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Abstract We study the global accretion-ejection solutions
around a rotating black hole considering three widely ac-
cepted pseudo-Kerr potentials that satisfactorily mimic the
space-time geometry of rotating black holes. We find that
all the pseudo potentials provide standing shock solutions
for large range of flow parameters. We identify the effec-
tive region of the shock parameter space spanned by energy
(Ein) and angular momentum (λin) measured at the inner
critical point (xin) and find that the possibility of shock for-
mation becomes feeble when the viscosity parameter (α) is
increased. In addition, we find that shock parameter space
also depends on the adiabatic index (γ ) of the flow and the
shock formation continues to take place for a wide range
of γ as 1.5 ≤ γ ≤ 4/3. For all the pseudo potentials, we cal-
culate the critical viscosity parameter (αcri

shock) beyond which
standing shock ceases to exist and compare them as function
of black hole spin (ak). We observe that all the pseudo po-
tentials under consideration are qualitatively similar as far
as the standing shocks are concerned, however, they dif-
fer both qualitatively and quantitatively from each other for
rapidly rotating black holes. Further, we compute the mass
loss from the disc using all three pseudo potentials and find
that the maximum mass outflow rate (Rmax

ṁ ) weakly depends
on the black hole spin. To validate our model, we calculate
the maximum jet kinetic power using the accretion-ejection
formalism and compare it with the radio jet power of low-
hard state of the black hole X-ray binaries (hereafter XRBs).
The outcome of our results indicate that XRBs along the
‘outliers’ track might be rapidly rotating.
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1 Introduction

The accretion of matter around black holes is considered to
be the key physical mechanism in understanding the black
hole systems. More than four decades ago, Shakura and Sun-
yaev (1973) first introduced a standard Keplerian disc model
based on self-consistent solutions that successfully explains
the thermal component of the X-ray spectrum emitted from
the accretion disc around the black hole candidates. But it
fails to demonstrate the origin of hard power law tail com-
monly seen in the observed X-ray spectrum. To address this
issue, Sunyaev and Titarchuk (1985) proposed a accretion
disc model containing Compton cloud which inverse Comp-
tonize the Keplerian soft photons to produce hard X-ray
power law tail of the spectrum. The disc-corona model was
extensively studied by numerous group of researchers (Burn
and Kuperus 1988; Haardt and Maraschi 1991; Svensson
and Zdziarski 1994; Tanaka and Lewin 1995; Poutanen and
Svensson 1996; Zdziarski et al. 1998; Poutanen et al. 2017)
considering Keplerian flows around the black holes. Mean-
while, Chakrabarti and Titarchuk (1995) and Chakrabarti
and Mandal (2006) showed that the black hole spectral prop-
erties are better understood provided the disc is composed of
both Keplerian and sub-Keplerian matters. Indeed, in mod-
eling the accretion flow, inner boundary conditions of the
black hole demand that the angular momentum of the flow
close to the horizon needs to be necessarily sub-Keplerian
(Chakrabarti 1989, and references therein). Numerical study
also supports this view as the accretion flow enters in to the
black hole supersonically (Chakrabarti and Molteni 1995;
Lanzafame et al. 1998; Giri and Chakrabarti 2013; Suková
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and Janiuk 2015; Kim et al. 2017). Moreover, the above as-
sertions are also endorsed observationally for several black
hole candidates as well (Smith et al. 2001, 2002, 2007; Wu
et al. 2002; Yu et al. 2004; Cambier and Smith 2013; Deb-
nath et al. 2014; Iyer et al. 2015; Nandi et al. 2018).

In an accretion process, rotating inflowing matter starts
accreting from the outer edge of the disc with negligible ra-
dial velocity. Because of strong gravitational pull of black
hole, flow gains it radial velocity as it moves inward and
eventually crosses the critical point to become supersonic.
Depending on the angular momentum, the flow may have
multiple critical points and in that scenario, after crossing
the outer critical point, the inflowing matter experiences cen-
trifugal repulsion that causes a virtual barrier in the vicin-
ity of the black hole which triggers the discontinuous tran-
sition of flow variables in the subsonic region in the form
of shock waves (Chakrabarti 1989). Since, black hole does
not have any hard boundary, post-shock flow acts as a ef-
fective boundary layer around the black hole which is com-
monly called as post-shock corona (PSC) (Aktar et al. 2015).
Note that the existence of shock wave in an accretion flow
and their astrophysical implications have been extensively
studied in the literature both analytically and numerically
(Fukue 1987; Chakrabarti 1989; Lu et al. 1999; Becker and
Kazanas 2001; Das et al. 2001, 2014; Fukumura and Tsuruta
2004; Chakrabarti and Das 2004; Mondal and Chakrabarti
2006; Chattopadhyay and Das 2007; Das and Chattopad-
hyay 2008; Kumar and Chattopadhyay 2013; Suková and
Janiuk 2015; Le et al. 2016; Aktar et al. 2017; Sarkar et al.
2018; Dihingia et al. 2018).

Complete understanding of accretion properties around
the black holes using full general relativistic calculation is
rigorous and complex. The exercise becomes even more
difficult in the case of dissipative flow. Fortunately, there
exists an alternative approach in terms of pseudo-potential
that allows us to utilize the Newtonian concept while re-
taining the salient features of the black hole space-time ge-
ometry. It was Paczyńsky and Wiita (1980) who first intro-
duced pseudo-Newtonian potential for Schwarzchild black
hole and this potential receives tremendous success in both
analytical as well as numerical studies (Chakrabarti 1989;
Narayan and Yi 1994; Molteni et al. 1994, 1996; Machida
et al. 2000; Becker and Kazanas 2001; Proga and Begelman
2003; Chakrabarti and Das 2004; Yuan et al. 2012a,b; Okuda
2014; Das et al. 2014; Okuda and Das 2015; Lee et al. 2016).
Following the same spirit, several attempts were made to
formulate pseudo-Kerr potential for rotating black holes as
well (Kerr 1963). Initially, Chakrabarti and Khanna (1992)
proposed a pseudo-Kerr potential which is able to replicate
the Kerr-geometry at the equatorial plane with reasonable
accuracy. Later, Artemova et al. (1996) (hereafter ABN96)
introduced a prescription for free-fall acceleration around

the Kerr black hole. The derivation of pseudo-Kerr poten-
tial from this free-fall acceleration is simple and this poten-
tial reproduces the features of the Kerr geometry quite well.
After that, Mukhopadhyay (2002) (hereafter MU02) formu-
lated another pseudo-Kerr potential which is derived in the
realm of Kerr space-time geometry. Latter on, Chakrabarti
and Mondal (2006) (hereafter CM06) prescribed the mod-
ified version of the Chakrabarti and Khanna (1992) poten-
tial which satisfactorily mimics the space time geometry
around the rotating black holes of spin ak ≤ 0.8. All these
pseudo-potentials are formulated and prescribed individu-
ally and they have their won limitations to approximate the
Kerr space-time geometry. Since the ultimate motivation
of these potentials is to describe the space-time geometry
around the rotating black hole appropriately, it is essential as
well as timely to carry out a comparative study involving all
of them. In this context, we consider three different pseudo-
Kerr potentials, namely ABN96 (Artemova et al. 1996),
MU02 (Mukhopadhyay 2002) and CM06 (Chakrabarti and
Mondal 2006) and study the global transonic accretion flow
solutions that contain standing shocks. We compare the
shock parameter space spanned by the energy (Ein) and an-
gular momentum (λin) measured at the inner critical point
(xin) for inviscid as well as viscous flow. We also com-
pare the critical viscosity parameter calculated using dif-
ferent pseudo potentials that admits standing shock (αcri

shock)
and realize that all the pseudo-potentials behave similarly
for weakly rotating black holes although they differ con-
siderably when spin of the black hole is increased. Finally,
we allow mass loss from the disc and obtain the accretion-
ejection solutions. With this, we estimate the maximum out-
flow rates (Rmax

ṁ ) in terms of spin (ak) of the black hole em-
ploying the accretion-ejection formalism (Aktar et al. 2015)
for all the pseudo-Kerr potentials. Thereafter, we estimate
the maximum kinetic jet power and compare it with the
radio-X-ray correlation in black hole X-ray binaries (XRBs)
(Corbel et al. 2013). Based on this comparative study, we
indicate that the black hole XRBs along the ‘outliers’ track
are mostly rapidly rotating.

We organize this work as follows. In Sect. 2, we present
the description of the three pseudo-Kerr potentials. In
Sect. 3, we describe the assumptions and governing equa-
tions for our model. In Sect. 4, we discuss the solution
methodology and present the results in detail. In Sect. 5,
we employ our model formalism to estimate the kinetic jet
power. Finally, we draw the concluding remarks in Sect. 6.

2 Description of pseudo-Kerr potentials for
black holes

In this paper, we adopt three different pseudo-Kerr poten-
tials while studying the properties of shock waves around
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rotating black holes and subsequently compare the obtained
results. In the next, we present the detail description of these
pseudo-Kerr potentials which are given below.

(I) In order to study the properties of accretion flow
around rotating black hole, Artemova et al. (1996) pro-
posed the expression of pseudo-Kerr force which is
given by,

F1(x) = 1

x2−β(x − xH)β
, (1)

where xH is the position of the event horizon and x de-
notes the radial coordinate. The exact expression of the
event horizon is determined from the general relativity

(Novikov and Frolov 1989) as xH = 1+
√

(1 − a2
k ) and

the exponent β is expressed as β = xISCO
xH

− 1, where
xISCO stands for the position of the innermost stable
circular orbit (ISCO). Following Bardeen et al. (1972),
we obtain the expression for innermost stable circular
orbit as,

xISCO = 3 + Z2 ∓ [
(3 − Z1)(3 + Z1 + 2Z2)

]1/2
, (2)

where, Z1 = 1+(1−a2
k )

1/3[(1+ak)
1/3 +(1−ak)

1/3],
and Z2 = (3a2

k + Z2
1)1/2. Here, ‘∓’ sign stands for

prograde and retrograde flow. Here, ak represents the
black hole rotation parameter defined as the specific
spin angular momentum of the black hole. In order
to obtain the pseudo-Kerr potential Φ(x), we inte-
grate Eq. (1) analytically by imposing the condition
Φ(x) → 0 for x → ∞ (Fernández et al. 2015) and is
given by,

Φ1(x) =
{

1
(β−1)xH

[1 − ( x
x−xH

)β−1], if β �= 1

1
xH

ln(1 − xH
x

), if β = 1
(3)

for x > xH. The above pseudo-Kerr potential matches
exactly with PW80 potential for ak = 0 and β = 2. In
general, this pseudo-Kerr potential shows good agree-
ment with the result obtained from Kerr geometry.
However, for highly spinning black hole, the accretion
solutions deviate from the general relativistic results
within the limit of 10%–20% error. The general form
of the effective pseudo potential (Φeff

1 ) is given by,

Φeff
1 = λ2

2x2
+ Φ1(x), (4)

where the first term in the right hand side denotes the
centrifugal potential corresponding to the specific an-
gular momentum of the flow (λ).

(II) Mukhopadhyay (2002) formulated the expression of
gravitational force F(x) corresponding to the pseudo

potential around rotating black hole which is given by,

F2(x) = (x2 − 2ak

√
x + a2

k )
2

x3[√x(x − 2) + ak]2
. (5)

The above pseudo-Kerr force successfully reproduces
the inner disk properties which are in close agreement
with the Kerr geometry for moderately spinning black
holes. In case of rapidly rotating black holes, accretion
solution deviates from the general relativistic results
although the error remains restricted within the accept-
able limit of 10%. The corresponding expression of the
pseudo potential (Φ2(x)) is obtained as,

Φ2(x) =
∫ x

∞
F2(x)dx. (6)

It is to be noted that Φ2(x) reduces to the PW80 po-
tential for ak = 0.

Similar to Eq. (4), we obtain the effective pseudo-
Kerr potential as,

Φeff
2 = λ2

2x2
+ Φ2(x). (7)

(III) Chakrabarti and Mondal (2006) supplemented an al-
ternative pseudo-Kerr effective potential that satisfac-
torily captures the general relativistic features around
black hole for ak � 0.8. The expression of the effective
pseudo-Kerr potential (Φeff

3 ) is given by,

Φeff
3 = −B + √

B2 − 4AC

2A
, (8)

where,

A = ε2λ2

2x2
,

B = −1 + ε2ωλr2

x2
+ 2akλ

r2x
,

C = 1 − 1

r − x0
+ 2akω

x
+ ε2ω2r4

2x2
.

Here, x and r represent the cylindrical and spherical
radial distance. Here, x0 = 0.04 + 0.97ak + 0.085a2

k ,
ω = 2ak/(x

3 + a2
kx + 2a2

k ) and α2 = (x2 − 2x +
a2
k )/(x

2 +a2
k +2a2

k/x), ε is the redshift factor. The cor-
responding pseudo-Kerr force is obtained as F3(x) ≡
Φ ′

r = (
∂Φeff

3
∂r

)z
x , where, z is the vertical height in the

cylindrical coordinate system and r = √
x2 + z2. In the

next section, we present the governing equations that
describe the inflowing and outflowing matter around a
rotating black hole.
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3 Modeling of accretion disc

We consider a steady, advective, viscous, axisymmetric ac-
cretion flow around a rotating black hole. Here, we consider
the disc is confined around the equatorial plane and the jet or
outflow geometry is considered in the off-equatorial plane
about the axis of rotation of the black hole (Molteni et al.
1996; Chattopadhyay and Das 2007; Aktar et al. 2017). For
simplicity, we adopt pseudo-Kerr approach to describe the
space-time geometry around rotating black holes. In order
to express the flow variables, we consider an unit system as
G = MBH = c = 1 throughout the paper. In this unit system,
radial coordinate, angular momentum and velocity are com-
puted in units of GMBH/c2, GMBH/c, and c, respectively.

3.1 Governing equations for accretion

Here, we present the hydrodynamical equations that govern
the accretion flow around the rotating black holes and are
given by,

(i) The radial momentum conservation equation:

v
dv

dx
+ 1

ρ

dP

dx
+ dΦeff

i

dx
= 0, (9)

where v, P , ρ and x represent the radial velocity,
isotropic gas pressure, density and radial distance of the
flow, respectively. Here, Φeff

i is the effective pseudo-
Kerr potential around black hole and the subscript i

can take any one value among 1, 2, and 3 depending
on the choice of the pseudo-potentials. We define the
adiabatic sound speed as a = √

γP/ρ, where γ repre-
sents the adiabatic index. In this work, we use γ = 1.4
all throughout unless otherwise stated.

(ii) The mass conservation equation:

Ṁ = 4πρvxh(x), (10)

where Ṁ denotes the mass accretion rate which is a
global constant throughout the flow except the region
of mass loss and 4π is the geometric constant. Here,
h(x) refers to the half-thickness of the flow. Consider-
ing the hydrostatic equilibrium in the vertical direction
for thin disc, we calculate the half-thickness of the disc
as,

h(x) = a

√
x

γFi(x)
, (11)

where Fi(x) represents the pseudo-Kerr force corre-
sponding to the pseudo-Kerr potential described in
Sect. 2.

(iii) The angular momentum distribution equation:

v
dλ

dx
+ 1

Σx

d

dx

(
x2Wxφ

) = 0, (12)

where Wxφ is the xφ component of the viscous stress
tensor. Following Chakrabarti (1996), we consider the
expression of Wxφ as,

W
(1)
xφ = −α

(
W + Σv2), (13)

where α denotes the viscosity parameter. Here, W

(= 2In+1Ph) and Σ (= 2Inρh) represent the verti-
cally integrated pressure and density. Here, In and In+1

are the constant factors of integration of vertically av-
eraged density and pressure (Matsumoto et al. 1984)
where In = (2nn!)2/(2n + 1)! and n [= 1/(γ − 1)] is
the polytropic index.

Finally,
(iv) The entropy generation equation:

ΣvT
ds

dx
= Q+ − Q−, (14)

where T is the temperature and s is the entropy density
of the accretion flow, respectively. In addition, Q+ and
Q− represent the heat gain and heat lost by the flow.
In this work, for the purpose of simplicity, we ignore
cooling effect and consequently we choose Q− = 0.
After some simple algebra, Eq. (14) becomes,

v

γ − 1

[
1

ρ

dP

dx
− γP

ρ2

dρ

dx

]
= −Q+

ρh
= −H. (15)

Using the mixed shear stress prescription (Chakrabarti
1996; Aktar et al. 2017), we calculate the heating of the
flow by means of viscous dissipation as,

Q+ = Aρh
(
ga2 + γ v2)

(
x

dΩ

dx

)
, (16)

where, A = − 2αIn

γ
and g = In+1

In
.

3.2 Critical point conditions

In the process of accretion on to black hole, inflowing mat-
ter starts its journey subsonically from the outer edge of the
disk and eventually enters into the black hole with super-
sonic speed. This scenario evidently demands that accretion
flow must change its sonic state from subsonic to supersonic
at some point between the outer edge of the disc and the
black hole horizon. Such a special point is called as critical
point where accretion flow maintains certain conditions. In
order to calculate these critical point conditions, we make
use of Eqs. (9)–(16) to obtain the velocity gradient which is
given by,

dv

dx
= N

D
, (17a)
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where,

N = − Aα(ga2 + γ v2)2

γ vx
− 3a2v

(γ − 1)x

+ a2v

(γ − 1)

(
d lnFi(x)

dx

)
− 3Aαga2(ga2 + γ v2)

γ vx

+
[

2Aαg(ga2 + γ v2)

v
+ (γ + 1)v

(γ − 1)

](
dΦeff

i

dx

)

+ Aαga2(ga2 + γ v2)

γ v

(
d lnFi(x)

dx

)

+ 2Aλ(ga2 + γ v2)

x2
, (17b)

and

D = 2a2

(γ − 1)
− (γ + 1)v2

(γ − 1)

− Aα
(
ga2 + γ v2)

[
(2g − 1) − ga2

γ v2

]
. (17c)

Using Eqs. (12) and (17a), we calculate the gradient of
angular momentum as,

dλ

dx
= α

γ v

(
ga2 + γ v2) + 2αxga

γ v

(
da

dx

)

+ αx

(
1 − ga2

γ v2

)(
dv

dx

)
. (18)

Further, we calculate the gradient of sound speed using
Eqs. (9)–(11) as,

da

dx
=

(
a

v
− γ v

a

)
dv

dx
+ 3a

2x
− a

2

(
d lnFi(x)

dx

)

− γ

a

(
dΦeff

i

dx

)
. (19)

As discussed, the accreting matter around black hole is
smooth everywhere along the flow streamline and therefore,
the radial velocity gradient must be real and finite always.
However, depending on the flow variables, D may vanish
at some radial coordinate. Since dv/dx remains smooth al-
ways, the point where D tends to zero, N must also van-
ish there. Such a point where both N and D simultaneously
goes to zero is identified as critical point and N = D = 0
are the critical point conditions. Setting D = 0, we find the
radial velocity of the flow (vc) at the critical point (xc) as,

v2
c =

−mb −
√

m2
b − 4mamc

2ma

a2
c , (20)

where ac is the sound speed at xc and

ma = − Aαγ 2(γ − 1)(2g − 1) − γ (γ + 1),

mb = 2γ − 2Aαgγ (γ − 1)(g − 1),

mc = Aαg2(γ − 1).

Setting N = 0, we get an algebraic equation of sound
speed (ac) as,

a1a
2
c + a2ac + a3 = 0, (21)

where

a1 = − Aα(g + γM2
c )2

γ xc

− 3M2
c

(γ − 1)xc

+ M2
c

(γ − 1)

(
d lnFi(x)

dx

)

c

− 3Aαg(g + γM2
c )

γ xc

+ Aαg(g + γM2
c )

γ

(
d lnFi(x)

dx

)

c

,

a2 = 2AλMc(g + γM2
c )

x2
c

, and

a3 =
[

2Aαg
(
g + γM2

c

) + (γ + 1)M2
c

(γ − 1)

](
dΦeff

i

dx

)

c

.

Here, Mc refers the Mach number at xc, where Mach num-
ber of the flow is defined as M = v/a. We solve Eq. (21) to
calculate ac and consider only the positive root of Eq. (21)
as ac > 0 always. The detail steps to obtain ac from Eq. (21)
is given in the Appendix.

The nature of the critical point is determined by the value
of dv/dx at xc (Das 2007, and reference therein). At the crit-
ical point, dv/dx = 0/0 and therefore, we apply l’Hospital
rule to calculate (dv/dx)c. Usually, (dv/dx)c possesses two
values. When both the derivatives are real and of opposite
sign, the critical point is called as saddle type critical point
and any physically acceptable accretion solution can only
pass through it. When shock forms, accretion flow passes
through two saddle type critical points: one in the pre-shock
region and the other in the post-shock region (Chakrabarti
and Das 2004, and reference therein). In the subsequent sec-
tions, we refer the saddle type critical point as critical point
only. In general, critical points in the post-shock flow form
very close to the horizon and called as inner critical points
(xin). On the other hand, critical points in the pre-shock flow
usually form far away from the black hole and called as outer
critical points (xout).

3.3 Standing shock conditions

In order to form standing shock, accreting flow variables
must satisfy the Rankine-Hugonoit (RH) shock conditions
(Landau and Lifshitz 1959) which are given by,
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(i) the conservation of energy flux:
The specific energy of the flow (E) is given by

(Becker et al. 2008; Das et al. 2009),

E = v2

2
+ a2

γ − 1
− λ2

x2
+ λλH

x2
+ Φeff

i ,

where λH denotes the angular momentum of the flow
at the event horizon. Since energy conservation is pre-
served across the shock front, using E+ = E−, we ob-
tain

E+ = E−, (22a)

where the subscripts ‘−’ and ‘+’ indicate the flow
variables just before and after the shock, respectively.
Here, E(x) denotes the local specific energy of the flow
equivalent to the canonical Bernoulli parameter and
is calculated as E(x) = v2/2 + a2/(γ − 1) + Φeff

i . It
may be noted that while obtaining Eq. (22a), we use
λ+ = λ− across the shock front.

(ii) the conservation of mass flux:

Ṁ+ = Ṁ− − Ṁout = Ṁ−(1 − Rṁ), (22b)

where Ṁ+ and Ṁ− represent the accretion rates across
the shock front, respectively. The outflow rate is de-
fined as Rṁ = Ṁout/Ṁ−.

Finally,
(iii) the conservation of momentum flux:

W+ + Σ+v2+ = W− + Σ−v2−, (22c)

where, W and Σ are the vertically integrated pressure
and density as described earlier (Das et al. 2001, and
references therein).

3.4 Equations for outflow and computation of mass
loss

Due to the shock transition, the post-shock flow becomes
very hot and dense and eventually, PSC acts as an effective
boundary around the black hole. As a result, a part of the ac-
creting matter is deflected by PSC and driven out in the verti-
cal direction by the excess thermal gradient force across the
shock, producing bipolar outflows (Chakrabarti 1999; Chat-
topadhyay and Das 2007; Das and Chattopadhyay 2008, and
reference therein). To calculate the mass outflow rates, we
employ the formalism adopted by Aktar et al. (2015). As
the jets are tenuous in nature, we ignore viscosity in the out-
flowing matter. We also consider that the outflowing mat-
ter obey the polytropic equation of states, i.e., Pj = Kjρ

γ

j ,
where subscript ‘j ’ refers the jet variables and Kj represents
the measure of specific entropy of the jet, respectively. The
equations of motion for the outflow are given below.

(i) The energy conservation equation of outflow:

Ej = v2
j

2
+ a2

j

γ − 1
+ Φeff

i , (23)

where Ej , vj and aj are the specific energy, velocity
and sound speed for the outflowing matter, respectively.
Φeff

i is the effective pseudo-Kerr potentials mentioned
in Sect. 2.

(ii) The mass conservation equation of outflow:

Ṁout = ρjvjAj , (24)

where Ṁout and Aj are the outflowing rate of mass
and area function for the jet, respectively. We calculate
Aj by knowing the radius of two boundary surfaces,
namely centrifugal barrier (CB) and funnel wall (FW)
(Molteni et al. 1996). The radius of CB is obtained using
pressure maximum surface i.e., (dΦeff

i /dx)rCB = 0 and
the radius of FW is defined as the pressure minimum
surface, i.e., Φeff

i |rFW = 0 (Molteni et al. 1996; Aktar
et al. 2015, 2017). We also consider the projection fac-

tor
√

1 + (dxj /dyj )2 for calculating jet area function
(Kumar and Chattopadhyay 2013; Aktar et al. 2017).

As the outflow is originated from the PSC region, we
assume that the outflow is essentially launched with the
same density as in the PSC, i.e., ρj = ρ+. Therefore, us-
ing Eqs. (10), (22b) and (24), we calculate the mass loss rate
as,

Rṁ = RvjAj

√
γFi

4πa+v−x
3/2
s

, (25)

where R is the compression ratio defined as R = Σ+/Σ−.
Further, vj , Aj and Fi denote the jet velocity, jet area func-
tion and pseudo-Kerr force calculated at the shock xs , re-
spectively. We use the successive iterative method to calcu-
late Rṁ as described in Aktar et al. (2015).

4 Results

4.1 Global accretion solutions including shock

In order to obtain the global accretion solution around the
black holes, the inner boundary conditions demand that at
the horizon, the flow radial velocity approaches the speed of
light and the viscous stress vanishes. Keeping these in mind,
we choose a set of flow variables, namely, critical point (xc),
angular momentum at xc (λc) and viscosity parameter (α),
and simultaneously integrate Eqs. (17a)–(19) from the crit-
ical point in the outward direction. When the flow reaches
to a large distance representing the outer edge of the disc
(xedge), we again integrate Eqs. (17a)–(19) from the critical
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Fig. 1 Illustration of shocked accretion solution where the variation
of Mach number (M = v/a) is shown with radial distance (x). In the
upper panel, results are shown for non-rotating (ak = 0) black hole
whereas in the lower panel, ak = 0.4 is chosen. Solid, dotted and
dashed curves represent the solutions obtained for CM06, MU02 and
ABN96 potentials, respectively. Here, we fix γ = 1.4. See text for de-
tails

point up to close to the horizon. Finally, we join these two
parts of the solution to get a complete global transonic accre-
tion solution around the black holes, provided the radial ve-
locity of the flow becomes comparable to the speed of light
just outside the horizon. Here, we avoid to check the vanish-
ing of the viscous stress at the horizon, simply because the
adopted pseudo potential approach is generally poorly valid
near the event horizon. Further, we note the values of all the
flow variables at xedge. In actuality, we would get the identi-
cal accretion solution obtained above, when Eqs. (17a)–(19)
are solved using the flow variables at the outer edge of the
disc.

In Sect. 3.2, we point out that shocked accretion flow
must contains two critical points. In reality, during the
course of accretion, subsonic accretion flow from the outer
edge of the disc first crosses the outer critical point (xout)
to become supersonic and continues to accrete towards the
black hole. Meanwhile, centrifugal repulsion becomes dom-
inant in the vicinity of the black hole and hence, inflowing
matter is forced to be slowed down there. Effectively, a vir-
tual centrifugal barrier is formed that triggers the discon-
tinuous transitions of flow variables in the subsonic region
which is commonly known as shock transition. For standing
shock transition, RH shock conditions need to be satisfied
(see Sect. 3.3). After the shock transition, flow gradually at-
tains its speed due to the strong gravitational pull and ulti-
mately enters into the black hole supersonically after pass-
ing through the inner critical point (xin). In this subsection,
we consider no mass loss from the disk i.e., Rṁ = 0.

In Fig. 1, we compare the shock induced global accre-
tion solutions obtained using different pseudo-Kerr poten-

tials. Here, the input parameters of the flow are kept fixed
at the outer edge of the disc. In the upper panel (Fig. 1a),
we choose the outer edge of the disc as xedge = 1000 and
inviscid accreting flow is injected from xedge with energy
Eedge = 0.001 and λedge = 3.35 on to a non-rotating black
hole. Solid, dotted and dashed curves represent the results
obtained for CM06, MU02 and ABN96 potentials where the
vertical arrows indicate the location of shock transitions at
115.07 for CM06 and at 42.84 for both MU02 and ABN96
potentials. In the case of non-rotating black hole (ak), since
MU02 and ABN96 potential become identical, accretion so-
lutions for these two potentials display complete overlap all
throughout. In the lower panel (Fig. 1b), we choose ak = 0.4
and compare the shocked accretion solutions for three dif-
ferent potentials considering the same set of inflow parame-
ter fixed at xedge except λedge. Here, we fix xedge = 1000,
Eedge = 0.001, λedge = 2.98 and α = 0. As before, solid,
dotted and dashed curves denote the results corresponding
to CM06, MU02 and ABN96 potentials and the respec-
tive shock locations are calculated as 46.56 (CM06), 33.99
(MU02), and 55.79 (ABN96), respectively. From the figure,
it is clear that even for the same set of input parameters, the
adopted potentials display noticeably different results as far
as the shock transition is concerned. This possibly happens
due to the fact that these potentials are primarily approxi-
mated and they tentatively mimic the space-time geometry
around the rotating black holes. In both panels, inner criti-
cal point (xin) and outer critical point (xout) are marked with
filled circles and overall direction of the flow motion is indi-
cated by arrows.

It is generally believed that in the context of understand-
ing the black hole spectral properties (Chakrabarti and Man-
dal 2006) as well as jets and outflows (Das and Chakrabarti
2008; Aktar et al. 2015, 2017; Sarkar and Das 2016), shock
induced global accretion solutions are potentially preferred
over the shock free solutions. Therefore, it is worthy to iden-
tify the range of flow parameters that admits shocks. To-
wards this, in Fig. 2, we compute the shock parameter space
spanned by the energy (Ein) and angular momentum (λin) of
the inviscid flow measured at the inner critical point (xin). In
the figure, we fix the spin values as ak = 0.0 (a), 0.4 (b) and
0.8 (c), respectively and in each panel, region bounded by
the solid, dotted and dashed curves are obtained for CM06,
MU02 and ABN96 pseudo-Kerr potentials. As expected, in
Fig. 2a, the shock parameter spaces for MU02 and ABN96
potentials are overlapped. This is obvious because MU02
and ABN96 potentials exactly reduce to same potential form
for ak = 0.0 as mentioned earlier. But, the shock parameter
space for CM06 significantly differs from the same obtained
for the remaining two potentials although a common over-
lapping region is found. In Fig. 2b, we choose ak = 0.4 and
observe that the shock parameter spaces deviate from each
other for all the potentials. Interestingly, here also a com-
mon region among the parameter spaces is found. These
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Fig. 2 Classification of shock parameter space for three different pseu-
do-Kerr potentials. Here, inviscid flow (α = 0.0) is considered for three
different spin values (ak = 0.0,0.4 and 0.8) which are marked in each
panel. Solid, dotted and dashed curves represent results for CM06,
MU02 and ABN96 pseudo-Kerr potentials, respectively. Here, we fix
γ = 1.4. See text for details

common regions are particularly important to compare the
accretion solutions among different adopted potentials (see
Fig. 1). Moreover, we observe that the parameter spaces shift
towards higher energy and lower angular momentum do-
main with the increase of the black hole spin (ak) for all the
potentials. This apparently indicates that the accretion flow
continues to sustain standing shock around rapidly rotating
black holes provided its energy is relatively high. When the
black hole spin is further increased as ak = 0.8, shock pa-
rameter space for ABN96 is significantly shifted to the low
angular momentum side and completely separated from the
rest leaving any short of common union with others.

Until now, we have regarded the accreting matter to be
adiabatic in nature and the flow is characterized by an adia-
batic index having a representative value γ = 1.4. However,
in reality, the acceptable theoretical limit of the adiabatic
index lies in the range 4/3 ≤ γ ≤ 5/3 (Frank et al. 2002).
In order to understand the role of the γ values in deciding
the global accretion solutions containing standing shock, we
study the shock parameter space as function of γ for all the
potentials. While doing this, the accretion flow is consid-
ered to be of three types, namely thermally ultra-relativistic
(γ ∼ 4/3), thermally trans-relativistic (γ ∼ 1.4) and ther-
mally semi-non-relativistic (γ ∼ 1.5), respectively (Kumar
et al. 2013; Aktar et al. 2015) and obtain the shock parame-
ter space as shown in Fig. 3. Here, we choose, ak = 0.5 and
α = 0 and the obtained results are plotted in Fig. 3 where in
each panel, solid, dotted and dashed curves represent the re-
sults corresponding to CM06, MU02 and ABN96 potentials.

Fig. 3 Comparison of shock parameter space in λin −Ein plane for dif-
ferent γ values. Region separated using solid, dotted and dashed curves
are obtained for CM06, MU02 and ABN96 pseudo-Kerr potentials, re-
spectively. Here, we consider α = 0 and ak = 0.5. In each panel, the
value of γ is marked. See text for details

Also, γ values are marked in each panel. We find that for a
given γ , the effective region of parameter spaces are differ-
ent from each other for all the three potentials. In addition,
we observe that as the γ value is increased, the shock param-
eter spaces shift towards the lower angular momentum and
lower energy sides irrespective to the any chosen form of
potential. What is more is that effective region of the param-
eter space is shrunk as γ value is increased. This essentially
indicates that the possibility of shock formation is reduced
when the flow moves towards non-relativistic limit (Aktar
et al. 2015).

So far, we have studied the shocked accretion solutions
for non-dissipative flow. In our subsequent analysis, we re-
lax this criteria and consider the viscous dissipation process
to be active in the flow. With this, we calculate the stand-
ing shock parameter space for all the adopted potentials in
terms of viscosity parameter (α) and display the results in
Figs. 4 and 5. We choose ak = 0.4 in Fig. 4 and ak = 0.8
in Fig. 5 and in both figures, vary the viscosity parameter as
α = 0.01 (a), 0.1 (b) and 0.15 (c), respectively. In each panel,
solid, dotted and dashed curves represent the results corre-
sponding to CM06, MU02 and ABN96 potentials, respec-
tively. Inside the disc, viscosity plays dual role; in one hand
viscosity transports angular momentum outward reducing
its value at the inner edge and in the other hand, viscous dis-
sipation causes the heating of the flow as it accretes. Because
of this, as viscosity is increased, standing shock parameter
space is overall shifted towards the higher energy and lower
angular momentum side for all the potentials. Moreover, the
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Fig. 4 Modification of shock parameter space for dissipative accretion
flow in λin − Ein plane. Effective region bounded with solid, dotted
and dashed curves are calculated for CM06, MU02 and ABM96 pseu-
do-potential, respectively. Here, the results are obtained considering
ak = 0.4 and γ = 1.4. In each panel viscosity parameter is marked.
See text for details

Fig. 5 Same as Fig. 4 but black hole spin is chosen as ak = 0.8

increase of α introduces enhanced viscous dissipation inside
the flow and therefore, the possibility of shock formation is
reduced (Chakrabarti and Das 2004; Das 2007; Aktar et al.
2017) which is being realized as the effective region of the
parameters space is shrunk when the value of the α param-
eter is increased. However, it is not possible to increase α

Fig. 6 Variation of critical viscosity parameter (αcri
shock) for shock as

function of black hole spin (ak ). Filled circles joined with solid, dotted
and dashed lines represent results obtained using CM06, MU02 and
ABN96 pseudo-potentials, respectively. For CM06, we extend the cal-
culation of αcri

shock beyond ak > 0.8 to examine the overall trend and
show the result using dot-dashed curve. Here, we choose γ = 1.4. See
text for details

indefinitely, because beyond a critical limit (αcri
shock), shock

solutions disappears completely.
Further, we calculate the critical viscosity parameter

(αcri
shock) that allows standing shock solutions and plot the

variation of αcri
shock with the spin parameter (ak) for three

different potentials, as depicted in Fig. 6. Here, filled cir-
cles connected by solid lines, dotted lines and dashed lines
are for CM06, MU02 and ABN96 potentials, respectively.
While calculating αcri

shock for a fixed ak , we freely vary the
flow parameters, namely xin, Ein and λin, respectively. Usu-
ally, in the weak viscosity limit, the sub-Keplerian flow joins
with Keplerian disc quite far away from black hole. Hence,
the possibility of finding standing shock which requires the
existence of multiple critical points increases at the lower
viscosity range. On the contrary, when α > αcri

shock, Keple-
rian disc approaches very close to the black hole result-
ing the flow to pass through the inner critical point only
(Chakrabarti 1996) without having a shock. We find that
αcri

shock is anti-correlated with ak for all the potentials. Note
that we calculate shock solutions for CM06 potential con-
sidering rapidly rotating black hole (ak → 0.98) as well,
although this potential bears limitation to mimic the Kerr
geometry satisfactorily for ak > 0.8. Certainly, this intro-
duces error in our calculation, however, it provides us the
overall trend of αcri

shock variation towards the highest value
of ak . In case of MU02 and ABN96 potentials, no such re-
striction is imposed on the upper limit of ak values. But, we
do not find standing shock solutions beyond ak > 0.84 for
MU02 and ak > 0.92 for ABN96 potentials, respectively. In
addition, we observe that αcri

shock obtained from different po-
tentials possesses close by values for weakly rotating black
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Fig. 7 Variation of maximum outflow rates Rmax
ṁ with the black hole

spin ak . Upper panel (a): for γ = 4/3 and lower panel (b): for γ = 1.5,
respectively. Solid, dotted and dashed curves are calculated for CM06,
MU02 and ABM96 pseudo-potentials, respectively. Here, viscosity pa-
rameter is chosen as α = 0.05. See text for details

holes and it starts deviating from each other with the in-
crease of ak .

4.2 Estimation of maximum outflow rates

So far, we have performed a comparative study of the ac-
cretion flows using pseudo-Kerr potentials where mass loss
from the disc is ignored. In reality, due to the shock transi-
tion, a part of the inflowing matter is emerged out from the
disc as outflow. Rigorous investigations including mass loss
from the disc around rotating black hole have already been
performed by Aktar et al. (2015, 2017, 2018, and references
therein) using pseudo-Kerr potential (Chakrabarti and Mon-
dal 2006). In this work, we carry out a comparative study of
maximum mass outflow rates (Rmax

ṁ ) in terms of black hole
spin (ak) using different pseudo-Kerr potentials to examine
their effectiveness. Employing the accretion-ejection model
formalism, we self-consistently calculate the mass outflow
rates (Rṁ) by supplying the inflow parameters, namely flow
energy (Ein), flow angular momentum (λin), viscosity pa-
rameters (α), adiabatic index (γ ) and spin (ak) of the black
hole. Now, we freely vary all the inflow parameters and cal-
culate Rmax

ṁ for a particular ak (Aktar et al. 2015, 2017). In
Fig. 7, we show the variation of Rmax

ṁ with ak for viscous
flow (α = 0.05). Here, we choose the two extreme limit of
adiabatic index, namely γ = 4/3 that corresponds to ther-
mally ultra-relativistic flow (upper panel) and γ = 1.5 rep-
resenting the thermally semi-non-relativistic (lower panel)
(Aktar et al. 2015). For γ = 4/3, we find that Rmax

ṁ cor-
responding to CM06, MU02 and ABN96 lies in the range
20.37–22.11%, 23.73–25.28% and 24.81–26.83%, respec-
tively. On the other hand, when γ = 1.5 is chosen, the value

of Rmax
ṁ belongs to the range 11.67–12.68%, 12.91–14.43%

and 14.09–16.03% for CM06, MU02 and ABN96 potentials.
Overall, we realize that the ultra-relativistic (γ = 4/3)

flows produce more outflows compared to the semi-non-
relativistic (γ = 1.5) flows as far as the maximum outflow
rates are concerned. This happens due to the fact that in
this work, outflows are purely thermally driven. It may also
be noted that ABN96 pseudo potential effectively provides
more Rmax

ṁ compared to other two potentials. Moreover, we
observe that Rmax

ṁ depends on ak very weakly for all the po-
tentials. With this findings, we argue that the correlation be-
tween black hole spin and powering jets seems to be feeble.
It may be noted that the value of Rmax

ṁ allows us to compute
the kinetic jet power (Lest

jet ) for black hole sources (Aktar
et al. 2015; Nandi et al. 2018).

In the next section, we apply our accretion-ejection for-
malism to estimate the kinetic jet power and attempt to ex-
plain the observed radio jet power in the low-hard state of
the black hole XRBs.

5 Astrophysical application

5.1 X-Ray and radio correlation of XRBs

Fender et al. (2005, 2009) reported the existence of radio-X-
ray correlation in the low-hard states of the XRBs. Interest-
ingly, most of the XRBs follow a universal non-linear corre-
lation, namely FR ∝ Fb

X , where b ∼ 0.5–0.7 and FR and FX

denotes radio and X-ray fluxes, respectively (Hannikainen
et al. 1998; Corbel et al. 2000, 2003, 2013; Gallo et al.
2003). However, a growing number of sources e.g., H1743-
322, Swift 1753.3-0127, XTE J1650-500, XTE J1752-223
are found to lie well outside the universal radio-X-ray cor-
relation (Jonker et al. 2010; Coriat et al. 2011; Cadolle Bel
et al. 2007; Soleri et al. 2010; Corbel et al. 2004; Ratti et al.
2012; Huang et al. 2014) following an ‘outliers’ track. These
sources follow a steeper correlation as b ∼ 1.4 (Coriat et al.
2011).

5.2 Kinetic jet power of steady-compact jets: theory
and observation

In this section, we compare the theoretically obtained kinetic
jet power with observations. While doing that we convert
the observed radio luminosity to jet power. The empirical
relation between radio luminosity and jet power is computed
considering a simple conical jet model of optically thick jet
as (Blandford and Königl 1979; Falcke and Biermann 1996;
Heinz and Sunyaev 2003),

LR ∝ L
17/12
jet , (26)
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Fig. 8 Comparison of observed
and theoretical kinetic jet power
as a function of accretion power.
The different symbols and
colors represent the data of
low-hard state of 20 black hole
XRBs which are taken from
Corbel et al. (2013). Length
scale mentioned within the
parenthesis indicates the
distance of the source. The
corresponding solid, dotted and
dashed lines represent the
maximum kinetic jet power
from theoretical model for
CM06, MU02 and ABN96
potentials, respectively. Chosen
values of (ak, ηjet) used in
model calculations are marked.
See the text for details

where LR (= 4πd2FR) is the radio luminosity measured
at frequency ν, FR is the radio flux measured at frequency
ν and d is the distance of the source, respectively. Later,
Heinz and Grimm (2005) identifies a relation between the
jet power and radio luminosity for Cyg X-1 and GRS
1915+105 considering the normalization factor ∼ 6.1 ×
10−23 (Huang et al. 2014) as,

Ljet = 4.79 × 1015L
12/17
R erg s−1. (27)

In the low-hard states, the jets are not relativistically
boosted and thus we ignore Doppler correction while esti-
mating jet power (Gallo et al. 2003). In the present analysis,
we employ Eq. (27) to estimate the kinetic jet power from
radio luminosity for all the sources under consideration. We
also calculate the accretion power by using X-ray luminosity
(LX) as Ṁinc

2 = LX/ηacc, where ηacc is the accretion effi-
ciency factor and LX = 4πd2FX , FX being the X-ray flux.
We obtain FX (1–10 keV) and LR (8.6 GHz) fluxes for the
various sources from Corbel et al. (2013, references therein)
and plotted in Fig. 8. The different symbols and colors repre-
sent the different sources. It is noteworthy that the spin value
of some of the selected sources is not yet settled. Hence, for
simplicity, we choose ηacc = 0.15 while calculating the ac-
cretion power for all the selected sources (Frank et al. 2002;
Longair 2011), presented in Fig. 8.

Employing our accretion-ejection model formalism, we
compute the maximum kinetic jet power (Aktar et al. 2015)
as,

Lmax
jet = ηjet × Rmax

ṁ × Ṁin × c2 erg s−1, (28)

where, Rmax
ṁ is the maximum outflow rates and ηjet is the

jet efficiency factor. For the purpose of representation, we

choose α = 0.05 and γ = 4/3 and calculate Rmax
ṁ for non-

rotating (ak = 0.0) and rapidly rotating (ak = 0.8) black
holes, respectively (see Fig. 7). In this analysis, we con-
sciously restrict ourselves to choose ak ≤ 0.8, as one of the
adopted potential (CM06) fails to describe space-time ge-
ometry satisfactorily above this limiting range of spin value.

We compare our theoretical results (Eq. (28)) with obser-
vation (Eq. (27)) which is shown in Fig. 8. The solid, dotted
and dashed curves represent the theoretically obtained ki-
netic jet power (Lmax

jet ) for CM06, MU02 and ABN96 po-
tentials, respectively where the lower curves are for non-
rotating black holes (ηjet = 0.1) and the upper curves are
for rapidly rotating black holes (ηjet = 0.3), as depicted in
Fig. 8. For ak = 0.0, maximum outflow rates are computed
as Rmax

ṁ = 0.2037 (CM06), 0.2373 (MU02) and 0.2481
(ABN96) whereas Rmax

ṁ = 0.2175 (CM06), 0.2519 (MU02),
0.2645 (ABN96) for ak = 0.8, respectively. It is clear that
Lmax

jet roughly remains insensitive on the choice of potential.
And, finally we observe that the ‘outliers’ track (Corbel et al.
2013, references therein) agrees quite consistently with the
model predictions for rapidly rotating black holes.

6 Concluding remarks

In this work, we present a comparative study of the accre-
tion-ejection solutions including shock wave by adopt-
ing three pseudo potentials prescribed by Artemova et al.
(1996), Mukhopadhyay (2002) and Chakrabarti and Mondal
(2006). These potentials are known to describe the space-
time geometry of rotating black holes quite satisfactorily.
The advantage of using pseudo-Kerr potentials in lieu of the
general theory of relativity (GTR) is that it allows us to in-
vestigate the accretion flow properties following the New-
tonian approach (i.e. avoiding the rigorous mathematical
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complexity of GTR) while retaining all the salient features
of complex space time geometry around a rotating black
hole. Utilizing these potentials, we present the generalized
governing equations that describe the dissipative accretion
flow around the rotating black hole. We then simultaneously
solve these equations to obtain the global transonic accretion
solutions and employing the Rankine-Hugoniot shock con-
ditions, we further obtain the shock induced global accretion
solutions around a rotating black hole.

We find that standing shock continues to form in all the
adopted pseudo-Kerr potentials (see Fig. 1). We also observe
that shocked solutions are not the discrete solutions, instead
a wide range of flow parameters admits shock transition in
the accretion flow variables. In this context, we identify the
effective region of the parameter space spanned by the en-
ergy (Ein) and the angular momentum (λin) of the flow mea-
sured at the inner critical points that allows standing shock
solutions and find that shock forms around weakly rotating
as well as rapidly rotating black holes (see Fig. 2). Further,
we examine the role of adiabatic index (γ ) in determin-
ing the shock solutions and notice that the shock parameter
space is squeezed when γ is tending to the thermally non-
relativistic limit (see Fig. 3). This provides a hint that the
formation of standing shock is more likely for flows with
lower γ values.

We continue the study of shock parameter space consid-
ering dissipative accretion flow and compare the parameter
space in terms of viscosity parameter (α). We find that pa-
rameter space is gradually modified and shrunk with the in-
crease of α for all the pseudo potentials (see Figs. 4–5). This
evidently indicates that the possibility of shock formation is
reduced as the viscous dissipation is enhanced. Beyond a
critical limit (α > αcri

shock), accretion flow fails to satisfy the
standing shock conditions and therefore, shock disappears
completely. Needless to mention that αcri

shock does not bear
any universal value, but depends on the other input param-
eters (see Fig. 6). In case of weakly rotating black holes,
αcri

shock for all the pseudo-potentials agrees quite well, but dif-
fers considerably for rapidly rotating black holes. Hence, we
argue that as far as the standing shocks are concerned, qual-
itatively all the pseudo-potentials behave quite similarly, but
they differ both qualitatively and quantitatively from each
other for rapidly rotating black holes. Moreover, we realize
that CM06 potential provides standing shock solutions for
ak → 0.98 although this potential ensues erroneous results
for ak > 0.8 as it fails to describe the space-time geometry
beyond this limit. In comparison, we do not find standing
shock solutions beyond ak > 0.84 for MU02 and ak > 0.92
for ABN96 potentials (see Fig. 6).

We further compare the maximum outflow rates (Rmax
ṁ )

in terms of the black hole spin (ak) for all the adopted pseudo
potentials considering viscous accretion flow (α = 0.05).
We find that there exist a feeble correlation between Rmax

ṁ

and spin ak irrespective to the choice of potentials although
ABN96 potential provides more Rmax

ṁ compared to the other
potentials (Fig. 7).

We apply our accretion-ejection model to explain the
‘outliers’ track of the X-ray-radio correlations in black hole
XRBs. We select sources in their low-hard states from Cor-
bel et al. (2013). We find that theoretical results obtained for
the rapidly rotating black holes are in agreement with the
observational findings of the black hole XRBs lying along
the ‘outliers’ track (see Fig. 8).

Finally, we point out that the present model bears some
limitations. For example, we adopt pseudo potentials to de-
scribe the gravitational effect around rotating black hole.
Moreover, in our accretion-ejection model, outflows are
mainly thermally driven although, in reality, the jet gener-
ation from the vicinity of the rotating black holes is likely
to be steered by the large scale magnetic fields (Blandford
and Znajek 1977), radiation pressure (Chattopadhyay et al.
2004), etc. In addition, jet power tends to follow non-linear
relation with the accretion power (Huang et al. 2014; Ghis-
ellini et al. 2014) as well. All these issues may cause our the-
oretical estimate different from the ‘universal’ track except
for few sources characterized with higher accretion rate. Al-
though the above issues seem to be relevant in the context
of jet generation, we ignore them in the present analysis for
the purpose of simplicity. We plan to continue our investi-
gation including them in a future work and will be reported
elsewhere.
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Appendix: Calculation of sound speed (ac) at the
critical point (xc)

Putting N = 0 in Eq. (17b) and using Eq. (20), we get an
algebraic equation of ac which is given by,

Aα(g + γ
v2
c
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Using Mc = vc/ac , we get
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After some simple algebra, we have

a1a
2
c + a2ac + a3 = 0, (31)

where
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In may be noted that the trivial solutions are avoided in
Eq. (31). Finally, we solve this equation to obtain ac and
consider only positive root as ac > 0 always.
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