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ABSTRACT
We study the relativistic viscous accretion flows around the Kerr black holes. We present the
governing equations that describe the steady-state flow motion in full general relativity and
solve them in 1.5D to obtain the complete set of global transonic solutions in terms of the
flow parameters, namely specific energy (E), specific angular momentum (L), and viscosity
(α). We obtain a new type of accretion solution which was not reported earlier. Further, we
show for the first time to the best of our knowledge that viscous accretion solutions may
contain shock waves particularly when flow simultaneously passes through both inner critical
point (rin) and outer critical point (rout) before entering into the Kerr black holes. We examine
the shock properties, namely shock location (rs) and compression ratio (R, the measure of
density compression across the shock front) and show that shock can form for a large region
of parameter space in L–E plane. We study the effect of viscous dissipation on the shock
parameter space and find that parameter space shrinks as α is increased. We also calculate
the critical viscosity parameter (αcri) beyond which standing shock solutions disappear and
examine the correlation between the black hole spin (ak) and αcri. Finally, the relevance of our
work is conferred where, using rs and R, we empirically estimate the oscillation frequency of
the shock front (νQPO) when it exhibits quasi-periodic (QP) variations. The obtained results
indicate that the present formalism seems to be potentially viable to account for the QPO
frequency in the range starting from milli-Hz to kilo-Hz as 0.386 Hz ≤ νQPO( 10 M�

MBH
) ≤ 1312

Hz for ak = 0.99, where MBH stands for the black hole mass.
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1 IN T RO D U C T I O N

The accretion process on to a black hole is believed to be the most
efficient energy release mechanism because of the fact that it is
an order of magnitude stronger than the nuclear fusion reactions
(Frank, King & Raine 2002). As black holes themselves do not
emit any radiation therefore one compels to rely on the study of
accretion flows in order to understand the astrophysical black holes.
And, because of the strong gravity of the black holes, it is necessary
to examine the relativistic accretion flows considering the general
relativistic framework.

In the early seventies, a comprehensive study of relativistic
accretion flow around the Kerr black holes was carried out by
Novikov & Thorne (1973). Later, Fukue (1987) examined the
transonic properties of the inflowing matter considering full rel-
ativistic treatment. Riffert & Herold (1995) reported the correct
description of the thin accretion disc structure around the Kerr black
holes. Meanwhile, Chakrabarti (1996a,b) examined the relativistic
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accretion flow assuming weak viscosity limit and Peitz & Appl
(1997) studied the relativistic viscous accretion flow considering
the polytropic equation of state. Subsequently, Gammie & Popham
(1998) and Popham & Gammie (1998) pointed out the importance
of relativistic equation of state (EoS) while studying the relativistic
accretion flow. Chattopadhyay & Chakrabarti (2011) investigated
the effect of fluid composition on the accretion flow properties
around the Schwarzschild black holes. Recently, Chattopadhyay &
Kumar (2016) studied the accretion–ejection solutions in full
general relativity considering non-rotating black holes, and they
extended the work further for rotating black holes as well (Kumar &
Chattopadhyay 2017).

It may be noted that some of the above studies examined
the phenomena of shock waves where accretion flow variables
encounter discontinuous transitions (Fukue 1987; Chakrabarti
1996a,b; Chattopadhyay & Chakrabarti 2011; Chattopadhyay &
Kumar 2016; Kumar & Chattopadhyay 2017). In reality, there
are various astrophysical phenomena associating the shock waves,
namely supernova explosions, various outburst phenomena, shocks
in astrophysical jets and winds (Fukue 2019). This truly indicates
that shocks are common in astrophysical environments. However,
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the study of shock waves in the relativistic viscous accretion flow
around the Kerr black holes remains unexplored till date. In this
context, questions naturally arise whether shocks continue to be
present or not under strong gravity? If so, what would be the
influence of the relativistic EoS on the shock properties? How
is the shock location affected due to the viscosity as well as the
black hole spin? Can the modulation of shock front render the
quasi-periodic oscillation (QPO) phenomena commonly observed
in Galactic black hole (GBH) sources? In this work, for the first
time to our knowledge, we intend to answer these questions.

In an accretion process, rotating matter begins its journey towards
the black hole with negligible radial velocity from the outer edge
of the disc. As the flow moves inward, the radial velocity gradually
increases and eventually, subsonic flow changes its sonic state
at the critical point to become supersonic before crossing the
event horizon. Depending on the input parameters, the flow may
contain multiple critical points, and in general, the flow of this kind
first becomes supersonic much before the horizon (Fukue 1987;
Chakrabarti 1989; Das, Chattopadhyay & Chakrabarti 2001). In
this scenario, supersonic matter experiences a centrifugal barrier
that causes the piling of matter around the black hole. Eventually,
such barrier triggers the discontinuous transition of the flow vari-
ables in the form of shock waves provided the relativistic shock
conditions are satisfied (Taub 1948). After the shock transition,
flow momentarily slows down, however, gradually picks its radial
velocity as it moves inward and ultimately enters into the black
hole after crossing another critical point usually located close
to the horizon. This renders the complete shock induced global
accretion solution and solutions of this kind have been examined
by several researchers (Fukue 1987; Chakrabarti 1989; Yang &
Kafatos 1995; Lu, Gu & Yuan 1999; Becker & Kazanas 2001; Das
et al. 2001; Chakrabarti & Das 2004; Fukumura & Tsuruta 2004;
Das 2007; Sarkar & Das 2016; Dihingia, Das & Mandal 2018a,b;
Dihingia, Das & Nandi 2019). Due to shock compression, post-
shock flow becomes hot and dense that results a puffed up torus like
structure surrounding the black hole which is equivalently called
as post-shock corona (hereafter PSC; Aktar, Das & Nandi 2015).
Interestingly, because of the extra thermal energy exists across the
shock front, a part of the inflowing matter is deflected at PSC to
produce the precursor of the bipolar jets along the rotation axis of
the disc (Chakrabarti 1999; Das et al. 2001; Chattopadhyay & Das
2007; Das & Chattopadhyay 2008; Aktar et al. 2015; Aktar et al.
2017; Aktar, Nandi & Das 2019). These findings are also confirmed
by the numerical simulations (Molteni, Ryu & Chakrabarti 1996;
Lanzafame, Molteni & Chakrabarti 1998; Das et al. 2014; Okuda &
Das 2015; Lee et al. 2016).

Incidentally, the same PSC seems to be responsible for the
emission of hard radiations observed from the active galactic nuclei
(AGNs) and GBH sources. Usually, soft photons from the pre-shock
disc are intercepted at the PSC and reprocessed after interacting
with the swarm of hot electrons to generate high-energy photons
via inverse Comptonization mechanism (Chakrabarti & Titarchuk
1995; Mandal & Chakrabarti 2005, 2008; Iyer, Nandi & Mandal
2015). Moreover, Molteni et al. (1996) showed through numerical
simulation that when infall time-scale matches with the cooling
time-scale of the accreting matter, resonance oscillation of PSC
takes place. As PSC modulates, emergent hard radiations also
exhibit non-steady variations which are in general quasi-periodic
(QP) in nature (Lee, Ryu & Chattopadhyay 2011; Das et al. 2014;
Suková & Janiuk 2015; Suková, Charzyński & Janiuk 2017; Okuda
et al. 2019). Hence, the modulation of PSC perhaps be potentially
viable to account for the QPO phenomena commonly observed in

GBH sources (Belloni, Psaltis & van der Klis 2002; Homan &
Belloni 2005; Remillard et al. 2006; Nandi et al. 2012; Iyer et al.
2015; Nandi et al. 2018). In addition, episodic ejections of the matter
are also seen as a consequence of PSC undulations (Das et al. 2014).
Overall, all the above findings generally supplement the importance
of PSC as its role appears to be very much appealing in order to
explain the astrophysical sources harbouring black holes.

Being motivated with this, in this work, we study relativistic,
viscous, advective, accretion flow around a Kerr black hole. Al-
though 3D time-dependent modelling of general relativistic flow
exists in the literature, in this work, we consider steady-state 1.5D
flow structure in order to obtain the analytical accretion solutions.
Here, we adopt the relativistic hydrodynamic framework to study the
flow dynamics (Rezzolla & Zanotti 2013). In addition, we consider
the relativistic EoS to describe the accreting plasma (Chandrasekhar
1939; Synge 1957; Cox & Giuli 1968). Incorporating all these,
we carry out the critical point analysis and obtain all possible
global transonic accretion solutions around the Kerr black holes.
Further, we employ the relativistic shock conditions (Taub 1948)
and calculate the shock induced global accretion solutions. We study
the shock properties, namely shock location (rs) and compression
ratio (R, measure of density compression across the shock front) in
terms of the input parameters, i.e. specific energy (E) and specific
angular momentum (L), and examine the role of viscosity (α) and
black hole spin (ak) in deciding the flow characteristics. Moreover,
we identify the parameter space in L–E plane that admits shock
and finds that shock parameter space is shrunk with the increase of
viscous dissipation. We obtain the critical viscosity parameter (αcri)
beyond which standing shock solutions disappear and investigate
ak–αcri correlation for shocks. Since rs eventually measures the size
of PSC, we phenomenologically calculate the QPO frequency of
the PSC modulation (νQPO) which is equivalent to the inverse of
the infall time-scale of post-shock matter. We find that νQPO lies
in the range of 0.386–1312 Hz for MBH = 10 M� and ak = 0.99
which seems to be fairly consistent with observation (Remillard
et al. 2006; Belloni, Sanna & Méndez 2012; Nandi et al. 2012;
Belloni & Stella 2014; Iyer et al. 2015; Motta 2016; Sreehari et al.
2019a,b).

We organize the paper as follows. In Section 2, we present the
relativistic hydrodynamics in Kerr space–time and in Section 3,
we discuss the modelling of the accretion flow. In Section 4, we
carry out the critical point analysis and present the global transonic
solutions. In Section 5, we discuss the global solutions with shock,
shock properties, shock parameter space, and shock mediated QPOs.
Finally, in Section 6, we present the concluding remarks.

2 R ELATI VI STI C HYDRODYNAMI CS IN K ERR
SPAC E–TIME

We study the hydrodynamics of accretion flow in a generic sta-
tionary axisymmetric space–time. Here, there exist two mutually
computing killing vectors along (t, φ) directions. The remaining
space-like coordinates are (r, θ ) which are mutually orthogonal
and also orthogonal to the two killing vectors at every point in
space–time. With this coordinate system, a stationary axisymmetric
space–time is written as

ds2 = gμνdxμdxν

= gttdt2 + 2gtφdtdφ + gφφdφ2 + grrdr2 + gθθ dθ2, (1)

where the indices μ and ν run from 0 to 3 representing t, r, θ , and
φ coordinates, respectively. Due to the presence of the two killing
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vectors (lμt = ∂t , l
μ
φ = ∂φ), the metric coefficients are in general

expressed as the functions of coordinates (r, θ ). The non-zero metric
elements in Boyer–Lindquist coordinates are given by Boyer &
Lindquist (1967),

gtt = −
(

1 − 2r

�

)
, gtφ = −2akr sin2 θ

�
,

grr = �

	
, gθθ = �, and gφφ = A sin2 θ

�
,

where � = a2
k cos2 θ + r2, 	 = a2

k + r2 − 2r , and A =(
a2

k + r2
)2 − a2

k	 sin2 θ , respectively. Here, the specific spin
of the black hole is written as ak = J/MBH, where MBH denotes
the mass of the black hole. To express the physical quantities, we
use a convenient unit system as G = MBH = c = 1, where G is the
gravitational constant, c is the speed of light. In this system, length,
time, and angular momentum are expressed in unit of GMBH/c2,
GMBH/c3, and GMBH/c, respectively.

The relativistic hydrodynamics is governed by the conservation
energy momentum and particle number as

T μν
;ν = 0, (ρuν);ν = 0, (2)

where, Tμν denotes the energy momentum tensor, ρ is the density of
the flow, and uν are the components of four velocities supplemented
with the constraint uμuμ = −1. The energy momentum tensor is
written as

T μν = (e + p)uμuν + pgμν + πμν, (3)

where e and p are the local energy density and local isotropic
pressure of the flow. The last term in the right hand side of
equation (3) represents the viscous stress tensor. By presuming
the shear that gives rise to the viscosity, we have πμν = −2ησμν ,
where η is the viscosity coefficient and the shear tensor is given by
Peitz & Appl (1997),

σμν = 1

2

[
(uμ;ν + uν;μ + aμuν + aνuμ) − 2

3
ζexphμν

]
, (4)

where aμ (= uμ; γ uγ ) is the four acceleration, ζexp (= uγ
;γ ) is

expansion of the fluid world line, and hμν (= gμν + uμuν) is the
projection tensor. Here, η = ρν, where ν is the kinetic viscosity.

By projecting the energy momentum conservation equation along
the i-th direction, we obtain the Navier–Stokes equation as

hi
μT μν

;ν = (e + p)uνui
;ν + (giν + uiuν)p,ν + hi

μπμν
;ν = 0, (5)

where i = 1, 2, 3 and hi
μuμ = 0. Similarly, the energy generation

equation (i.e. first law of thermodynamics) is given by uμT μν
;ν = 0

which takes the form,

uμ

[(
e + p

ρ

)
ρ,μ − e,μ

]
+ uμπμν

;ν = 0, (6)

where the last term in the left hand side of equation (6) represents
the viscous heating term and the specific enthalpy of the flow is
given by h = (e + p)/ρ. To avoid complexity, here we ignore the
radiative cooling processes.

In order to solve the hydrodynamical equations that govern the
accretion flow around black holes, we require an exact relation
among e, ρ, and p, which is commonly known as EoS. For
relativistic fluid, we consider an EoS (Chattopadhyay & Ryu 2009)
which is given by,

e = nemef = ρ

τ
f , (7)

where

f = (2 − ξ )

[
1 + �

(
9� + 3

3� + 2

)]
+ ξ

[
1

χ
+ �

(
9� + 3/χ

3� + 2/χ

)]
.

(8)

Here, ne (np), and me (mp) denote the number density and mass of the
electron (ion) and � = kBT/mec2 is the dimensionless temperature
of the flow. In addition, τ = [2 − ξ (1 − 1/χ )], where we use ξ =
np/ne and χ = me/mp, respectively. In this work, we use ξ = 1 all
throughout unless stated otherwise. With this, the polytropic index
(N), the ratio of specific heats (�) and the sound speed (as) are
defined as

N = 1

2

df

d�
; � = 1 + 1

N
; and a2

s = �p

e + p
= 2��

f + 2�
. (9)

3 MO D E L L I N G O F AC C R E T I O N F L OW

We consider a steady, viscous, advective accretion disc confined
around the black hole equatorial plane. Hence, for simplicity, we
assume θ = π /2 and vθ ∼ 0 throughout the study. In addition, we
define the angular velocity v2

φ = (uφuφ)/(−utut ) and the associated
bulk azimuthal Lorentz factor as γ 2

φ = 1/(1 − v2
φ). Similarly, we

also define the radial three velocity in the corotating frame as v2 =
γ 2

φ v2
r , where v2

r = (urur )/(−utut ) and the associated bulk Lorentz
factor γ 2

v = 1/(1 − v2). Employing these definitions of velocities,
we rewrite the second part of the equation (2) in the integrated form
as

Ṁ = −4πvγvρH
√

	, (10)

where Ṁ is accretion rate which we treat as global constant and
H is the local half-thickness of the disc. Considering the thin-disc
approximation, we calculate the functional form of H as (Riffert &
Herold 1995; Peitz & Appl 1997)

H 2 = pr3

ρF , F = γ 2
φ

(
r2 + a2

k

)2 + 2	a2
k(

r2 + a2
k

)2 − 2	a2
k

. (11)

In the next, we obtain the radial momentum equation in the
corotating frame by setting i = r and is given by

vγ 2
v

dv

dr
+ 1

e + p

dp

dr
+

(
∂�

∂r

)
λ

= 0, (12)

where

� = 1

2
ln

[
r	

a2
k(r + 2) − 4akλ + r3 − λ2(r − 2)

]
,

and λ = −uφ /ut. In equation (12), following Gammie & Popham
(1998) and Popham & Gammie (1998), we neglect the viscous
acceleration term in the radial momentum equation.

Employing the killing vectors l
μ
t and l

μ
φ , we obtain two conserved

quantities as

E = −
(

hut − 2νσ r
t

ur

)
(13)

and

L = huφ − 2νσ r
φ

ur
, (14)

where, ν = αasH, α being the viscosity parameter (Gammie &
Popham 1998; Popham & Gammie 1998). Since the terms involved
in equations (13) and (14) have the dimensions of energy per
unit mass and angular momentum, we call E and L as global
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specific energy and bulk specific angular momentum of the flow,
respectively.

Subsequently, we calculate σ r
φ and σ r

t from equation (4), which
are given by

2σ r
φ = ur

;φ + grruφ;r + aruφ + aφur − 2

3
ζexpu

ruφ, (15)

and

2σ r
t = ur

;t + grrut ;r + arut + atu
r − 2

3
ζexpu

rut . (16)

Using the velocity definitions, we rewrite equation (15) and
equation (16) in the following forms as

2σ r
φ = A1 + A2

dv

dr
+ A3

dλ

dr
(17)

and

2σ r
t = B1 + B2

dv

dr
+ B3

dλ

dr
, (18)

where the coefficients A1, A2, A3, B1, B2, and B3 are the functions
of the flow variables and their functional forms are given in
Appendix A. Since the first-order derivatives of v and λ in the
shear tensor yields the governing equations of the relativistic
flow as second order, it is difficult to solve them. Therefore,
to avoid complexity, we neglect the terms containing the higher
order derivatives of v and λ in equation (17) and (18) and with
these approximations, we are left with 2σ r

φ = A1 and 2σ r
t = B1,

respectively.
Since E andL are conserved quantities, there derivatives vanishes

and accordingly, we have

dE
dr

= E0 + E1
dv

dr
+ E2

d�

dr
+ E3

dλ

dr
= 0 (19)

and

dL
dr

= L0 + L1
dv

dr
+ L2

d�

dr
+ L3

dλ

dr
= 0, (20)

where E0, E1, E2, E3, L0, L1, L2, and L3 are functions of the flow
variables and their expression are given in Appendix B.

We simultaneously solve equations (10), (12), (19), and (20) to
obtain the wind equation as

dv

dr
= N (r, v, λ, �)

D(r, v, λ, �)
, (21)

where N(r, v, λ, �) and D(r, v, λ, �) are the functions of the flow
variables and their algebraic expressions are provided in Appendix
C. Further, the gradients of � and λ is obtained, respectively, as

d�

dr
= (L3E1 − L1E3)

L2E3 − L3E2

dv

dr
+ L3E0 − L0E3

L2E3 − L3E2
; (22)

and

dλ

dx
= (L2E1 − L1E2)

L3E2 − L2E3

dv

dr
+ L2E0 − L0E2

L3E2 − L2E3
, (23)

where Ei and Li with i = 0, 1, 2, 3 are described in Appendix B.

4 C R I T I C A L P O I N T A NA LY S I S A N D G L O BA L
S O L U T I O N S

We carry out the critical point analysis following the standard
procedure (Dihingia et al. 2018c and references therein) and
examine the properties of the critical points in terms of the input
parameters of the flow. At the critical point, equation (21) takes
dv/dr = 0/0 form, where the conditions N(r, v, λ, �) = 0 and D(r,

Figure 1. Plots of global specific energy (E) as a function of critical point
locations (rc) for three different viscosity parameters (α) marked on the
figure. Here. we consider L = 1.80 and ak = 0.99, respectively. Solid,
dotted, and dashed curves represent the results corresponding to saddle (X),
nodal (N), and spiral (O) type critical points. See text for details.

v, λ, �) = 0 are known as the critical point conditions. Applying
the l

′
Hospital rule, we calculate the radial velocity gradient (dv/dr)c

at the critical points (rc). Depending on the values of (dv/dr)c, the
nature of the critical points are classified. In reality, (dv/dr)c usually
possesses two values. When the values of (dv/dr)c are real and of
opposite sign, the critical point is called as saddle type (hereafter
‘X-type’). For real and same sign of (dv/dr)c values yield nodal type
critical point (hereafter ‘N-type’). When both values of (dv/dr)c

are imaginary, the nature of the critical point becomes spiral type
(hereafter ‘O-type’). Based on the above classifications, we examine
how the different types of critical points spread along the radial
direction. The obtained results are depicted in Fig. 1, where we
plot the variation of global specific energy (E) as a function of
critical points (rc) for three different viscosity parameters as α =
0.06, 0.08, and 0.10, respectively. Here, we choose ak = 0.99 and
L = 1.80. In the figure, viscosity parameters are marked, and solid,
dashed, and dotted curves denote the ‘X-type’, ‘N-type’, and ‘O-
type’ critical points, respectively. We observe that for a given α,
different types of critical points are located along the increasing
radial coordinate following the sequence of saddle – nodal – spiral
– nodal – saddle types, respectively. For a given E , the flow may have
maximum three critical points, out of which one is ‘O-type’ and the
other two may be either ‘X-type’ or ‘N-type’ or their combinations
depending on the input parameters. Moreover, we find that as the
viscosity of the flow is increased, a part of the ‘X-type’ critical points
from both inner and outer regions are gradually replaced by the
‘N-type’ critical points. In reality, ‘X-type’ critical points are
specially important as the accretion flow around the black holes can
only pass through it. In addition, it may be noted that the accretion
flows passing through the ‘N-type’ critical points are found to be
unstable (Kato et al. 1993). Moreover, when the critical point resides
near the horizon, it is called as inner critical point (rin) whereas when
it forms far away from the black hole, it is called as outer critical
point (rout). And, when accretion flow possesses multiple ‘X-type’
critical points, it may experience discontinuous shock transition in
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2416 I. K. Dihingia et al.

Figure 2. Subdivision of L − E parameter space on the basis of the type of
accretion solutions. Different regions are marked on the figure as ‘O’, ‘A’,
‘P0P1’, ‘A

′
’, ‘P0P2’, ‘W’, and ‘I’, and the corresponding Mach number

(M = v/as) plots are depicted on the boxes. The filled circle in each boxes
represents the critical point locations of the flow and the arrow indicates the
overall direction of the flow motion. Here, we choose ak = 0.99 and α =
0.05. See text for details.

between the inner and outer critical points, provided the relativistic
shock conditions are satisfied (Taub 1948). Accretion solutions of
this kind are very much important as they have the potential to
explain the observational findings (Chakrabarti & Titarchuk 1995;
Wu et al. 2002; Nandi et al. 2012; Iyer et al. 2015; Suková & Janiuk
2015; Fukumura et al. 2016; Suková et al. 2017 and references
therein) and therefore, in the subsequent section, we investigate the
global shock solutions around the Kerr black holes.

To obtain the accretion solution, one requires to solve the
equations (21)–(23) simultaneously. Since the accretion flow around
the black hole is necessarily transonic, it is advantageous to
start integrating equations (21)–(23) from the critical point itself.
Hence, we choose a set of input parameters as (E,L, α, ak) and
employing the critical point conditions, we solve equations (13)
and (14) to calculate the radial velocity (vc), temperature (�c),
and angular momentum (λc) at the critical point (rc). Using these
flow variables, we integrate equations (21)–(23) once inwards from
the critical point up to the horizon and then outward up to a
large distance equivalent to the outer edge of the disc (redge).
Finally, we join these two parts of the solution to obtain a
complete global accretion solution around the black holes. It may
be noted that solving equations (21)–(23) using the boundary values
supplied at redge yields the identical accretion solution as described
above.

Next, we investigate the general behaviour of the accretion
solutions, and for that, we subdivide the L − E parameter space
according to the nature of the accretion solutions. We find five
different types of physically acceptable accretion solutions and
therefore, we sub-divide the parameter space in five regions marked
as O, A, A

′
, W, and I in Fig. 2. Here, we choose ak = 0.99 and

α = 0.05. Typical solutions obtained from these five regions are
depicted in the inset boxes which are marked. In each box, Mach

number (M) of the flow is plotted as function of the logarithmic
radial coordinate (r) where solid curve represents the accretion
branch while the dashed curve denotes the wind branch. We find
that depending on the input parameters, the flow may contain single
or multiple critical points which are shown using the filled circles.
In addition, arrows indicate the overall direction of flow motion
towards the black hole. Here, we find a new type of accretion
solution (A

′
) where inflowing matter having identical (L, E) has

the option to pass through either outer or inner critical points.
In order to resolve the degeneracy of the accretion solution, we
calculate the entropy of the flow just outside the horizon and find
that solution passing through the inner critical point has high entropy
content. Since nature favours the high entropy flow (Becker &
Kazanas 2001), solution passing through the inner critical point
is physically acceptable. Example of this kind of solution is shown
in the box marked A

′
. Interestingly, supersonic flow after crossing

the outer critical point has the possibility to join with the subsonic
branch via shock transition (see Section 5), however, we point out
that relativistic shock conditions (see equation 24 below) are not
satisfied for this type of accretion solutions. We also find accretion
solutions with a special topological property where a single integral
curve passes through both critical points simultaneously. This type
of solutions are found along the line Po − P1 and Po − P2 in the
L − E parameter space and illustrated in the boxes marked PoP1

and PoP2, respectively. It is noteworthy to mention that accretion
solutions depicted in panels marked ‘W’ and ‘I’ are identical to the
advection dominated accretion flow (ADAF) solutions (Narayan,
Kato & Honma 1997 and references therein).

5 AC C R E T I O N SO L U T I O N W I T H S H O C K

In this section, we study the properties of the accretion flow that
possesses multiple critical points. In reality, accretion flow begins
its journey from the outer edge of the disc (redge) with negligible
radial velocity (v � c) and gradually gains its radial velocity as
it accretes towards the black hole. At the outer critical point (rout),
flow experiences smooth sonic state transition from subsonic to the
supersonic regime and continues to proceed further. Meanwhile,
centrifugal repulsion starts to become profound, and it plays a
preponderant role against gravity to slow down the inflowing matter.
Because of this, accreting matter piles up in the vicinity of the black
hole, and a centrifugal barrier is developed. This process continues
unless the centrifugal barrier triggers the discontinuous transitions
of the flow variables in the form of a shock wave. Due to the shock
transition, the supersonic flow jumps into the subsonic branch and
eventually picks up its radial velocity while moving further inwards.
Ultimately, accretion flow again becomes supersonic after passing
through the inner critical point (rin) before falling into the black
hole.

To illustrate the above scenario, we depict a shock induced global
accretion solution around a black hole in Fig. 3, where Mach number
(M) of the flow is plotted as function of radial coordinate (r). Here,
we choose the input parameters as E = 1.001, L = 1.90, α = 0.05,
and ak = 0.99, respectively and find the inner and outer critical
points as rin = 1.8898 and rout = 192.9923. After crossing rout, the
flow has the possibility to enter into the black hole supersonically
as shown by the dotted curve. However, flow experiences shock
transition in between rin and rout as the relativistic shock conditions
are favourable. In reality, the shock solution is preferred over the
shock-free solution because of its high entropy content (Becker &
Kazanas 2001). We calculate the location of the shock radius using
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Shock in relativistic viscous accretion flows 2417

Figure 3. Illustration of a typical shock induced global accretion solution
around a Kerr black hole. Here, input parameters are chosen as L = 1.90,
E = 1.001, α = 0.05, and ak = 0.99, respectively. Inner and outer critical
points are calculated as rin = 1.8898 and rout = 192.9923. Flow encounters
shock transition at rs = 14.67 indicated by the vertical arrow. See text for
details.

the relativistic shock conditions (Taub 1948), which are given by

[ρur ] = 0, [(e + p)utur ] = 0,

and [(e + p)urur + pgrr ] = 0,
(24)

where we assume the shock to be thin and the quantities within the
square bracket represent the difference of their values across the
shock front. Here, shock location is calculated as rs = 14.67 which
is indicated by the vertical arrow and the overall direction of the
flow motion is indicated by the arrows.

Next, we examine the various shock properties, and the obtained
results are depicted in Fig. 4. In the upper panels, we show
the variation of shock location as the function of the viscosity
parameter (α) for flows with E = 1.0002. In panel (a), we depict
the variation of shock location (rs) around the non-rotating black
hole (Schwarzschild black hole, ak = 0) where solid, dotted, and
dashed curves represent the results for L = 2.907 (black), 2.737
(blue), and 2.567 (red), respectively. Similarly, in panel (b), we
present the rs variation for a rotating black hole (ak = 0.99) where
solid, dotted, and dashed curves are obtained forL = 1.915 (black),
1.865 (blue), and 1.815 (red), respectively. In panels (a) and (b), we
observe that for a given L, shock location recedes away from the
black hole as α is increased. This happens because the increase of
α enhances the angular momentum transport outwards that boosts
the strength of the centrifugal repulsion against the gravity. This
eventually compels the shock front to settle down at the larger radii.
Interestingly, α cannot be increased indefinitely due to the fact that
beyond a critical value of viscosity (α > αcri), the shock conditions
fail to satisfy for a given set of (L, E , ak) and therefore standing
shock disappears. However, non-steady shock still may continue
to present which we shall discuss in the latter part of this section.
Due to the shock transition, the post-shock flow (equivalently PSC)
becomes hot and compressed where the swarm of hot electrons
are readily available. These hot electrons eventually reprocess the
soft photons from the pre-shock flow via inverse Comptonization
process to produce hard radiations. Thus, it is instructive to examine

Figure 4. Plots of shock location (rs) and compression ratio (R) as a function
of viscosity parameter (α). Results corresponding to ak = 0 and ak = 0.99
are shown in the left-hand and right-hand panels. For ak = 0, we choose
E = 1.0002 and L = 2.907 (solid), 2.737 (dotted), and 2.567 (dashed),
respectively. Similarly, for ak = 0.99, we choose E = 1.0002 andL = 1.915
(solid), 1.865 (dotted), and 1.815 (dashed), respectively. See text for details.

the amount of density compression across the shock front and study
its dependencies on α. For that, we calculate the compression ratio
(R), which is defined as the ratio of densities measured immediately
after and before the shock transition and is given by R = σ+/σ−.
The obtained results corresponding to rs are depicted in panels (c)
and (d) for ak = 0 and ak = 0.99, respectively. In both cases, we
observe that accreting matter experiences significant compression
when shock forms close to the black hole, and the amount of
compression gradually decreases with the increase of α. Since shock
generally forms at smaller radii around the rotating black holes, the
overall compression remains higher for ak = 0.99 in comparison
with results for ak = 0 (see panels c and d).

It is useful to study the range of flow parameters that admit the
shock induced global accretion solutions around the Kerr black
holes. To do that, in Fig. 5, we identify the effective region of the
parameter space in the L − E plane that provides shock transition.
In Fig. 5(a), we present the modification of the parameter space with
the increase of the viscosity parameter (α) for an extremely rotating
black hole (ak = 0.99). It is clear from the figure that the wide ranges
of E and L permit shock solutions and the effective region of the
parameter space are gradually shrunk as the effect of dissipation,
namely, viscosity is increased. In reality, when α is increased, it
enhances the effect of viscous dissipation in an accretion flow (see
e.g. the second term in the right hand side of equation 13) that causes
the decrease of global specific energy (E) of the flow. Similarly, L
is also reduced with the increase of α (see equation 14). As a
result, the overall effective area of the parameter space for shock is
decreased with α. What is more, is that Fig. 5(a) clearly indicates
the existence of the critical viscosity parameter (αcri), beyond this
value standing shock solution ceases to exist. It is noteworthy that
αcri does not possess a universal value. Instead, it depends on the
input parameters, namely E , L, and ak. In Fig. 5(b), we display the
classification of the shock parameter space for various ak values.
Here, we fix α = 0.1. We find that the accretion flows around the
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2418 I. K. Dihingia et al.

Figure 5. (a) Plots of the shock parameter space in E − L plane for
different viscosity parameters (α) marked in the figure. Here, we choose
ak = 0.99. The effective domain of the shock parameter space is decreased
with α indicating the fact that possibility of shock formation is reduced for
dissipative flow. (b) Plots of the L − E shock parameter space for three
different Kerr parameters marked in the figure. Here, α = 0.1 is considered.
See text for details.

weakly rotating black holes experience shock transitions when L is
relatively high compared to the case of rapidly rotating black holes.
In reality, accretion flows with angular momentum lower than the
marginally stable value are allowed to enter into the black hole.
As ak is increased, the angular momentum at the marginally stable
orbit is decreased (Chakrabarti & Mondal 2006) and therefore, low
angular momentum flows are in general allowed to accrete on to the
rapidly rotating black holes. Note that the spin signature in GBHs
and AGNs has already been probed observationally (Reynolds 2019
and references therein).

Figure 6. Variation of the critical viscosity parameter (αcri) for shock as
function of the black hole spin parameter (ak). Here, we freely vary the other
flow parameters, namely E and L to compute αcri for a given ak. See text
for details.

In Fig. 6, we show the variation of the critical viscosity parameter
(αcri) as function of ak. Here, we freely vary both L and E and
compute αcri for a given ak. By varying ak in steps, we follow the
same procedure to obtain the αcri in the full range of ak values. In the
figure, the chosen values of ak are denoted by the filled circles which
are further joined with the solid lines. The figure clearly indicates
that the overall correlation between αcri and ak remains fairly weak.
It may be noted that the obtained αcri are in agreement with the
previously reported values from both numerical and observational
fronts (Hawley & Krolik 2001, 2002; Penna et al. 2013; Martin
et al. 2019 and references therein).

We further explore the usefulness of the shock wave in an
accretion flow. It is already discussed that accretion flow contains
standing shock wave provided (i) the flow possesses multiple critical
points, (ii) the entropy of the flow at the inner critical point (rin) is
higher than the outer critical point (rout), and (iii) the relativistic
shock conditions are satisfied (see equation 24). However, the
situation may arise for an accretion flow where points (i) and
(ii) are fulfilled, but the point (iii) fails to satisfy. In that case,
instead of standing shock transition, the shock front demonstrates
non-steady behaviour. This particularly happens, possibly due to
the resonance oscillation where the post-shock cooling time-scale
remains in accord with the infall time-scale of the flow (Molteni
et al. 1996). Indeed, the modulation of the shock front does not
remain coherent in general, but yields as QP in nature. To quantify
the frequency of QPOs of the shock front, we first calculate the infall
time-scale of the post-shock flow as tinfall = ∫ rH

rs
dt = ∫ rH

rs
v−1(r)dr ,

where v(r) denotes the post-shock velocity and rH (= 1 +
√

1 − a2
k )

is the event horizon. Subsequently, we estimate the frequency of
the QP oscillation of the shock front (νQPO) as νQPO = 1/tQPO

∼ 1/tinfall (Molteni et al. 1996; Aktar et al. 2015 and references
therein). In general, since QPO frequency is expressed in Hertz,
νQPO is ultimately multiplied with c3/GMBH. For the purpose of
representation, we consider the results depicted in Fig. 4 (upper
panel) and calculate the corresponding νQPO. The obtained results

MNRAS 488, 2412–2422 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/488/2/2412/5531332 by IN
D

IAN
 IN

STITU
TE O

F TEC
H

N
O

LO
G

Y G
U

W
AH

ATI user on 07 August 2019



Shock in relativistic viscous accretion flows 2419

Figure 7. Variation of QPO frequency (νQPO) as function of viscosity
parameter (α) for flows with E = 1.0002. In panel (a), we depict the results
for ak = 0 where solid, dotted, and dashed curves are for L = 2.907 (black),
2.737 (blus), and 2.567 (red), respectively. In panel (b), we show the results
corresponding to ak = 0.99 where solid, dotted, and dashed curves are for
L = 1.915 (black), 1.865 (blue), and 1.815 (red), respectively. See text for
more details.

are shown in Fig. 7 where the variation of νQPO is plotted as function
of α for E = 1.0002. In the upper panel (Fig. 7a), we choose ak =
0 and the solid, dotted, and dashed curves represent the results
for L = 2.907 (black), 2.737 (blue), and 2.567 (red). Similarly,
in the lower panel (Fig. 7b), we show the results for ak = 0.99,
where solid, dotted, and dashed curves are for L = 1.915 (black),
1.865 (blue), and 1.815 (red), respectively. We observe that νQPO

decreases with the increase of the α for both non-rotating as well
as rapidly rotating black holes. However, the existence of high-
frequency QPO (HFQPO) seems to be more viable for the rapidly
rotating black holes as shock usually forms closer to the horizon
for larger ak values (Aktar et al. 2017; Dihingia et al. 2019, and
references therein).

In Fig. 8, we redraw the shock parameter space for ak = 0.99
and α = 0.05, where the two-dimensional projection of the three-
dimensional plot spanned with L, E , and νQPO is depicted. In the
right side of the figure, the colour coded vertical bar indicates the
range of νQPO (in units of 10 M�/MBH) obtained by using the post-
shock velocity profile as described above. We find that for a given E ,
accretion flow generally exhibits HFQPOs provided L is relatively
small and vice versa. These findings are in agreement with the
results of Fig. 7, as shocks generally settle down at smaller radii for
flows with lower L (see Fig. 4) that yield high νQPO values. Also, we
observe that Fig. 8 encompasses the QPO frequencies starting from
milli-Hz (∼0.386 Hz) to kilo-Hz (∼1312 Hz) range for a 10 M�
black hole. This evidently indicates that the present formalism
would be capable of rendering the QPO frequencies observed from
the GBH sources (Remillard et al. 1999; Strohmayer 2001; Belloni
et al. 2002, 2005; Remillard et al. 2006; Altamirano & Belloni 2012;
Belloni et al. 2012; Nandi et al. 2012; Belloni & Altamirano 2013;
Iyer et al. 2015; Sreehari et al. 2019b, and references therein).

At the end, we compare theoretically obtained maximum QPO
frequency (νmax

QPO) with observed HFQPOs. For that, we choose

Figure 8. Two-dimensional projection of three-dimensional plot of
[L,E, νQPO( 10 M�

MBH
)] for ak = 0.99 and α = 0.05. Colour coded bar indicates

the frequency range in logarithmic scale. See text for details.

two well-studied GBH sources, namely GRS 1915+105 and GRO
J1655−40 as they are known to exhibit HFQPOs. For GRS
1915+105, the mass and spin are well constrained and this source
exhibits HFQPO as νobs

QPO ∼ 67.3 ± 2 Hz (Morgan, Remillard &
Greiner 1997; Belloni & Altamirano 2013). In this work, we
consider MBH = 10.1 ± 0.6 M� (Steeghs et al. 2013) and ak =
0.99 (Miller et al. 2013). Using these fundamental parameters,
we calculate the maximum QPO frequency (νmax

QPO) as function
of viscosity parameter (α). This result is shown in the upper
panel of Fig. 9, where the shaded region (in purple) is obtained
considering the uncertainty in the estimate of the source mass.
The figure indicates that νobs

QPO < νmax
QPO for α � 0.135. For GRO

J1655−40, the source mass is estimated using the dynamical method
as MBH = 5.1–6.3 M� (Greene, Bailyn & Orosz 2001; Beer &
Podsiadlowski 2002). Interestingly, contradictory claims appear in
the measurement of the spin parameter (Abramowicz & Kluźniak
2001; Shafee et al. 2006; Motta et al. 2014; Aktar et al. 2017;
Dihingia et al. 2019) which is yet to be settled. Hence, in this work,
we consider 0.8 ≤ ak ≤ 0.99 for representation and calculate νmax

QPO

as before. The obtained results are depicted in the lower panel of
Fig. 9, where ak values are marked and shaded regions (in purple
and orange) are because of the mass range of GRO J1655−40. We
observe that for this source, when ak = 0.99 (rapidly rotating),
νobs

QPO < νmax
QPO with α � 0.125, whereas for ak = 0.8 (moderately

rotating), νobs
QPO < νmax

QPO with α � 0.1.
It may be noted that the estimated ranges of α for the above

sources (GRS 1915+105 and GRO J1655−40) fairly are in agree-
ment with the results of numerical simulations (Hawley & Krolik
2001, 2002; Penna et al. 2013).

6 C O N C L U S I O N S

In this work, we study the relativistic viscous accretion flow around
a Kerr black hole considering the general relativistic approach. We
compose the governing equations that describe the motion of the
accreting matter in an accretion disc and employing the boundary
parameters, we solve these equations to obtain the transonic ac-
cretion solutions. We find that depending on the flow parameters,
accretion flows may contain multiple critical points and such flows
are astrophysically important as they may harbour shock waves
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2420 I. K. Dihingia et al.

Figure 9. Comparison of theoretically calculated maximum QPO fre-
quency (νmax

QPO) with observed HFQPOs. In the upper panel, we present the
results for GRS 1915+105, where shaded region (in purple) are obtained
for ak = 0.99 and MBH = 10.1 ± 0.6 M�. The horizontal thick line
(green) indicates the observed HFQPO as νobs

QPO ∼ 67.3 ± 2 Hz. In the lower
panel, results corresponding to GRO J1655−40 is shown. Here, shaded
regions are for ak = 0.99 (purple) and ak = 0.8 (orange), respectively,
with MBH = 5.1–6.3 M�. The horizontal thick line (green) indicates the
observed HFQPO as νobs

QPO ∼ 449 ± 11 Hz. See text for details.

provided the relativistic shock conditions are favourable. Below,
we summarize our findings based on this work.

(1) We study the transonic properties of the accretion flow and
find that flows continue to possess more than one critical point
when the input parameters are chosen appropriately. We obtain all
the possible accretion solutions around the Kerr black holes by
tuning the flow parameters and separate the parameter space in the
L − E plane according to the nature of the accretion solutions (see
Fig. 2). It may be noted that we find a new type of accretion solution
(A

′
in Fig. 2).

(2) To the best of our knowledge, for the first time, we show
that relativistic viscous accretion solutions around the Kerr black
holes experience discontinuous transitions in the flow variables in
the form of shock waves provided the relativistic shock conditions
are satisfied (see Fig. 3). We study the properties of shock waves,
namely shock location (rs) and compression ratio (R) and examine
their dependencies on the input parameters. We observe that shock
fronts in general settle down to the smaller radii when the flows
accrete on to the rapidly rotating black holes and vice versa.
As rs is small, flow experiences more compression at the shock
discontinuity resulting in high values of R (see Fig. 4).

(3) We make an effort to constrain the range of the input
parameters that admit shock induced global accretion solutions
around the Kerr black holes. We find that standing shocks are
permitted for the wide ranges of the L and E for inviscid flow.
As the viscosity is increased, the ranges of parameters are gradually
shrunk in the lower L and E domain, and ultimately standing shock
disappears when the viscosity exceeds its critical limit (αcri) (see

Fig. 5). We calculate αcri by freely varying the input parameters and
observe that αcri varies with ak weakly (see Fig. 6).

(4) It is intriguing to note that accretion flow often initiates
the modulation of its inner part, particularly when the relativistic
shock conditions are not favourable, but the entropy of the inner
critical point (rin) is higher than the outer critical point (rout).
The outcome of this effect results the QPO of emitted radiations
that are commonly observed from the GBH sources during their
different evolutionary phases. Using a phenomenological approach,
we estimate the frequency of the QPO (νQPO) and study the role of
the input parameters on νQPO. With this, we identify the shock
parameter space in L − E plane in terms of the νQPO and observe
that the present formalism is capable of explaining the QPOs in the
frequency range starting from milli-Hz to kilo-Hz (see Fig. 8). Using
our model formalism, we phenomenologically estimate the ranges
of viscosity parameter as α � 0.135 and 0.125 for GRS 1915+105
and GRO J1655−40, respectively, that could possibly account for
the observed HFQPOs (Fig. 9). It may be noted that the above
findings are purely indicative. For the quantitative estimates of the
range of viscosity parameters, time-dependent numerical modelling
is required which is beyond the scope of this paper.

Finally, we point out that in this paper, we have imposed several
assumptions and approximations. For example, we neglect the
radiative cooling processes, namely bremsstrahlung, synchrotron,
and Compton coolings mechanisms although their presence are
inevitable in the accretion disc. Furthermore, we assume that strong
coupling exists between ion and electron that renders the flow to
maintain a single temperature all throughout the disc. However,
because of the weak ion–electron coupling, the two-temperature
flow structure seems to be viable at least in the inner part of the disc.
Moreover, we ignore the mass-loss from the disc as well. Although
the implementation of all these aspects is beyond the scope of this
work, however, we plan to incorporate them in our future works.
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APPENDI X A : EXPLI CI T EXPRESSI ON O F
VI SCOUS STRESS

The components of viscous stresses σ r
φ and σ r

t in corotating frame
are expressed as

2σ r
φ = A1 + A2

dv

dr
+ A3

dλ

dr
, (A1)

2σ r
t = B1 + B2

dv

dr
+ B3

dλ

dr
, (A2)

where

A1 = (A11 + A12 + A13) γ 3
v

S ,

A2 = 4	λvγ 5
v

3r2
√
PQ

,

A3 = 	γ 3
v

r2P3/2
√
Q

,

B1 = (B11 + B12) γ 3
v

S ,

B2 = − 4	vγ 5
v

3r2
√

PQ
, and

B3 = − (2ak + (r − 2)λ)γ 3
v

r3 (PQ)3/2 .

Here, we write

A11 = −3akr
(
a2

k + 3r2
) (

a2
k(r + 2) + r3

)
,

A12 = rv2
(
3ak

(
a2

k + 3r2
) − 2

(
a2

k(r + 3) − (r − 3)r2
)
λ
)

× (
a2

k(r + 2) − λ(4ak + (r − 2)λ) + r3
)
,

A13 = −6akλ
2
(
a2

k(r + 1)(r + 4) − ak(r + 2)λ + 4r3
)

+ 6λ
(
a2

k(r + 2) + r3
) (

a2
k(2r + 1) − (r − 3)r3

)
,

B11 = 2rv2
(
(r − 3)

(
a2

k + 2r2
) + 3akλ

)

× (
a2

k(r + 2) − λ(4ak + (r − 2)λ) + r3
)
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B12 = 3(2ak + (r − 2)λ)

× (
a3

k(r − 2)+2λ
(
a2

k(1−2r)+akrλ+(r − 3)r3
) + 5akr

3
)

P = a2
k(r + 2) − λ(4ak + (r − 2)λ) + r3

a2
k(r + 2) − 2akλ + r3

,

Q = a2
k(r + 2) − 2akλ + r3

r	
, and

S = 3r6	 (PQ)3/2 ,

where quantities have their usual meanings.

APPENDIX B: D ETAIL EXPRESSIONS O F THE
G OV E R N I N G E QUAT I O N S

The radial momentum, angular momentum, and energy equations
are obtained as

R0 + R1
dv

dr
+ R2

d�

dr
+ R3

dλ

dr
= 0, (B1)

E0 + E1
dv

dr
+ E2

d�

dr
+ E3

dλ

dr
= 0, and (B2)

L0 + L1
dv

dr
+ L2

d�

dr
+ L3

dλ

dr
= 0, (B3)

where

R0 =
(

∂�

∂r

)
λ

+ �

f + 2�

[
2 − 2r

a2
k + (r − 2)r

+ F ′
1

F1

− 3

r
− 2λ

(
a3

k + λ
(−2a2

k + akλ + (r − 3)r2
) + 3akr

2
)

RD

]
,

R1 = vγ 2
v − 2�γ 2

v

v(f + 2�)
,

R2 = 1

f + 2�
,

R3 = 2�
{

(r−2)λ
(
a2

k(r+2)−akλ+r3
)+ak

(
a2

k(r+2)+r3
)}

(f +2�)RD
,

L0 = γvhλLN
√
Q(

a2
k(r + 2) − 2akλ + r3

)2 P3/2
+ ∂ (�A1)

∂r
,

L1 = hλvγ 3
v√

PQ
+ ∂ (�A1)

∂v
,

L2 = 2γvλ(N + 1)

τ
√
PQ

+ ∂ (�A1)

∂�
,

L3 = hγv

P3/2
√
Q

+ ∂ (�A1)

∂λ
,

E0 = hγv

√
Q(

a2
k(r + 2) − 2akλ + r3

)2 P3/2
+ ∂ (�B1)

∂r
,

E1 = hvγ 3
v√

PQ
+ ∂ (�B1)

∂v
,

E2 = 2(N + 1)γv

τ
√

PQ
+ ∂ (�B1)

∂�
, and

E3 = h(2ak + (r − 2)λ)γv

r	P3/2Q3/2
+ ∂ (�B1)

∂λ
.

Here, we write

RD = (
a2

k(r + 2) − 2akλ + r3
)

× (
a2

k(r + 2) − λ(4ak + (r − 2)λ) + r3
)

LN = a4
k − 2ak

(
a2

k + r(3r − 4)
)
λ + (

a2
k − (r − 2)2r

)
λ2

+ 2a2
k(r − 2)r + r4,

� = 1

2
ln

[
r	

a2
k(r + 2) − 4akλ + r3 − λ2(r − 2)

]
,

F1 =
(
a2

k + r2
)2 + 2a2

k	(
a2

k + r2
)2 − 2a2

k	
, and

� = αasHr

vγv

√
	

,

where quantities have their usual meanings.

APPENDI X C : EXPLI CI T EXPRESSI ON O F
W I N D E QUAT I O N

We obtain the wind equation which is given by

dv

dr
= N (r, v, λ, �)

D (r, v, λ, �)
, (C1)

where

N (r, v, λ,�) = L3 (E2R0 − E0R2) + L2 (E0R3 − E3R0)

+L0 (E3R2 − E2R3) and

D (r, v, λ,�) = L3 (E1R2 − E2R1) + L1 (E2R3 − E3R2)

+L2 (E3R1 − E1R3) .
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