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We study the relativistic accretion flow in a generic stationary axisymmetric space-time and obtain an
effective potential (Φeff ) that accurately mimics the general relativistic features of Kerr black hole having
spin 0 ≤ ak < 1. Considering the accretion disc to be confined around the equatorial plane of a rotating
black hole and using the relativistic equation of state, we examine the properties of the relativistic
accretion flow and compare them with the same obtained form semirelativistic as well as nonrelativistic
accretion flows. Towards this, we first investigate the transonic properties of the accretion flow around the
rotating black hole where good agreement is observed for relativistic and semirelativistic flows. Further,
we study the nonlinearities such as shock waves in accretion flow. Here also we find that the shock
properties are in agreement for both relativistic and semirelativistic flows irrespective of the black hole
spin (ak), although it deviates significantly for nonrelativistic flow. In fact, when the particular shocked
solutions are compared for flows with identical outer boundary conditions, the positions of shock
transition in relativistic and semirelativistic flows agree well with the deviation of 6%–12% for
0 ≤ ak ≤ 0.99, but vast disagreement is observed for nonrelativistic flow. In addition, we compare the
parameter space [in energy (E) and angular momentum (λ) plane] for shock to establish the fact that
relativistic as well as semirelativistic accretion flow dynamics do show close agreement irrespective of ak
values, whereas nonrelativistic flow fails to do so. With these findings, we point out that semirelativistic
flow including Φeff satisfactorily mimics the relativistic accretion flows around the Kerr black hole.
Finally, we discuss the possible implications of this work in the context of dissipative advective accretion
flow around Kerr black holes.
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I. INTRODUCTION

The accretion of matter on to a black hole is considered
to be an essential physical phenomenon as it is regarded to
be the principal source of power in microquasars, active
galactic nuclei, and quasars [1]. The overall description
through which one studies the accretion process is the
hydrodynamic flow of matter in the background of black
hole space-time. Indeed, when inflowing matter approaches
towards the horizon, the general relativistic (GR) effects
become important and due to nonlinearity, it is, in general,
difficult to solve the problem. To avoid complexity, there-
fore, most of the studies of accretion flow around black
holes were confined in the Newtonian regime where
gravitational effect is taken into account using effective
potentials. In practice, while studying accretion dynamics,
people conventionally adopt some trial effective potentials

known as pseudo-Newtonian potentials that approximately
mimic the general relativistic effects around the black hole.
This evidently yields erroneous results particularly when
one studies the physical processes in the vicinity of the
black hole. Therefore, the search for an effective potential
that accurately describes the space-time geometry around
the black hole is very much appealing although it is an age
old endeavor in the context of the black hole accretion
process and in this work, we attempt to do so.
In the case of accretion around Schwarzschild black

holes, the pseudo-Newtonian potential was first proposed
by Paczyńsky and Wiita [2] (hereafter PW80), which
provides very satisfactory results. Numerous groups of
researchers extensively investigated the physical properties
of the astrophysical flows around nonrotating black holes
using PW80 potential [[3–17] and references therein].
However, in reality, the presumption of nonrotating

black holes is possibly too simplistic in the sense that
all the cosmological objects are expected to be rotating.
Hence, the use of Kerr geometry as an appropriate
background seems to be inevitable, which, in general,
plays a key role in studying the accretion phenomenon
around rotating black holes. However, solving the GR
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hydrodynamic equations around a Kerr black hole is
complicated and challenging. To overcome this, various
pseudopotentials for Kerr black hole were proposed
[18–23]. All these potentials were prescribed based on
certain physical constraints and the problem under consid-
eration. Naturally, all of them have their own limitations and
therefore, the regime of validity of these potentials is very
much restricted. For example, the potential proposed by [20]
describes the space-time geometry satisfactorily for the black
hole spin parameter ak < 0.8 and thus, this potential cannot
be used to study the systems which are believed to harbor
rapidly rotating black holes like Sgr A*, CygX-1, LMCX-1,
M33 X-7, 4U 1543-47, GRO J1655-40, GX 339-4, etc.
[24–29]. Therefore, it is of prime importance in the
astrophysical context to ascertain the form of the effective
potential corresponding to a Kerr black hole, which will be
free from any a priori restrictions mentioned above.
With the increasing sophistication of observational

techniques and precession measurements, it would always
be prudent to understand any physical phenomena in a
model independent way. For example, in the weak gravity
regime, Einstein’s theory has been proven to be very
successful through a large number of observations.
Although the high precession measurement in the strong
gravity regime is yet to be substantiated, it has the
potential to differentiate new physics beyond Einstein,
if any. Keeping this in mind, our goal in this paper will be
multifold. First, to make our analysis model independent,
we will be considering a generic axisymmetric space-time,
and then formulating the full general relativistic hydro-
dynamics. While studying different component equations
of the hydrodynamics, it turns out that in the static limit,
the radial flow equation can be cast into a Newtonian-like
flow equation. Therefore, the most powerful result we
obtain through the present analysis is an analytic expres-
sion for the effective potential for any generic axisym-
metric black hole space-time. Next, we consider the Kerr
metric as a representation of the rotating black hole and
study the accretion dynamics in detail. In continuation, we
infer the limitations of the conventional Newtonian
approach while examining the accretion flow around
the black holes in the nonrelativistic limit using effective
potentials. To this end, we mention some of the recent
important theoretical developments in the nonrelativistic
hydrodynamics as a special limit of relativistic hydro-
dynamics for certain conformal field theory. In the slow
fluid velocity limit (i.e., v=c ≪ 1), when the fluid pressure
is redefined in a way that the thermal motion of the fluid
constituents do not violate the above speed limit, the
relativistic hydrodynamic equations for a conformal field
theory boil down to the incompressible nonrelativistic
Navier-Stokes equation [30]. Soon after, Bhattacharyya,
Minwalla, and Wadia [31] reported similar findings by
appropriately scaling all fluid and thermodynamic varia-
bles, respectively.

In this work, we are also interested to the similar
nonrelativistic limit. In fact, our goal is to move even further
where we quantitatively compare the results obtained
from different limits, such as relativistic (R) and nonrelativ-
istic [NR; v=c ≪ 1 and kBT=ðmec2Þ ≪ 1] specifically in
the context of accretion flow dynamic. The most important
findings we observe here is that the conventional Newtonian
approach to study the accretion flow around the black hole
endures inherent limitation that originates due to the adopted
deceiving dynamics of the flow in the vicinity of the black
hole horizon. Moreover, we confer the essence of these
differences exclusively focusing the relativistic effect on the
flow dynamics.
For simplicity, we consider an adiabatic advective accre-

tion flow to obtain the effective potential for a rotating black
hole. The conservation equations that govern the dynamics of
the accretion flow around the rotating black hole are the mass
conservation equation, the radial momentum conservation
equation, and the entropy generation equation, respectively.
By suitably defining the radial three-velocity (v) in a
corotating frame, the radial momentum equation is expressed
as the addition of three terms, namely, kinetic energy, thermal
energy, and gravitation energy, respectively, at per with the
Newtonian flow equation although all the conserved equa-
tions under consideration are fully relativistic in nature. With
this, we successfully identify the analytic expression of the
effective potential in a generic axisymmetric space-time.
In view of the importance of the effective potential, we

intend to investigate the behavior of accretion flow around
a rotating black hole. We find the global transonic solutions
that connect the black hole horizon and the outer edge of
the disc (equivalently large distance away from the black
hole). In reality, during accretion, rotating matter is piled up
in the vicinity of the black hole due to the centrifugal
repulsion against gravity that eventually triggers the dis-
continuous transition of the flow variables in the form of a
shock wave [5,9,10,16,17,32–37]. We calculate the global
transonic accretion solutions including shock waves and
compare them for all the limiting conditions considering
nonrotating, weakly rotating, and rapidly rotating black
holes. Further, we separate the domain of the parameter
space in the angular momentum and energy (λ − E) plane
according to the nature of flow solutions. We also identify
the effective region of the parameter space for a wide range
of black hole spin values that admits shock induced global
accretion solutions. In this work, we ignore the dissipative
processes, namely, viscosity, radiative cooling, and mag-
netic fields to avoid complexity. We plan to consider these
physical processes in the future study.
In Sec. II, we discuss the mathematical background. In

Sec. III, we describe the governing equations and carry out
the critical point analysis. In Sec. IV, we discuss the global
accretion solutions with and without shocks and also
classify the shock parameter space. Finally, in Sec. V,
we present concluding remarks.
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II. RELATIVISTIC HYDRODYNAMICS IN
GENERAL STATIONARY AXISYMMETRIC

SPACE-TIME

As emphasized earlier, we analyze the relativistic hydro-
dynamic equations in a generic stationary axisymmetric
space-time. The defining property of a static axisymmetric
space-time is the existence of two commuting killing
vectors which we will take along ðt;ϕÞ direction. The
rest of the spacelike coordinates identified as ðr; θÞ will be
assumed to be mutually orthogonal as well as orthogonal
to the two killing vector fields at each point in the space-
time. Therefore, with the above choice of the coordinate
system a generic stationary axisymmetric space-time can be
expressed as

ds2 ¼ gμνdxμdxν

¼ gttdt2 þ 2gtϕdtdϕþ gϕϕdϕ2 þ grrdr2 þ gθθdθ2;

ð1Þ
where μ and ν are indices that run from 0 to 3. Assuming a
black hole to be located at the center, the horizon is
identified as grr ¼ 1=grr ¼ 0. Because of the two killing
vectors ðlt ¼ ∂t; lϕ ¼ ∂ϕÞ, all the metric coefficients will,
in general, be a function of ðr; θÞ.

A. Hydrodynamics

Hydrodynamics is a model independent approach
towards the understanding of the low energy dynamics
of any generic field theory. The construction is based on the
underlying symmetry and the associated conservation laws
of the theory. If we consider a Lorentz invariant theory with
a global Uð1Þ symmetry, properties of hydrodynamic flow
are studied using the following two conservation equations
for the energy-momentum and particle number:

Tμν
;ν ¼ 0 and jμ;μ ¼ 0: ð2Þ

Here, the energy-momentum tensor Tμν and the particle
number current jμ are expressed in terms of systematic
derivative expansion of the fluid degrees of freedom
consisting of local energy density eðrÞ, pressure pðrÞ,
and the four velocity uμ supplemented by the condition
uμuμ ¼ −1. In general, one writes

Tμν ¼ Tμν
0 þ πμν and jμ ¼ jμ0 þ πμ: ð3Þ

These equations (3) are called constitutive relations. The
first term in the right-hand side of both equations is zeroth
order, and the second term contains all derivative terms. For
example, the dissipative term which contains the first order
derivative in fluid velocity will appear in the second term.
For the present analysis, we confine ourself only to the
zeroth order term. Therefore, zeroth order expansion of the
energy-momentum tensor and the four current are written as

Tμν
0 ¼ ðeþ pÞuμuν þ pgμν and jμ0 ¼ ρuμ; ð4Þ

where e,p, and ρ are the local energy density, local isotropic
pressure, and mass density of the flow. Therefore, the final
zeroth order hydrodynamic equations are given by

Tμν
0 ;ν ¼ 0 and ðρuνÞ;ν ¼ 0: ð5Þ

With respect to the fluid flow, we construct the projection
operator hiμ ¼ δiμ þ uiuμ, where “i” takes (1,2,3) values. It
also satisfies hiμuμ ¼ 0. This condition helps us to project
the Navier-Stokes equation into three vector equations as

hiμT
μν
0 ;ν ¼ ðeþ pÞuνui;ν þ ðgiν þ uiuνÞp;ν ¼ 0; ð6Þ

and a scalar equation which is essentially identified as first
law of thermodynamics,

uμT
μν
;ν ¼ uμ

��
eþ p
ρ

�
ρ;μ − e;μ

�
¼ 0: ð7Þ

In this work, our goal is to cast the relativistic radial
momentum flow equation at par with the Newtonian-like
equation. Therefore, we define the following variables in
their appropriate form: the angular velocity variable
v2ϕ ¼ ðuϕuϕÞ=ð−ututÞ, and the associated bulk azimuthal
Lorentz factor as γ2ϕ ¼ 1=ð1 − v2ϕÞ. Subsequently, the polar
three-velocity is defined as v2θ ¼ γ2ϕðuθuθÞ=ð−ututÞ and the
associated bulk polar Lorentz factor as γ2θ ¼ 1=ð1 − v2θÞ.
Similarly, the radial three-velocity in the corotating frame is
defined as v2 ¼ γ2ϕγ

2
θv

2
r , where v2r ¼ ðururÞ=ð−ututÞ and

the associated bulk radial Lorentz factor as γ2v ¼ 1=
ð1 − v2Þ. Employing these definitions of the velocities in
Eq. (6), we obtain the equations corresponding to i ¼ r and
i ¼ θ which are given by

γ2vv
∂v
∂r þ γ2vγθvθ

ffiffiffiffiffiffi
grr
gθθ

r ∂v
∂θ þ

γθvvθ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
grrgθθ

p ∂grr
∂θ −

v2θγ
2
θ

2gθθ

∂gθθ
∂r

þ 1

eþ p
∂p
∂r þ γθvvθ

eþ p

ffiffiffiffiffiffi
grr
gθθ

r ∂p
∂θ þ γ2θ

∂Φeff

∂r ¼ 0; ð8Þ

and

γ3θv
∂vθ
∂r þ γ4θvθ

ffiffiffiffiffiffi
grr
gθθ

r ∂vθ
∂θ þ γ2vγθv2vθ

∂v
∂r

þ γ2vγ
2
θvv

2
θ

ffiffiffiffiffiffi
grr
gθθ

r ∂v
∂θ −

v
2

ffiffiffiffiffiffi
grr
gθθ

r �
v
grr

∂grr
∂θ −

γθvθffiffiffiffiffiffiffiffiffiffiffiffi
grrgθθ

p ∂gθθ
∂r

�

þ γ2θ − v2

eþ p

ffiffiffiffiffiffi
grr
gθθ

r ∂p
∂θ þ γθvvθ

eþ p
∂p
∂r þ γ2θ

ffiffiffiffiffiffi
grr
gθθ

r ∂Φeff

∂θ ¼ 0:

ð9Þ
As already mentioned, the defining property of a general
static, axisymmetric space-time is the existence of two
commuting Killing vector fields, lμt ≡ ∂t and lμϕ ≡ ∂ϕ,
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associated with time translation and azimuthal rotation,
respectively. For each globally defined killing vector l there
exists an associated conserved quantity, sayQl. By using the
equations for the mass and energy-momentum conserva-
tions, in general, for a nondissipative fluid, one can express
the aforementioned conserved quantity Ql ¼ lμhuμ, which
satisfies the conservation equation £uQl ¼ 0, where £u is the
Lie derivative along the flow vector u. Hence, the fluid flow
around a static, axisymmetric background leads to the
following two conserved quantities:

huϕ ¼ LðconstantÞ and hut ¼ EðconstantÞ; ð10Þ
whereh½¼ ðeþ pÞ=ρ� is the enthalpy of the flow andE is the
relativistic Bernoulli constant. Here, u2t ¼ γ2=ðgtϕλ − gttÞ,
where λ ¼ −uϕ=ut is the conserved specific angular
momentum of the fluid and γ ¼ γϕγvγθ is the total bulk
Lorentz factor. It is to be noted that Eqs. (8) and (9) exactly
reduce to the Euler equations of the Newtonian hydro-
dynamics (follow [38]). Thus, these two equations describe
the relativistic momentum of the flow along radial (r) and
polar (θ) directions where Φeff denotes the effective pseu-
dopotential and is given by

Φeff ¼ 1þ 0.5 lnðΦÞ; ð11aÞ
where

Φ ¼ g2tϕ − gttgϕϕ
gϕϕ þ 2λgtϕ þ λ2gtt

: ð11bÞ

In the next section, we consider a specific black hole
background of astrophysical interest and discuss its conse-
quence on the accretion flow dynamics in detail.

III. GOVERNING EQUATIONS

A. Equations describing relativistic accretion flow
around the Kerr black hole

In the present paper, we consider a specific stationary
axisymmetric space-time for the Kerr black hole. In terms
of Boyer-Lindquist coordinates, the components of the
Kerr metric are expressed as follows [39]:

gtt ¼ −
�
1 −

rrg
Σ

�
; gtϕ ¼ −

akrrgsin2θ

Σ

grr ¼
Σ
Δ
; gθθ ¼ Σ; gϕϕ ¼ Asin2θ

Σ
; ð12Þ

where A ¼ ðr2 þ a2kÞ2 − Δa2ksin2θ, Σ ¼ r2 þ a2kcos
2θ and

Δ ¼ r2 − rgrþ a2k, respectively. This metric successfully
describes the space-time geometry around a rotating black
hole of mass MBH and angular momentum J. We write the
specific spin of the black hole as ak ¼ J=MBH. For con-
venience, we use a unit system as G ¼ MBH ¼ c ¼ 1,

where G and c are the gravitational constant and speed of
light. Therefore, measurements of speed, mass, length,
time, angular momentum, and energy will be expressed in
units of c, MBH, GMBH=c2, GMBH=c3, GMBH=c and
MBHc2, respectively. It is to be noted that in Eq. (12), rg
refers the Schwarzchild radius and is given by rg ¼
2GMBH=c2. In this unit system, the effective potential
around a Kerr black hole is computed as

Φeff ¼ 1þ ln

�
Að2r − ΣÞsin2θ − 4a2kr

2sin4θ
ΣλðλΣþ 4akrsin2θ − 2λrÞ − AΣsin2θ

�
:

ð13Þ

In this work, our goal is to solve the hydrodynamic
equations around the Kerr black hole. In order to proceed
further, we consider a geometrically thin accretion disc
which is confined around the black hole equatorial plane.
Therefore, for simplicity, we choose θ ¼ π=2. Accordingly,
the flow motion along the transverse direction is considered
to be negligible, i.e., vθ ¼ 0. With this, we have γθ ¼ 1 and

ut ¼ γv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rΔ
a2kðrþ2Þ−4akλþr3−λ2ðr−2Þ

q
. Moreover, we also neglect

the θ variation of all the flow variables. With these
approximations, the radial component of Eq. (8) turns
out to be the well-known Navier-Stokes equation, which is
given by

vγ2v
dv
dr

þ 1

hρ
dp
dr

þ dΦeff
e

dr
¼ 0; ð14Þ

where Φeff
e represents the effective pseudopotential calcu-

lated at the equatorial plane (θ ¼ π=2) and is given by

Φeff
e ¼1þ1

2
ln

�
rΔ

a2kðrþ2Þ−4akλþr3−λ2ðr−2Þ
�
: ð15Þ

Similarly, the entropy generation equation is calculated
from Eq. (7) as

�
eþ p
ρ

�
dρ
dr

−
de
dr

¼ 0: ð16Þ

The second part of Eq. (5), which is basically the continuity
equation, is rewritten in an integrated form as

_M ¼ −4πvγvρH
ffiffiffiffi
Δ

p
; ð17Þ

where _M is the accretion rate and H is the local half-
thickness of the disc and its functional form under thin disc
approximation is computed as [40,41]
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H2 ¼ pr3

ρF
; F ¼ γ2ϕ

ðr2 þ a2kÞ2 þ 2Δa2k
ðr2 þ a2kÞ2 − 2Δa2k

: ð18Þ

In order to solve Eqs. (14), (16), and (17), one needs to
consider a relation among e, ρ, and p, commonly known as
equation of state (EOS). In the subsequent analysis, we
adopt an EOS proposed by [42] that agrees quite satisfac-
torily with the exact EOS of the fluid [43–45]. For a fluid
consisting of electrons, positrons, and ions, the EOS is
given by

e ¼ nemef ¼ ρ

τ
f; ð19Þ

where ρ ¼ nemeτ and τ ¼ ½2 − ξð1 − 1=χÞ�. Here, ne (np)
and me (mp) represent the number density and mass of
the electron (ion). Moreover, we define ξ ¼ np=ne and
χ ¼ me=mp, respectively. Throughout our study, we use
ξ ¼ 1, until otherwise stated. Finally, the functional form of
f is given by

f ¼ ð2 − ξÞ
�
1þ Θ

�
9Θþ 3

3Θþ 2

��
þ ξ

�
1

χ
þ Θ

�
9Θþ 3=χ
3Θþ 2=χ

��
;

ð20Þ

where we define the dimensionless temperature of the fluid
as Θ ¼ kBT=mec2. In addition, the polytropic index (N),
specific heat ratio (Γ), and sound speed ðCsÞ are defined as

N¼1

2

df
dΘ

; Γ¼1þ 1

N
and C2

s ¼
Γp
eþp

¼ 2ΓΘ
fþ2Θ

: ð21Þ

After some algebraic steps involving Eqs. (14), (16),
(17), and (19), we calculate the wind equation as

dv
dr

¼ N R

DR
; ð22Þ

where denominator DR is given by

DR ¼ γ2v

�
v −

2C2
s

vðΓþ 1Þ
�
; ð23Þ

and numerator N R is given by

N R¼
2C2

s

Γþ1

�ðr−a2kÞ
rΔ

þ 5

2r
−

1

2F
dF
dr

�
−
dΦeff

e

dr
: ð24Þ

Similarly, the gradient of the temperature is obtained as

dΘ
dr

¼ −
2Θ

2N þ 1

�ðr − a2kÞ
rΔ

þ γ2v
v
dv
dr

þ 5

2r
−

1

2F
dF
dr

�
: ð25Þ

In Eqs. (24) and (25), the logarithmic derivatives of F is
calculated as

1

F
dF
dr

¼ γ2ϕλΩ0 þ4a2kða2kþr2Þ ða
2
kþr2ÞΔ0−4rΔ

ða2kþr2Þ4−4a4kΔ2
; ð26Þ

where Δ0 ¼ 2ðr − 1Þ and

Ω0 ¼ −2
a3k − 2a2kλþ akðλ2 þ 3r2Þ þ λðr − 3Þr2

ða2kðrþ 2Þ − 2akλþ r3Þ2 : ð27Þ

It is to be noted that the ratio of the radial flow velocity (v)
to the speed of light (c) always remains v=c≲ 0.1 even in
the region r > 4rg ([46], and references therein). Therefore,
for all practical purpose, we can safely set γv → 1 and
hence, the radial momentum equation (14) reduces into the
simplified form as

v
dv
dr

þ 1

hρ
dp
dr

þ dΦeff
e

dr
¼ 0: ð28Þ

However, it would be worthy to compare results obtained
separately using Eqs. (14) and (28) which will be discussed
in the subsequent sections. For convenience, we refer to the
analysis that incorporates Eq. (28) as a semirelativistic
(SR) limit.

B. Equations in the nonrelativistic limit

A nonrelativistic accretion flow is characterized by
v ≪ 1 all throughout. Therefore, in this limit, the Lorentz
factor becomes γv ¼ 1. Moreover, one also needs to main-
tain the temperature and pressure of the fluid, so that ther-
mal speed should not exceed the nonrelativistic limit (i.e.,
Θ ≪ 1). With this consideration, the enthalpy of the flow
becomeshðrÞ∼1 andhence, ðhρÞ−1ðdp=drÞ ∼ ρ−1ðdp=drÞ.
With this, the radial momentum equation is reduced as

v
dv
dr

þ 1

ρ

dp
dr

þ dΦeff
e

dr
¼ 0: ð29Þ

Itmay be noted that Eq. (29) is thewell-knownEuler equation
in Newtonian hydrodynamics. Upon integrating Eq. (29), we
obtain the specific energy (including the rest mass energy) of
the flow as

ENR ¼ v2

2
þ hþΦeff

e − 1; ð30Þ

where we use the relation ρ−1ðdp=drÞ ¼ dh=dr. Now, it is
clear that in the nonrelativistic limit, the radial momentum
equation transforms into the Newtonian hydrodynamics
equations with an effective potential Φeff

e . In the limit
r ≫ 2, Eq. (15) reduces to the Newtonian effective potential
experienced by a particle around a Newtonian object and is
given by
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Φeff
e jr≫2 ¼ ΦNewton ¼ 1 −

1

r
þ λ2

2r2
:

Needless to mention that the entropy generation equation
[Eq. (16)] and the mass conservation equation [Eq. (17)]
remain unaltered in the nonrelativistic domain. Using
Eqs. (16), (17), and (29),we again calculate thewind equation
which is given by

dv
dr

¼ N NR

DNR
; ð31Þ

where denominator DNR is given by

DNR ¼
�
v −

2C2
sh

vðΓþ 1Þ
�
; ð32Þ

and numerator N NR is given by

N NR ¼ 2C2
sh

ðΓþ 1Þ
�ðr − a2kÞ

rΔ
þ 5

2r
−

1

2F
dF
dr

�
−
dΦeff

e

dr
: ð33Þ

Here, subscript “NR” denotes the quantities calculated
considering the nonrelativistic approximation.
The gradient of the temperature is computed as

dΘ
dr

¼ −
2Θ

2N þ 1

�ðr − a2kÞ
rΔ

þ 1

v
dv
dr

þ 5

2r
−

1

2F
dF
dr

�
: ð34Þ

In the subsequent sections, we carry out the comparative
analysis considering relativistic, semirelativistic, and non-
relativistic equations, and show how the flow properties
obtained from nonrelativistic hydrodynamics significantly
deviate from those computed from relativistic dynamics
specifically near the black hole horizon.

C. Critical point analysis

During the course of accretion around the black hole,
flow starts to move inwards subsonically from the outer
edge of the disc and eventually enters into the black hole
with supersonic speed. Since the flow accretes smoothly
along the streamline, the radial velocity gradient remains
real and finite always. However, Eqs. (23) and (32) indicate
that the denominator (DR and DNR) of the wind equations
may vanish at some radial coordinate. To maintain the
smoothness of the flow, the numerator (N R and N NR) of
the wind equations must also go to zero there. Such a
special point where the gradient of the radial velocity takes
the form as ðdv=drÞc → 0=0 is called a critical point (rc).
Setting the numerator and denominator simultaneously
equal to zero, we obtain the critical point conditions which
are given below for both relativistic and nonrelativistic
cases.

1. Critical point conditions for relativistic flow

For the relativistic flow, setting DR ¼ 0 in Eq. (23), we
obtain the radial velocity (vc) at the critical point (rc) as

v2c ¼
2C2

sc

ðΓc þ 1Þ : ð35Þ

Further, setting N R ¼ 0 in Eq. (24), we get the sound
speed (Csc) at rc as

C2
sc ¼

Γc þ 1

2

�
dΦeff

e

dr

�
c

�ðrc − a2kÞ
rcΔc

þ 5

2rc
−

1

2F c

dF c

dr

�−1
:

ð36Þ
2. Critical point conditions for the nonrelativistic flow

For the nonrelativistic flow, setting DNR ¼ 0 in Eq. (32),
we calculate the radial velocity (vc) at rc as

v2c ¼
2C2

schc
ðΓc þ 1Þ : ð37Þ

As before, we set N NR ¼ 0 in Eq. (33) to get the sound
speed at the critical point as

C2
sc ¼

Γc þ 1

2hc

�
dΦeff

e

dr

�
c

�ðrc − a2kÞ
rcΔc

þ 5

2rc
−

1

2F c

dF c

dr

�−1
:

ð38Þ

In the above, subscript “c” refers the flow variables at rc.
Since the gradient of the radial velocity takes the “0/0”
form at rc, we apply the l’Hospital rule to calculate dv=drjc
at rc, which is given by

dv
dr

����
c
¼ −B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2A
: ð39Þ

In Eq. (39), A, B, and C are functions of flow variables and
their explicit expressions are given in Appendix A. As it is
already pointed out that accretion solutions around the
black hole must be transonic in nature, flow must contain at
least one critical point [3,47]. Depending on the input
parameters, accretion flow may possess multiple critical
points as well. When both values of ðdv=drÞc are real with
opposite sign, the critical point is called as a saddle type
and when ðdv=drÞc becomes imaginary, the point is called
an “O”-type critical point. It may be noted that when
ðdv=drÞc is negative, it corresponds to the accretion
solution and the positive ðdv=drÞc yields the wind solution.
In this work, we are interested to accretion solutions only
and therefore, we keep the wind solutions aside for future
study.
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IV. RESULTS

A. Computation of critical points

The procedure to calculate the critical point location in
all kinds of flows under consideration is identical and
hence, we present the methodology for relativistic flow
only. For a given set of input parameters, namely, E, λ, and
ak, we calculate the critical point location by solving
Eqs. (10), (20), (35), and (36) simultaneously. Since any
realistic accretion flow passes through the saddle type
critical point only [9,48], in this study, we focus on
those accretion solutions that contains saddle type critical
points. Accordingly, hereafter we refer to the saddle type
critical point as a critical point in the subsequent analysis.
When flow possesses multiple critical points, one usually
forms very close to the black hole horizon which is called
an inner critical point (rin) and the other forms far away
form the horizon called an outer critical point (rout). In
this scenario, accretion flow successfully connects the
black hole horizon and the outer edge of the disc, as it
passes through either the inner or outer critical point.
Interestingly, another viable possibility also exists here.
Rotating inflowing matter, when it first crosses the outer
critical point (rout) to become supersonic, it experiences
centrifugal repulsion that eventually triggers the centrifu-
gally supported shock transition in the flow variables
([10], and references therein) where supersonic preshock
flow jumps in to the subsonic branch of the postshock
flow. In the subsonic branch, flow momentarily slows
down, however, gradually gains its radial velocity due to
the influence of strong gravity, and finally enters into the
black hole after passing through the inner critical point
(rin). Solutions of these kinds are physically accepted and
called the shock induced global accretion solutions around
the black hole. The position of the shock transition is
known as the shock location ðrsÞ which provides the
measure of the size of the postshock corona. In the
subsequent sections, we present the elaborate discussion
on shock solutions.
In order to understand the transonic nature of the

accretion flow, in Fig. 1 we depict the variation of energy
ðEcÞ as a function of the critical point locations (rc). In
the figure, the critical points are plotted in logarithmic
scale while the energy is plotted in linear scale. Solid,
dotted, and dashed curves represent the results corre-
sponding to relativistic flow, semirelativistic flow, and
nonrelativistic flow, respectively. Here, we choose λ ¼
1.90 and ak ¼ 0.99. We observe that when critical points
form at a large distance, the flow energy in all the cases
remain the same; however, when critical points form
close to the horizon, the flow energy differs considerably
at least for the nonrelativistic flow. The small difference
in energy between relativistic and semirelativistic flows
justifies the adopted approximation that the value of the
radial Lorentz factor (γv) deviates only slightly from

unity for semirelativistic flow. We draw a horizontal dot-
dashed line corresponding to E ¼ 1.005 that intersects
with all the curves thrice. This indicates that flow with
ðE; λÞ ¼ ð1.005; 1.90Þ possess multiple critical points in
all three cases. In fact, it also indicate that for a flow with
fixed λ, there is a range Es ≤ E ≤ Eh for which flow
possesses three critical points. Needless to mention that
both Es and Eh, marked in the figure, depend on the λ and
ak, respectively. For E > Eh, flow possesses only a single
critical point and for Emin < E ≤ Es, flow possesses two
critical points. When E < Emin, the critical point ceases
to exist.

B. Procedure to compute global accretion solutions

To obtain a transonic accretion solution, we first calcu-
late the critical point location (rc) for a given set of input
parameters (E; λ; ak). Afterwards, we employ the critical
point conditions [either (35)–(36) or (37)–(38)] to calculate
the radial velocity and temperature of the flow at the critical
point. These values are used as the initial conditions to
integrate the wind equation. In the case of relativistic and
semirelativistic flows, we integrate Eq. (22), first staring
from the critical point up to very close to the horizon and
again from the critical point up to a large distance (xedge,
equivalently the outer edge of the disc). Eventually, by
joining these two parts of the solution, we obtain a global
transonic accretion solution around a rotating black
hole. In actuality, one would get the identical accretion
solution provided the integration of the wind equation
is started with the flow variables at xedge. For nonrelativistic
flows, Eq. (31) is integrated to obtain the transonic
accretion solutions.

FIG. 1. Variation of energy (Ec) measured at the critical points
(rc) as function of rc. Solid, dotted, and dashed curves represent
the results obtained for R, SR, and NR flows, respectively. Here,
we choose λ ¼ 1.90 and ak ¼ 0.99. See text for details.
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C. Parameter space for multiple critical points

As already pointed out, depending on the input param-
eters, an accretion flow may possess multiple critical
points. In Fig. 2, we separate the effective domain of the
parameter space spanned by E and λ for global accretion
solutions containing multiple critical points. We obtain the
result for semirelativistic flow using ak ¼ 0.99. Here, we
identify four distinctly different regions of the parameter
space named O, A, W, and I, based on the type of the
solution topologies. In the insets, we display the represen-
tative plots of the global solutions which are obtained for
the set of input parameters (E, λ) chosen from these
identified regions of the parameter space as marked in
the figure. In all the plots, filled circles represent the
location of the critical points and arrows indicate the
direction of the flow motion corresponding to the smooth
global accretion solutions. The result corresponding to the
O-type solution is obtained for (E; λÞ ¼ ð1.001; 1.86Þ
where the outer critical point is located at rout ¼
211.5867. We obtain the A-type solution using (E; λÞ ¼
ð1.001; 2.00Þ and a solution of this type contains both inner
and outer critical points as rin ¼ 1.4203 and rout ¼
210.0059, respectively. Similarly, for the W-type solution,
we consider ðE; λÞ ¼ ð1.004; 2.05Þ and obtain rin ¼ 1.3372
and rout ¼ 60.9931. Finally, we calculate the I-type sol-
ution for (E; λÞ ¼ ð1.013; 2.05Þ that only passes through the
inner critical point at rin ¼ 1.3341. Note that the regions
marked A andW provide the global accretion solutions that
contain multiple critical points.

Next, we compare the domain of the parameter space for
multiple critical points considering the nature of the flow to
be relativistic, semirelativistic, and nonrelativistic, respec-
tively. The comparative study is carried out around non-
rotating (ak ¼ 0), moderately rotating (ak ¼ 0.5), and
rapidly rotating (ak ¼ 0.99) black holes and the obtained
results are depicted in Fig. 3. In each panel of Fig. 3, the
effective domain bounded with solid, dotted, and dashed
curves are obtained for relativistic, semirelativistic, and
nonrelativistic flows and the values of ak are marked. We
observe that parameter spaces for multiple critical points
corresponding to relativistic and semirelativistic cases are
in agreement irrespective to the black hole spin (ak) value.
However, the parameter space obtained for nonrelativistic
flow deviates considerably from the relativistic case and the
deviation increases with the increase of ak. In reality, as ak
is increased, the position of the inner critical points is
shifted towards the horizon where space-time is largely
distorted and thus the resulting discrepancy is observed.
Overall, the above findings clearly indicate that the non-
relativistic approximation bears a noticeable limitation as it
fails to describe the accretion flow dynamics around
rotating black holes satisfactorily.

D. Global accretion solution containing shock

It is already anticipated (see Sec. IV.A) that an accretion
flow can pass through the multiple critical points when flow
experiences a discontinuous shock transition in between

FIG. 2. Division of parameter space in λ − E plane on the basis
of flow solutions for semirelativistic flow. Four regions are
marked as “O,” “A,” “W,” and “I” and the corresponding
representative solutions (variation of Mach number M ¼ v=Cs)
are depicted in the boxes. In each box, the filled circle represents
the location of critical point and the arrow indicates the overall
direction of the accretion flow motion. See text for details.

FIG. 3. Comparison of parameter space in the λ − E plane that
admits the flow to contain multiple critical points. Regions
bounded by solid, dotted, and dashed curves are for R, SR,
and NR flows, respectively. The top-left, top-right, and bottom
panels are for ak ¼ 0.0, 0.5, and 0.99. See text for details.
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them (i.e., rin and rout). In general, the formation of shock
waves is natural in the astrophysical context ([49–51], and
references therein) due to the fact that shock induced
accretion solutions possess higher entropy content than
the shock free solutions [32]. To compute the shock
location, we utilize the relativistic shock conditions which
are given by [52],

½ρur� ¼ 0; ½ðeþ pÞutur� ¼ 0;

and ½ðeþ pÞurur þ pgrr� ¼ 0; ð40Þ

where the difference of quantities across the shock is
denoted by the square brackets.
In Fig. 4, we illustrate representative accretion solutions

containing multiple critical points where the Mach number
(M ¼ v=Cs) of the flow is plotted as a function of radial
distance. Here, the flow parameters are chosen as E ¼
1.0001 and λ ¼ 1.989. Moreover, we consider ak ¼ 0.99.
The solution consists of two parts passing through two
critical points. The one passing through the outer critical
point truly establishes the connection between the black
hole horizon and the outer edge of the disc, whereas the
other one passing through the inner critical point is closed
and connects the horizon only. In reality, during the course
of accretion process, flow first crosses the outer critical
point at rout ¼ 1022.5621 and continues to proceed towards

the black hole supersonically. Meanwhile, shock conditions
are satisfied and flow experiences discontinuous transition
at rs ¼ 16.5533. In the figure, the solid vertical arrow
indicates the location of a shock transition where flow
jumps from the supersonic to subsonic branch. Because of
gravity, the subsonic flow gains it radial velocity gradually
and eventually enters into the black hole after passing
through the inner critical point at rin ¼ 1.4446. It may be
noted that the accretion flow generally prefers to pass
through the shock as the entropy content in the subsonic
branch is higher compared to the supersonic branch [32].
The arrows point to the overall motion of the global
accretion solution that contains a shock wave. In addition,
dotted curves through rin and rout represent the solution
corresponding to the wind branch.
In Fig. 5, we compare the shock induced global accretion

solutions corresponding to relativistic, semirelativistic, and
nonrelativistic flows, respectively. The results depicted in
top-left, top-right, and bottom panels are for nonrotating
(ak ¼ 0), moderately rotating (ak ¼ 0.5), and rapidly
rotating (ak ¼ 0.99) black holes. Here, we consider the
energy of the flow as E ¼ 1.0001 for all cases and choose
the angular momentum of the flow as λ ¼ 3.15, 2.75, and
1.989 for ak ¼ 0, 0.5, and 0.99, respectively. In each panel,
solid, dotted, and dashed curves represent solutions
obtained for relativistic, semirelativistic, and nonrelativistic
flow and sharp vertical arrows indicate the shock positions.

FIG. 4. The Mach number (M ¼ v=Cs) of the semirelativistic
flow is plotted with radial coordinate (r) for E ¼ 1.0001,
λ ¼ 1.989, and ak ¼ 0.99. The thick solid curve represents the
accretion solution while the dotted curves refer to the wind
solution. The vertical arrow denotes location of shock transition
(rs) and arrows indicate the overall direction of the accretion flow
motion. Filled circles refer the critical points where the inner
critical point (rin) and outer critical point (rout) are marked. See
text for details.

FIG. 5. Comparison of shock induced global accretion solu-
tions obtained from relativistic R (solid), SR (dotted), and NR
(dashed) flows. Here, we choose E ¼ 1.0001 and λ ¼ 3.15 and
ak ¼ 0.0 for top-left panel, E ¼ 1.0001 and λ ¼ 2.75 and ak ¼
0.5 for top-right panel and E ¼ 1.0001 and λ ¼ 1.989 and ak ¼
0.99 for bottom panel. Critical points are shown using filled
circles and arrows indicate the direction of flow motion. See text
for details.
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Moreover, filled circles denote the critical point locations
and arrows indicate the overall direction of the accretion
flow starting from the outer edge of the disc up to the
horizon. Here also we find that the shock locations
computed for relativistic and semirelativistic flows are in
close agreement and this continues even with the increase
of ak. On the contrary, the obtained shock location
for nonrelativistic flow differs noticeably from the relativ-
istic solutions and as before, the amount of deviation is
increased with ak. Quantitative comparison of the transonic
and shock properties are given in Table 1.

E. Parameter space for shock

The presence of a shock wave in accretion flow seems to
play an important role in determining the black hole
spectrum as indicated in [6,53]. Because of the shock
transition, postshock flow containing hot and dense elec-
trons inverse Comptonizes the soft photons from the cooled
preshock flow and eventually emerges hard radiations.
In addition, electrons are energized while crossing the
shock front due to the shock acceleration mechanism and
produce a nonthermal spectrum. Since shocks are viable
and directly involved in deciding the spectral properties of
the black hole sources, it is therefore worthy to examine
whether the shock solutions discussed in the previous
section are isolated solutions or not. For that, we continue
the study of shock induced global accretion solutions and
make an attempt to accomplish the range of flow param-
eters that admit shocks. The obtained results are displayed
in Fig. 6, where we identify the boundary in the λ − E plane
that encompasses the effective region of the parameter
space for shock around rotating black holes and separate it
from the shock free region. Here, we compute the shock
parameter space considering nonrotating (ak ¼ 0.0), mod-
erately rotating (ak ¼ 0.5), and rapidly rotating (ak ¼ 0.99)
black holes and they are marked in the figure. The region
bounded with solid, dotted, and dashed curves represent the
results obtained for relativistic, semirelativistic, and non-
relativistic flows, respectively. We observe that shock
parameter space shifts towards the lower angular momen-
tum and higher energy domain as ak is increased. This

happens due to the spin-orbit coupling term in Kerr
geometry. We notice that the shock parameter spaces of
relativistic and semirelativistic flows are in excellent agree-
ment, but the parameter space computed for nonrelativistic
flow does show significant deviation from the relativistic
result and the deviation increases with ak. In particular, for
ak ¼ 0.99, the common overlap of the parameter spaces is
seen to be marginal. With this, we argue that nonrelativistic
approximation for studying the accretion flow dynamics
around rotating black hole seems to be incongruous.

V. CONCLUSIONS

In this work, we first formulate the set of hydrodynamic
equations that describe the accretion flow in a general
axisymmetric background and identify an effective poten-
tial Φeff [see Eqs. (11a) and (11b)]. Subsequently, we
consider the disc to be confined on the equatorial plane
(i.e., θ ¼ π=2) and investigate the behavior of relativistic
accretion flow around the Kerr black hole. Further, since
the radial velocity of the accreting matter, in general,
remains within a few percent of the speed of light
even in the vicinity of the horizon (i.e, r > 4rg), we assume
γv → 1 all throughout the flow. With this consideration,
which is named as the semirelativistic limit, we continue to
study the accretion flow around the rotating black hole. It is
to be noted that the equations of mass conservation and
entropy generation are not affected by this semirelativistic
approximation. In addition, we also explore the possibility,
where both radial velocity and thermal energy are small as

TABLE I. Comparison of transonic and shock properties. Here,
we choose E ¼ 1.0001 for all cases.

ak λ rin rout rs % Error in rs

0 3.15 GR 5.5779 998.7680 33.8730 � � �
SR 5.5674 998.5265 35.9969 6.27
NR 5.3942 995.6709 48.2825 42.53

0.5 2.75 GR 3.9374 1008.3744 24.6059 � � �
SR 3.9284 1008.1356 26.6320 8.23
NR 3.7751 1005.3147 39.8949 62.13

0.99 1.989 GR 1.4485 1022.7973 14.6729 � � �
SR 1.4446 1022.5621 16.5533 12.81
NR 1.3496 1019.7915 117.7705 702.63

FIG. 6. Comparison of shock parameter space in the λ − E
plane. Solid, dotted, and dashed curves represent the results
obtained from R, SR, and NR flows. Here, chosen ak values are
marked. See text for details.
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v ≪ 1 and hðrÞ ∼ 1, and this scenario is referred to as the
nonrelativistic limit. Finally, we compare the results for the
aforementioned three different approaches. It is noteworthy
that the effective potential remains unaltered due to the
assumptions adopted in those approaches and it is calcu-
lated as

Φeff
e ¼ 1þ 1

2
ln

�
rΔ

a2kðrþ 2Þ − 4akλþ r3 − λ2ðr − 2Þ
�
:

Below we summarize our findings based on the
present work.
(1) We carry out critical point analysis considering

relativistic, semirelativistic, and nonrelativistic
flows. Excellent agreement is seen between the
results obtained from both the relativistic and semi-
relativistic limit as far as the transonic properties are
concerned. However, in the nonrelativistic limit,
results deviate significantly (see Fig. 1).

(2) We separate the domain of the parameter space in the
λ − E plane based on the nature of solution topol-
ogies. We realize that a large region of the parameter
space permits the existence of multiple critical points
which is one of the main criteria to harbor a shock
wave in accretion flow (see Fig. 2). Moreover, we
find that parameter spaces for multiple critical points
match accurately enough for relativistic and semi-
relativistic flows, but a profound difference is seen in
the case of the nonrelativistic flow and the deviation
increases with ak (see Fig. 3).

(3) Considering the semirelativistic flow, we obtain the
shock induced global accretion solution around the
rapidly rotating black hole (see Fig. 4). Further, we
compare the shocked solutions among the relativis-
tic, semirelativistic, and nonrelativistic flows having
identical outer boundary conditions. We find that the
position of shocks in relativistic and semirelativistic
flows agrees well with a deviation of 6%–12% for
0 ≤ ak ≤ 0.99. But, the difference of the shock
position between relativistic and nonrelativistic
flows happens to be very large which becomes
monumental (> 62%) for the rapidly rotating black
hole (ak ¼ 0.99).

(4) We identify the effective region of the parameter
space in the λ − E plane that permits the shock
transition in relativistic, semirelativistic, and non-
relativistic flows. We observe that shock induced
global accretion solutions are not stray solutions;
instead, they continue to exist for a large range of
flow parameters. Moreover, it has been shown in this
paper that the shock parameter space for relativistic
and semirelativistic flows do show close matching
even when the spin of the black hole is very high

(ak ¼ 0.99). But, shock parameter space obtained
for nonrelativistic flow does not show any overlap
with the relativistic results.

Based on the above findings, we stress that the semi-
relativistic approximation could be used to study the
accretion flow dynamics using the identified effective
potential (Φeff

e ). Our claim stems from the fact that the
obtained results closely match with the relativistic one as far
as the transonic and shock properties are concerned.
Moreover, unlike the existing gravitational potentials
[18–20,22], this potential does not suffer any limitation
due to the choice of the black hole spin as it works
seamlessly for ak → 1. In reality, for all practical purposes,
this potential can be successfully incorporated with ease just
like aNewtonian potential. In particular, it would be possible
to carry out the complete study of accretion flow including
nonlinearities such as shock transitions even in the presence
of viscous dissipation, radiative cooling, andmagnetic fields
around extremely rotating black holes. Since the oscillations
of shocks are known to exhibit the quasiperiodic oscillations
(QPOs) of the emergent high energy radiations (i.e., hard x
rays), and the QPO frequency is linked as νQPO ∼ 1=tinfall,
where tinfall refers to the free fall time from the shock
position, and the origin of the high frequency QPO can be
examined as shocks usually form closer to the rapidly
rotating black holes [54]. Moreover, the precise interpreta-
tions of the spectral and timing properties of the hard
radiations emanating from the accretion flows, which in
turn depend on shock, would be viable and subsequently
would enable one to constrain the spin of the rapidly rotating
black holes ([55], and references therein). At the end, the
most important point we would like to bring to the reader’s
notice is that our analysis enables one to carry out the
numerical simulations of accretion flow around rapidly
rotating black hole very easily simply by replacing (a) the
existing approximate Newtonian and/or pseudo-Newtonian
potentials by more accurate potentialΦeff

e obtained through
full general relativistic consideration and (b) ρ−1ðdp=drÞ by
ðhρÞ−1ðdp=drÞ in the radial momentum equation. In the
forthcoming efforts, we would like to take up all the above
tasks that will be reported elsewhere.

APPENDIX A: CALCULATION OF dv
dr jc FOR

RELATIVISTIC FLOW

The gradient of radial velocity at the critical point is
given by

dv
dr

����
c
¼ −

−B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2A
: ðA1Þ

The explicit expressions of A, B, and C are obtained as
follows:
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A ¼ γ2v

�
1þ 2C2

s

Γþ 1

�
1

v2
−
A0Θ22

v

	�
;

B ¼ −
2C2

sγ
2
vA0

ðΓþ 1ÞvΘ11 −
2C2

s

Γþ 1
ðN11 þ N12ÞA0Θ11;

C ¼ −ðN21 þ N22 þ N23 þ N24 þ N25 þ N26Þ;

N11 ¼
ðr − a2kÞ

rΔ
þ 5

2r
; N12 ¼ −

1

2F
dF
dr

; N21 ¼
2ðr − 1Þ
ðr − 2Þ2r2 ; N22 ¼ −

4akλγ2ϕ
r3Δ

−
2akλγ2ϕΔ0

r2Δ2
þ 4akλγϕγϕ0

r2Δ
;

N23 ¼ −
8a2kγ

2
ϕ

ðr − 2Þr3Δ −
4a2kγ

2
ϕΔ0

ðr − 2Þr2Δ2
þ 8a2kγϕγϕ

0

ðr − 2Þr2Δ −
4a2kγ

2
ϕ

ðr − 2Þ2r2Δ ;

N24 ¼ Ωγ2ϕλ
2a2k − ðr − 3Þr2Δ0

r2Δ2
− γ2ϕλ

2a2k − ðr − 3Þr2Ω0

r2Δ
− 2λΩγϕ

2a2k − ðr − 3Þr2γϕ0
r2Δ

þ 2λΩγ2ϕ
2a2k − ðr − 3Þr2

r3Δ
þ λΩγ2ϕ

r2 þ 2ðr − 3Þr
r2Δ

;

N25 ¼
2akð2a2k − ðr − 3Þr2ÞΩγ2ϕΔ0

ðr − 2Þr2Δ2
−
2akð2a2k − ðr − 3Þr2Þγ2ϕΩ0

ðr − 2Þr2Δ −
4akð2a2k − ðr − 3Þr2ÞΩγϕγϕ0

ðr − 2Þr2Δ

þ 2akð2a2k − ðr − 3Þr2ÞΩγ2ϕ
ðr − 2Þ2r2Δ þ 4akð2a2k − ðr − 3Þr2ÞΩγ2ϕ

ðr − 2Þr3Δ −
2akð−r2 − 2ðr − 3ÞrÞΩγ2ϕ

ðr − 2Þr2Δ ;

N26 ¼
2C2

s

Γþ 1
½N111 þ N121 þ ðN11 þ N12ÞA0Θ11�;

N111 ¼ −
r − a2k
r2Δ

−
ðr − a2kÞΔ0

rΔ2
−

5

2r2
þ 1

rΔ
; N121 ¼ −4a2kr

ða2k þ r2ÞΔ0 − 4rΔ
ða2k þ r2Þ4 − 4a4kΔ2

;

A0 ¼ 1

Θ
þ Γ0

Γ
−

Γ0

Γþ 1
−
C2
sðΓþ 1Þ
ΓΘ

; Θ11 ¼ −
2Θ

ðN þ 1Þ
�ðr − a2kÞ

rΔ
þ 5

2r
−

1

2F
dF
dr

�
;

Θ22 ¼ −
2Θγ2v

ðN þ 1Þv ; Ω ¼ 2ak þ λðr − 2Þ
a2kðrþ 2Þ − 2akλþ r3

; Γ0 ¼ ∂Γ
∂Θ and γ0ϕ ¼ γ3ϕ

2
λΩ0:

Here, all the quantities have their usual meaning.

APPENDIX B: Φeff
e FOR THE SCHWARZSCHILD BLACK HOLE (ak = 0)

For the Schwarzschild black hole ðak ¼ 0Þ, the effective potential reduces to

Φeff
e jak¼0 ¼ 1þ 1

2
ln

� ðr − 2Þr2
r3 − λ2ðr − 2Þ

�
;¼ 1 −

1

2
ln ½1 − x�;

where x ¼ 2ð λ2
2r2 −

1
r−2Þ.

For −1 ≤ x < 1, we get

Φeff
e jak¼0 ¼ 1þ 20

1

�
λ2

2r2
−

1

r − 2

�
þ 21

2

�
λ2

2r2
−

1

r − 2

�
2

þ 22

3

�
λ2

2r2
−

1

r − 2

�
3

þ 23

4

�
λ2

2r2
−

1

r − 2

�
4

þ � � � � � � ;

where the second term in the right-hand side of the above equation represents the well-known Paczyńsky-Wiita effective
potential [2].
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