 6. Two-dimensional projection of the three-dimensional plot of
angular momentum (λ), energy (E), and compression ratio (R) for ak =
0.99, 0.9, 0.5, 0, and −0.99 (left to right). In the right, vertical colour-coded
bar denotes the range of R calculated for REoS. See text for details.

in Fig. 6, we examine the two-dimensional projection of the three-
dimensional plot of λ, E, and R, respectively, for ak = 0.99, 0.9, 0.5,
0, and −0.99 (left to right) where vertical colour code indicates the
range of R, where we find the minimum value of R as Rmin = 1.19
and the maximum value of R as Rmax = 3.79, respectively. Note that
the effective region of the shock parameter spaces displayed here
are exactly identical to Fig. 5. We observe that for a given ak and E,
inflowing matter experiences weak compression (i.e. R → 1) when
the angular momentum (λ) is relatively high and vice versa. On the
other hand, for a given ak and λ, R → 1 for flows with high E and
vice versa. Overall, upon comparing Figs 5 and 6, it appears that
rs and R are closely related for flows accreting around the rotating
black holes.

4.5 rs–R correlation and QPO frequency (νQPO)

In this section, we intend to explore an important aspect of shock
waves in an accretion disc. We have already shown that accreting
matter passes through the standing shock wave provided the shock
conditions are satisfied. Interestingly, when the shock conditions are
not favourable, but the entropy of the flow at the inner critical point
(rin) is higher than the outer critical point (rout), shock front exhibits
non-steady behaviour. This happens because of either resonance
oscillation where infall time-scale becomes comparable to the
post-shock cooling time-scale (Molteni et al. 1996) or dynamical
oscillations where the flow viscosity above its critical limit triggers
the unstable perturbation in the flow (Das et al. 2014). The nature
of the shock oscillation generally yields as quasi-periodic, and the
frequency of this QPO (Chakrabarti & Manickam 2000; Iyer et al.
2015) is computed as

νQPO = c/rg√
2πRrs

√
rs − 2

, (22)

where rg(= 2GMBH/c2) denotes the Schwarzschild radius. Now,
for a given set of input parameters, namely {λ, E, ak}, rs and
R are uniquely determined and upon employing these values in
equation (22), it is straightforward to estimate νQPO. Following
this, we therefore retrace the shock parameter space in rs–R
plane in lieu of λ–E plane and in Fig 7, we display the two-
dimensional projection of the three-dimensional plot of log (rs),

R, and log (νQPO). In Fig. 7(a), results are obtained for ak = 0.0
where we find rmax

s = 999.3955. Similarly, in Fig. 7(b), we choose
ak = 0.99 and obtain rmax

s = 1071.5519. For MBH = 10 M�, we get
νmax

QPO = 77.68 and 783.50 Hz corresponding to ak = 0.0 and ak =
0.99, respectively. In both panels, vertical colour-coded bar indicates
the range of νQPO in logarithmic scale. We observe that accretion
flow exhibits HFQPOs when shock forms close to the horizon and
vice versa irrespective to the black hole spin ak. Interestingly, since
the minimum value of the shock radius (rmin

s ) decreases with ak, the
maximum QPO frequency is ascertained around extremely rotating
black hole (ak = 0.99).

It may be noted that in this work, we focus only on the
axisymmetric shock oscillation model to explain the observed single
peak HFQPO features. However, in reality, the shock can be non-
axisymmetric as well that yields the spiral shock transition in the
accretion flow. In fact, the shock transition between two-armed
to three-armed spirals may be potentially viable to explain the
2:3 frequency ratio (Chakrabarti & Wiita 1993; Chakrabarti et al.
2009) as observed in some of the black hole sources (Belloni,
Sanna & Méndez 2012; Motta 2016). However, the study of the
non-axisymmetric behaviour of the accretion flow around the black
hole is beyond the scope of this work.

5 A STRO PHYSI CAL I MPLI CATI ONS

Recent observations confirm the significant detection of HFQPOs
signature in few transient as well as persistent black hole sources
(Altamirano & Belloni 2012; Belloni et al. 2012; Belloni &
Altamirano 2013). In this section, we apply our formalism to explain
the plausible origin of the HFQPO and its connection with the spin
of the black hole sources. In doing so, we choose two well-studied
Galactic black hole sources, namely GRS 1915+105 and GRO
J1655−40, respectively and carry out the analysis in this section.

First, we consider the persistent black hole source GRS
1915+105 as its mass and spin are well constrained. Recently,
Steeghs et al. (2013) estimated its mass as MBH = 10.1 ± 0.6 M�
and Miller et al. (2013) reported its spin value as ak = 0.98 ± 0.01.
Using these fundamental properties of the source, it is straight for-
ward to calculate the frequency of QPO (νQPO) from equation (22)
for a given set of (rs, R). Since this source is known to exhibit
HFQPOs (∼67 Hz; Morgan, Remillard & Greiner 1997; Belloni &
Altamirano 2013), we self-consistently compute rs–R correlation
that yields νQPO = 67 Hz. In Fig. 8, we show the variation of R
as function of rs. In the figure, we consider the range of both mass
and spin parameters as 9.5 ≤ MBH/M� ≤ 10.7, and 0.97 ≤ ak

≤ 0.99 and the obtained results are displayed by the shaded region
bounded by the solid curves. It is clear from the figure that HFQPOs
observed in GRS 1915+105 can be understood using the present
model provided shocks form close to the black hole (7.5 � rs � 16)
having compression ratio ranging from weak (R ∼ 1.2) to strong (R
∼ 3.6) limit.

Next, we choose the transient black hole source GRO J1655−40.
Several attempts have been made to obtain the precise measurements
of mass and spin of GRO J1655−40. Using timing analysis, Motta
et al. (2014) measured the black hole mass and spin as MBH =
5.31 ± 0.07 M� and ak = 0.290 ± 0.003, respectively. Stuchlı́k &
Kološ (2016) estimated the black hole mass in the range 5.1 <

MBH/M� < 5.5 and spin ak < 0.3. Meanwhile, Shafee et al. (2006)
calculated the spin of the black hole by spectral modelling in the
range 0.65 < ak < 0.75. On the other hand, Aktar et al. (2017),
recently constrained the range of the spin parameter as ak ≥ 0.57 by
modelling the oscillation of PSC. Although mass of this source is
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Figure 7. Two-dimensional projection of three-dimensional plot of {rs, R, νQPO(M�/MBH)} where vertical colour-coded bar indicates the range of QPO
frequency in logarithmic scale. We choose ak = 0.0 (a) and ak = 0.99 (b). See text for details.

Figure 8. Variation of compression ratio (R) as function of shock location
(rs) that yields νQPO = 67 Hz for Galactic black hole source GRS 1915+105.
The ranges of R and rs are obtained as the consequences of the mass and
spin values as 9.5 ≤ MBH/M� ≤ 10.7, and 0.97 ≤ ak ≤ 0.99, respectively.
See text for details.

well constrained, however, all these studies indicate contradictory
claims particularly in the context of spin measurement of the black
hole source. To address this issue, we employ our formalism to
calculate the HFQPO at νQPO = 450 Hz which has been observed
in GRO J1655−40 (Remillard et al. 1999; Strohmayer 2001; Aktar
et al. 2017). Generally, this particular HFQPO is seen when the
source resides in the anomalous state with high flux values as well
as hardness ratio of 0.3–0.8 (Belloni et al. 2012). While computing
the frequency of HFQPO (νQPO), we choose MBH = 5.31 M� and
freely vary all the input parameters (λ, E) including spin (ak) of
the black hole. With this, we find that GRO J1655−40 can exhibit
HFQPO at 450 Hz provided its spin parameter ak ≥ 0.85 with rs ≤
6.9 and R ≥ 1.22.

6 C O N C L U S I O N S

Using the general relativistic approach, we study the shock induced
global accretion solutions around Kerr black holes and compare

the results obtained for the REoS as well as the IEoS. Accretion
solutions of this kind are potentially viable as they can explain the
observable properties of the black hole candidates. The main results
of this work are summarized as follows.

(1) To the best of our knowledge, for the first time we find that
there exists an upper limit of outer critical point location (rmax

out )
for REoS whereas rmax

out continues to remain unbound for IEoS.
Since shock (rs) forms in between rin and rout (i.e. rin < rs < rout),
the maximum shock radius (rmax

s ) must be lower than rmax
out and

consequently, we observe an upper bound of rmax
out as well for REoS

(see Fig. 1).
(2) Considering both REoS and IEoS, we calculate the global

transonic shocked accretion solutions for flows having identical
input parameters around a black hole of spin ak = 0.99 and find
that solutions differ significantly (see Fig. 3). Further, we identify
the range of parameters in λ–E plane that admits shock for REoS
and IEoS (see Fig. 4). Here again, noticeable disagreement is seen.
Since REoS satisfactorily describes the realistic accretion flow, we
put emphasis on the accretion solutions yielded from REoS in order
to study the observable properties of the black hole sources.

(3) In order to fit and compare the observed spectrum of the
black hole sources, TCAF solutions are used as a local model in
XSPEC software of HEASOFT (Debnath et al. 2014; Iyer et al. 2015)
where shock location (rs) and compression ratio (R) are treated
as free model parameters. To check consistency, in this work, we
examine the two-dimensional projection of three-dimensional plot
of {λ, E, rs} (see Fig. 5) and {λ, E, R} (see Fig. 6) as function of ak.
We find that for a given set of the input parameters {λ, E, ak}, rs

and R are determined uniquely and therefore, we argue that these
two quantities (rs and R) must not be chosen arbitrarily while fitting
the observed spectrum of the black hole sources. It may be noted
that the ranges of rs and R are obtained from our model calculation
as: for ak = 0.0: 14.1569 ≤ rs ≤ 999.3955 and 1.19 ≤ R ≤ 3.31 and
for ak = 0.99: 3.7314 ≤ rs ≤ 1071.5519 and 1.19 ≤ R ≤ 3.79.

(4) We specify that when shock conditions are favourable, shock
front is expected to start exhibiting non-steady behaviour which
is quasi-periodic in nature. We phenomenologically estimate the
frequency of this QPO (νQPO) of the shock front and retrace the
shock parameter space in rs–R plane instead of λ–E plane where
two-dimensional projection of three-dimensional plot of {rs, R,
νQPO} is displayed (see Fig. 7). We find that when shock oscillation
takes place close to the horizon, it exhibits HFQPO. As shock can
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form very close to the horizon for the rapidly rotating black holes, in
this work, we find the maximum QPO frequency as νmax

QPO = 783.50
Hz for ak = 0.99 and MBH = 10 M� (see Fig. 7).

(5) Finally, we employ our formalism to understand the plausible
origin of the HFQPO and its linkage with the spin parameter
considering two well studied Galactic black hole sources, namely
GRS 1915+105 and GRO J1655−40, respectively. As the mass
and spin of GRS 1915+105 are well constrained, we use these
fundamental parameters to study the rs–R correlation that yields the
HFQPO at νQPO = 67 Hz. On the contrary, since the spin parameter
of GRO J1655−40 remains an unsettled issue, we use our formalism
to constrain spin of this source. We find that HFQPO at νQPO =
450 Hz can be explained in GRO J1655−40 provided it spins very
rapidly with ak ≥ 0.85. This result is consistent with some of the
earlier findings (Šrámková et al. 2015; Aktar et al. 2017).

At the end, we point out that this work is carried out considering
some approximations. We ignore the effect of dissipations, namely
viscosity, radiative processes, magnetic fields, etc. We also do not
take into account of mass-loss from the accretion disc. Although the
implementation of all these issues is beyond the scope of this work,
however, the basic conclusion of this work is expected to remain
unaltered due to the above approximations.
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APPENDI X A : TYPI CAL EXAMPLE O F
A N G U L A R M O M E N T U M VA R I AT I O N

In an accretion disc around a black hole, the presence of viscosity
is ubiquitous. However, the viscous time-scale generally exceeds
the infall time-scale of the accreting matter at the inner part of the
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Figure A1. Variation of angular momentum (λ) of the accretion flow with
radial coordinate (r) as shown by solid curve. Results depicted using dashed
curve represent the Keplerian angular momentum distribution (λKep). Here,
we use a unit system as 2G = MBH = c = 1. See text for details given in
Appendix A.

disc and therefore, matter does not get enough time to transport
angular momentum outwards due to the differential motion leaving
the flow to be inviscid in nature (Fukue 1987; Chakrabarti 1989).
This particularly happens for accretion flow possessing multiple
critical points. In Fig. A1, a typical example is depicted where
we compare the angular momentum distribution (λ) for a viscous
accretion solution (Chakrabarti & Das 2004) with the Keplerian
angular momentum (λKep). In the figure, we inject accreting matter
from the outer edge of the disc (redge) with flow variables as redge =
11890.8, angular momentum λedge = λKep, velocity vedge = 0.00064,
sound speed aedge = 0.00688, and viscosity parameter α = 0.1,
respectively. Fig. A1 clearly indicates that the angular momentum
variation remains quite insensitive for wide range of inner radial
coordinate. The above findings support the assumption of inviscid
nature of accretion flow around the black hole.

APPENDIX B: CALCULATION O F dv
dr

∣∣
c

The gradient of radial velocity at the critical point given by

dv

dr

∣∣∣∣
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2D1
, (B1)
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Here, all the quantities have their usual meaning.
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