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ABSTRACT
We present the global structure of magnetized advective accretion flow around the rotating
black holes in presence of dissipation. By considering accretion flow to be threaded by toroidal
magnetic fields and by assuming synchrotron radiative mechanism to be the dominant cooling
process, we obtain global transonic accretion solutions in terms of dissipation parameters, such
as viscosity (αB), accretion rate (ṁ), and plasma-β, respectively. In the rotating magnetized
accretion flow, centrifugal barrier is developed in the nearby region of the black hole that
triggers the discontinuous shock transition in the flow variables. Evidently, the shock properties
and the dynamics of the post-shock flow [hereafter post-shock corona (PSC)] are being
governed by the flow parameters. We study the role of dissipation parameters in the formation
of standing shock wave and find that global shocked accretion solutions exist both in gas
pressure dominated flows and in magnetic pressure dominated flows. In addition, we observe
that standing shock continues to form around the rapidly rotating black holes as well. We
identify the range of dissipation parameters that permits shocked accretion solutions and find
that standing shocks continue to form even in presence of high dissipation limit, although
the likelihood of shock formation diminishes with the increase of dissipation. Further, we
compute the critical accretion rate (ṁcri) that admits shock and observe that standing shock
exists in a magnetically dominated accretion flow when the accretion rate lies in general in the
sub-Eddington domain. At the end, we calculate the maximum dissipated energy that may be
escaped from the PSC and indicate its possible implication in the astrophysical context.

Key words: accretion, accretion discs – black hole physics – magnetic field – MHD – shock
waves.

1 IN T RO D U C T I O N

Magnetic fields are in general considered to be indispensable in the
astrophysical environment and therefore, their presence in the ac-
cretion disc is by all means inevitable (Balbus & Hawley 1998). In a
magnetized accretion disc, magnetic fields play an important role in
guiding the infalling matter around black holes. Meanwhile, Bland-
ford & Payne (1982) revealed that when a Keplerian disc is threaded
by large-scale magnetic fields, angular momentum can be removed
through the torque exerted by the magnetic fields. Similarly, the
large-scale poloidal magnetic fields anchored in the surrounding
accretion disc are indeed capable of transferring energy and angular
momentum and also instigate the generation of powerful magnetic
jets (Blandford & Znajek 1977; Komissarov & McKinney 2007).
Further, Balbus & Hawley (1991, 1998) showed that the accretion
disc becomes unstable in presence of differential rotation when the
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accreting plasma is threaded by weak vertical magnetic fields. This
instability causes the turbulence leading to the efficient angular mo-
mentum transport as well as energy dissipation that enables the
accretion possible.

In the modeling of the standard advection-dominated accretion
flows around black holes, Narayan & Yi (1995) considered the
magnetic fields that are stochastic in nature. However, since the
flow experiences differential rotation while accreting onto a black
hole, the magnetic fields present in the disc are expected to be
structured in reality and the large-scale fields seem to be dominated
by its toroidal component. This consideration in general holds ir-
respective to the initial configuration of the fields (i.e. toroidal or
poloidal). Furthermore, the existence of toroidal magnetic field has
been observationally confirmed in the exterior regions of the discs
of young stellar objects (Aitken et al. 1993; Wright, Aitken & Smith
1993) as well as in the Galactic center (Chuss et al. 2003; Novak
et al. 2003). Meanwhile, significant efforts were given to examine
the accretion disc properties around black holes including toroidal
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magnetic fields (Akizuki & Fukue 2006; Oda et al. 2007, 2010,
2012; Khesali & Faghei 2008, 2009; Mosallanezhad, Abbassi &
Beiranvand 2014; Samadi, Abbassi & Khajavi 2014; Sarkar & Das
2015, 2016; Mosallanezhad, Bu & Yuan 2016; Sarkar, Das & Man-
dal 2018; Sarkar & Das 2018). Following the above cognizance, in
the present work, we consider the accretion flow to be threaded by
toroidal magnetic field lines as well.

Further, while developing the present formalism, we consider
rotating matter that experiences centrifugal repulsion as it accretes
towards the black hole and due to this, infalling matter is being piled
up in the vicinity of the black hole. In reality, such accumulation of
matter cannot be continued indefinitely and ultimately, at its limit,
the centrifugal barrier triggers the discontinuous transition of the
flow variables which is commonly called as shock transition. It may
be noted that the global accretion solutions including shock waves
are potentially favored as it owns a large amount of entropy (Becker
& Kazanas 2001). In the theoretical front, the shock-induced global
accretion solution around black hole and its implications are ex-
tensively studied by the numerous groups of workers (Fukue 1987;
Chakrabarti 1989, 1996b; Lu, Gu & Yuan 1999; Das et al. 2001b;
Gu & Lu 2001; Chakrabarti & Das 2004; Fukumura & Tsuruta
2004; Gu & Lu 2004; Mondal & Chakrabarti 2006; Das 2007;
Becker, Das & Le 2008; Das, Becker & Le 2009; Das, Chakrabarti
& Mondal 2010; Aktar, Das & Nandi 2015; Sarkar & Das 2015,
2016; Aktar et al. 2017; Sarkar & Das 2018; Sarkar et al. 2018). In
addition, the existence of shock in accretion flow is also examined
numerically considering hydrodynamics (Chakrabarti & Molteni
1993; Molteni, Lanzafame & Chakrabarti 1994; Ryu, Chakrabarti
& Molteni 1997; Okuda 2014; Okuda & Das 2015; Suková & Janiuk
2015; Suková, Charzyński & Janiuk 2017) as well as magnetohy-
drodynamic (MHD) environment (Nishikawa et al. 2005; Takahashi
et al. 2006; Fukumura, Takahashi & Tsuruta 2007; Fukumura et al.
2016).

Motivated with the above studies, in this work, we examine the
magnetically supported accretion flow around rotating black hole
that possesses standing shock. While doing this, we assume that
the characteristics of the magnetic pressure is synoptic to the gas
pressure and their combined effects therefore support the vertical
structure of the infalling matter against the gravitational pull. More-
over, recalling the success of the seminal α-viscosity prescription
(Shakura & Sunyaev 1973), we consider the Maxwell stress to
be proportional to the total pressure (Machida, Nakamura & Mat-
sumoto 2006) that evidently demonstrates that the outward transport
of angular momentum would certainly be enhanced as the magnetic
activity inside the disc is increased. Furthermore, we consider the
heating of the flow to be regulated by the magnetic energy dissi-
pation mechanism while the inflowing matter is being cooled via
synchrotron emission process (Chattopadhyay & Chakrabarti 2000;
Das 2007; Sarkar et al. 2018). In addition, for simplicity, we adopt
a pseudo potential introduced by Chakrabarti & Mondal (2006)
that successfully mimics the space-time geometry around the ro-
tating black hole having spin ak � 0.8. Considering all these, we
self-consistently solve all the governing equations that describe the
magnetized accretion flow around rotating black hole and obtain
the global accretion solutions including shock waves. We study the
properties of standing shock waves in terms of flow parameters and
observe that shock formation takes place for an ample range of pa-
rameters both around weakly rotating (ak → 0) as well as rapidly
rotating black holes (ak ∼ 0.8). We also calculate the critical accre-
tion rate (ṁcri) for standing shocks in magnetized accretion flow. It
may be noted that ṁcri does not bear any universal value, rather it is
largely dependent on the inflow parameters. We continue our study

considering the fact that standing accretion shocks are dissipative
by nature and calculate the maximum energy that can be extracted
from the post-shock corona (PSC). In reality, this available energy
could be utilized in powering the jets (reference therein Sarkar &
Das 2016) as they seem to originate from PSC regions (see Aktar
et al. 2017 and reference therein).

We organize the paper as follows. In Section 2, we write the model
equations and carry out the analysis of transonic conditions. In
Section 3, we display our results where shocked accretion solutions
for magnetized flow and its properties are discussed. Moreover, we
determine the critical inflow parameters for standing shock as well.
We further study the characteristics of dissipative standing shock.
Finally, in Section 4, concluding remarks are presented.

2 AC C R E T I O N FL OW MO D E L

To take into consideration the magnetic fields structure in an ac-
cretion disc, we rely on the numerical simulation results of global
and local MHD accretion flow around black hole. These simula-
tions have revealed that magnetic fields inside the accretion disc
are turbulent and primarily dominated by the azimuthal compo-
nent (Hirose, Krolik & Stone 2006; Machida et al. 2006; Johansen
& Levin 2008). Following the findings of these simulations, we
separate the magnetic fields into mean fields, denoted by B = (0,
<Bφ >, 0), and the fluctuating fields, indicated as δB = (δBr, δBφ ,
δBz). Here, we express the azimuthal average by ‘<>’ and upon
azimuthal averaging, the fluctuating components of the magnetic
fields eventually disappear (<δB > =0). Moreover, the radial and
vertical components of the magnetic field are assumed to be neg-
ligible when compared with the azimuthal component, ‖ < Bφ >

+δBφ‖ � ‖δBr‖ and‖δBz‖. This ultimately renders the azimuthally
averaged magnetic fields, which is given by < B >= φ̂ < Bφ >

(Oda et al. 2007).

2.1 Model equations

In this work, a thin, axisymmetric, magnetized accretion flow onto a
rotating black hole is considered and the accretion disc is assumed
to lie on the black hole equatorial plane. Moreover, we employ
the cylindrical polar coordinate (x, φ, z) to study the properties of
accretion flow, where black hole is placed at its origin. In order to
express the flow variables, we choose a unit system as MBH = c =
G = 1, where MBH is the mass of the black hole, c represents the
speed of light, and G denotes the gravitational constant, respectively.
Accordingly, length, angular momentum, and time are measured
in units of GMBH/c2, GMBH/c and GMBH/c3, respectively. In the
subsequent sections, we choose MBH = 10 M� as a reference value.

Considering steady state scenario, the governing equations of
motion that describe the magnetized accreting matter are obtained
as follows:

(i) Equation for radial momentum:

v
dv

dx
+ 1

ρ

dP

dx
+ d�eff

dx
+

〈
B2

φ

〉
4πxρ

= 0, (1)

where v and ρ stand for the radial velocity and density of the flow,
respectively, and P represents total pressure that we take into ac-
count as P = pgas + pmag where pgas and pmag denote the gas pressure
and the magnetic pressure of the flow. We obtain the gas pressure
inside the disc as pgas = RρT/μ, where R, T, and μ, respectively,
represent the gas constant, the temperature and the mean molecular
weight. Here, we use μ = 0.5 for fully ionized hydrogen. Further,
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the magnetic pressure is obtained as pmag =< B2
φ > /8π . We define

β = pgas/pmag and using this, we attain total pressure as P = pgas(1 +
β)/β. Moreover, in equation (1), �eff denotes the effective pseudo
potential around a rotating black hole (Chakrabarti & Mondal 2006)
and is given by

�eff = −Q +
√

Q2 − 4PR
2P ,

where

P = ε2λ2

2x2
,

Q = −1 + ε2ωλr2

x2
+ 2akλ

r2x
,

R = 1 − 1

r − x0
+ 2akω

x
+ ε2ω2r4

2x2
.

Here x represents the cylindrical radial distance and r speci-
fies spherical radial distance, respectively. Also, λ stands for
the specific angular momentum of the flow. In addition, we
write x0 = 0.04 + 0.97ak + 0.085a2

k , ω = 2ak/(x3 + a2
k x + 2a2

k ),
and ε2 = (x2 − 2x + a2

k )/(x2 + a2
k + 2a2

k /x), where ε refers the
redshift factor and ak denotes the spin of the black hole. It is to
be noted that the adopted pseudo potential satisfactorily mimics
the space-time geometry around rotating black hole for ak � 0.8
(Chakrabarti & Mondal 2006).

(ii) Mass flux conservation equation:

Ṁ = 2πxv, (2)

where Ṁ specifies the accretion rate that we treat as global constant
all through and  represents the vertically integrated density (Mat-
sumoto et al. 1984). It may be noted that in this work, the direction
of the inward radial velocity is considered as positive always.

(iii) Azimuthal momentum conservation equation:

v
dλ(x)

dx
+ 1

x

d

dx
(x2Txφ) = 0. (3)

Here, we assume the vertically integrated total stress to be domi-
nated by the xφ component of the Maxwell stress Txφ . For the accre-
tion flow with large radial velocity, Txφ comes out to be (Chakrabarti
& Das 2004; Machida et al. 2006)

Txφ = < BxBφ >

4π
h = −αB(W + v2), (4)

where h, αB, and W, respectively, represent the local disc height,
the proportionality constant, and the vertically integrated pressure
of the flow (Matsumoto et al. 1984). Following the work of Shakura
& Sunyaev (1973), we regard αB as a global constant all throughout
of the flow. Note that when v is significantly small, as in the case
of Keplerian disc, equation (4) reduces to ‘α-model’ (Shakura &
Sunyaev 1973).
We consider thin disc approximation where infalling matter main-
tains hydrostatic equilibrium in the vertical direction and calculate
the disc height (h) as h = a

√
x/(γ�

′
r ), where �

′
r = (

∂�eff
∂r

)
z<<x

, z

denotes local vertical scale height in the cylindrical coordinate sys-
tem and r = √

x2 + z2 (Das et al. 2010). Here, we define the sound
speed as a = √

γP/ρ, where γ stands for the adiabatic index of
the flow. In this work, we assume γ to remain constant along the
flow and choose γ = 4/3.

(iv) The equation for entropy:

vT
ds

dx
= hv

γ − 1

(
dpgas

dx
− γpgas

ρ

dρ

dx

)
= Q− − Q+, (5)

where T and s refer to the temperature and specific entropy of the
flow, respectively. Moreover, Q+ denotes the heating rate and Q−

represents the cooling rate of the flow. Meanwhile, the numerical
simulation works of Hirose et al. (2006) and Machida et al. (2006)
indicate that during accretion, heating of the accreting matter occurs
because of the energy dissipation via magnetic reconnection process
and is calculated as

Q+ = < BxBφ >

4π
xh

d�

dx
= −αB(W + v2)x

d�

dx
, (6)

where � stands for the angular velocity of the flow.
Usually, the accretion flow experiences heat loss as the
consequences of the variety of cooling mechanisms, such
as bremsstrahlung, synchrotron, and Comptonization of
bremsstrahlung as well as synchrotron photons. However, in
this study, as the infalling matter is magnetized in nature, we
therefore consider only the synchrotron radiative mechanism as
dominant cooling process and the corresponding cooling rate is
obtained as (Shapiro & Teukolsky 1983)

Q− = Sa5ρh

v

√
�

′
r

x3

β2

(1 + β)3
, (7)

with

S = 1.4827 × 1018 ṁμ2e4

Inm3
eγ

5/2

1

GM�c3
,

where e and me represent the charge and mass of the electron, re-
spectively, and ṁ denotes the accretion rate expressed in units of
Eddington rate (ṀEdd = 1.39 × 1017 × MBH/M� gm s−1). Also, In

= (2nn!)2/(2n + 1)! and n represents the polytropic index of the flow
that is related to the adiabatic index as n = 1/(γ − 1). We estimate the
electron temperature employing the relation Te = (

√
me/mp)Tp,

where the coupling between ion and electron is neglected (Chat-
topadhyay & Chakrabarti 2002). Here, mp and Tp refer to the mass
and temperature of the ion, respectively. Note that in this work,
we ignore the bremsstrahlung emission process as it is an inef-
ficient cooling process for stellar mass black hole system (Chat-
topadhyay & Chakrabarti 2002). Moreover, we also disregard the
inverse Comptonization process as well although its contribution
may not be negligible especially at the inner part of the disc. Nev-
ertheless, we make this assumption simply because the framework
of single temperature accretion flow does not allow one to study
the Componization process as it requires the consideration of two-
temperature flow. However, we infer that when both synchrotron
and Compton processes are present, the accretion flow will experi-
ence more dissipation and therefore, the results we present in the
subsequent sections are expected to modify quantitatively although
the overall conclusions perhaps remain qualitatively unaltered.

(v) The advection equation of toroidal magnetic flux:
Following induction equation, the advection rate of toroidal mag-
netic flux is obtained as

∂ < Bφ > φ̂

∂t
= ∇ ×

(
�v× < Bφ > φ̂ − 4π

c
η�j

)
, (8)

where �v, �j , and η, respectively, represent the velocity vector, the
current density, and the resistivity of the flow. It may be noted that
equation (8) is azimuthally averaged. For an accretion disc, since the
Reynold number is generally very large, we ignore the magnetic-
diffusion terms because of large-length scale. Furthermore, here we
ignore dynamo term as well. Considering steady state, the obtained
equation is further vertically integrated employing the assumption
that the azimuthally averaged toroidal magnetic fields disappear at

MNRAS 480, 3446–3456 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/480/3/3446/5063583 by IN
D

IAN
 IN

STITU
TE O

F TEC
H

N
O

LO
G

Y G
U

W
AH

ATI user on 15 O
ctober 2018
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disc surface. Based on these considerations, the toroidal magnetic
flux advection rate is calculated as

�̇ = −
√

4πvhB0(x), (9)

where

B0(x) = 〈Bφ〉 (x; z = 0)

= 25/4π1/4(RT /μ)1/21/2h−1/2β−1/2

denotes azimuthally averaged toroidal magnetic field resided at the
equatorial plane of the accretion disc (Oda et al. 2007). Inside the
accretion disc, if the magnetic flux is dissipated by the magnetic
reconnection or escapes ˙ from the disc due to buoyancy, �̇ will
not be conserved. Besides, when MRI driven dynamo augments the
toroidal magnetic flux, �̇ may vary with radial coordinate. Keep-
ing these findings in mind, we thus consider �̇ ∝ x−ζ (Oda et al.
2007), where ζ stands for a parameter describing the magnetic flux
advection rate. Therefore, we have the following parametric relation
as

�̇
(
x; ζ, Ṁ

) ≡ �̇edge

(
x

xedge

)−ζ

, (10)

where �̇edge indicates the advection rate of the toroidal magnetic
field at a large distance, usually the disc outer edge (xedge). For ζ

= 0, radial magnetic flux remains conserved whereas, for ζ > 0,
the magnetic flux is increased with the decrease of x. However, for
representation, in this study, we choose ζ = 1 all throughout unless
stated otherwise.

2.2 Analysis of transonic conditions

During the course of accretion, matter from the outer edge of the
disc (xedge) proceeds towards the black hole under the influence
of gravity. In reality, inflowing matter possesses negligible radial
velocity at xedge in contrast with the local sound speed and enters into
the black hole with velocity equivalent to c. This finding evidently
demands the transonic nature of the accreting matter. The radial
coordinate where the accretion flow smoothly changes its sonic
character from subsonic to supersonic state is commonly called
as critical point. In order to analyze the transonic conditions, we
simultaneously solve equations (1), (2), (3), (5), (9), and (10) and
obtain the wind equation (see Das 2007 and references therein)
which is given by

dv

dx
= N

D
, (11)

where the numerator (N) is calculated as

N = Sa5

v

√
�

′
r

x3

β2

(1 + β)3
+ 2α2

BIn(a2g + γ v2)2

γ 2xv

+
[

[3 + β(γ + 1)]v

(γ − 1)(1 + β)
− 4α2

BgIn(a2g + γ v2)

γ v

](
d�eff

dx

)

+
[

va2(2βγ + 4)

2γ (γ − 1)(1 + β)
− 2α2

BIna
2g(a2g + γ v2)

γ 2v

](
dln�

′
r

dx

)

+2{3 + β(γ + 1)}a2v

γ x(γ − 1)(1 + β)2
− 3a2v(2γβ + 3)

2γ x(1 + β)(γ − 1)

+6α2
BIna

2g(a2g + γ v2)

γ 2vx
− 8α2

BIna
2g(a2g + γ v2)

γ 2v(1 + β)x

− a2v(4ζ − 1)

2γ (1 + β)(γ − 1)x
− 4λαBIn(a2g + γ v2)

γ x2
(11a)

and the denominator (D) is calculated as

D = 2a2(2 + γβ)

γ (γ − 1)(1 + β)
− {3 + β(γ + 1)}v2

(1 + β)(γ − 1)

+2α2
BIn(a2g + γ v2)

γ

[
(2g − 1) − a2g

γ v2

]
. (11b)

In the above analysis, we define g = In + 1/In.
Next, we calculate the derivative of a, λ, and β with respect to x

as

da

dx
= −

(γ v

a
− a

v

) dv

dx
+ 3a

2x
− a

2

(
dln�

′
r

dx

)

− γ

a

(
d�eff

dx

)
− 2a

(1 + β)x
(12)

dλ

dx
= −αBx(a2g − γ v2)

γ v2

dv

dx
+ 2αBaxg

γ v

da

dx
+ αB(a2g + γ v2)

γ v

(13)

dβ

dx
=

[
4(1 + β)

v
− 3γ v(1 + β)

a2

]
dv

dx
+ 9(1 + β)

2x

− 2(1 + β)

(
dln�

′
r

dx

)
− 3γ (1 + β)

a2

d�eff

dx

− 6

x
+ (1 + β)(4ζ − 1)

2x
(14)

Since the accretion solutions must be smooth along the stream-
line, the radial velocity gradient (dv/dx) will be inevitably real and
finite at every radial coordinate. Nevertheless, equation (11b) is re-
vealed, the fact that between xedge and the black hole horizon, there
is a possibility where the denominator (D) may vanish at some
point. In order for maintaining the flow to become smooth always,
it is therefore necessary that the location where D goes to zero, N
also must vanish there. The location where N and D simultaneously
disappear has a special significance and such location is termed
as critical point (xc). It is to be noted that accretion flow becomes
transonic at xc and accordingly, we have two conditions at xc which
are obtained by setting N = 0 and D = 0, respectively. Using D
= 0, we calculate the Mach number (defined as the ratio of radial
velocity to the sound speed, M = v/a) at xc as,

Mc =
√

−m2 −
√

m2
2 − 4m1m3

2m1
, (15)

where

m1 = 2α2
BInγ

2(γ − 1)(2g − 1)(1 + βc) − γ 2{3 + (γ + 1)βc},

m2 = 2γ (2 + γβc) + 4α2
BInγ g(g − 1)(γ − 1)(1 + βc),

m3 = −2α2
BIng

2(γ − 1)(1 + βc).

Setting N = 0, we obtain a cubic equation of sound speed (ac) at xc

as,

Aa3
c + Ba2

c + Cac + D = 0, (16)

where

A = S

√
�

′
r

x3
c

β2
c

(1 + βc)3
,
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3450 S. Das and B. Sarkar

B = 2α2
BIn(g + γM2

c )2

γ 2xc

+ M2
c (2γβc + 4)

2γ (γ − 1)(1 + βc)

(
dln�

′
r

dx

)

− 2α2
BIng(g + γM2

c )

γ 2

(
dln�

′
r

dx

)
+ 2{3 + βc(γ + 1)}M2

c

γ xc(γ − 1)(1 + βc)2

− 3M2
c (2γβc + 3)

2γ (γ − 1)(1 + βc)xc

+ 6α2
BIng(g + γM2

c )

γ 2xc

− 8α2
BIng(g + γM2

c )

γ 2(1 + βc)xc

− (4ζ − 1)M2
c

2γ (γ − 1)(1 + βc)xc

,

C = −4λcαBInMc(g + γM2
c )

γ x2
c

,

D =
[

[3 + βc(γ + 1)]M2
c

(1 + βc)(γ − 1)
− 4α2

BgIn(g + γM2
c )

γ

](
d�eff

dx

)
.

Here, the flow variables specified using subscript ‘c’ denote their
values evaluated at xc.

Now, using the accretion flow parameters, we solve equation (16)
to obtain the sound speed (ac) at xc and subsequently calculate
vc using equation (15). By employing the values of vc and ac in
equation (11), we examine the characteristics of the critical points.
At the critical point, we get (dv/dx) = 0/0 and thus, we use l

′
Hospital

rule for obtaining the value of (dv/dx) at xc (hereafter, (dv/dx)c).
Usually, (dv/dx)c owns two values, one for accretion and the other
for wind. When the values of (dv/dx)c are real and of opposite
sign, the critical point is known as saddle type (Chakrabarti & Das
2004) and this type of critical point is particularly important due to
the fact that transonic solution can cross it smoothly. In this study,
since our motivation is to investigate the structure of the magnetized
accretion flow, we therefore focus into the accretion solutions only
in the subsequent analysis.

3 R ESULTS AND DISCUSSIONS

3.1 Transonic global solutions

In this work, we intend to obtain the global magnetized transonic
accretion solution that delineates a smooth connection between hori-
zon and the disc edge. With this aim, we simultaneously solve the
equations (11–14) for a specified set of flow parameters. While do-
ing this, we treat ṁ, αB, and γ as global parameters of the flow.
Moreover, one requires ak value and the boundary values of λ and
β at a given x as local parameters to solve these equations. Note that
we express angular momentum (λ) in terms of Keplerian angular
momentum λK (≡

√
x3/(x − 2)2) all throughout the paper. Since

the black hole accretion solutions are necessarily transonic in na-
ture, flow must pass through at least one critical point and therefore,
it is reasonable to choose the boundary values of the flow at the crit-
ical point. With this, we hereby integrate equations (11–14) starting
from the critical point once inwards up to just outside the black hole
horizon and then outward up to a large distance (equivalently ‘outer
edge of the disc’). Ultimately, these two parts are joined to obtain
a complete global transonic accretion solution. Depending on the
input parameters, accretion flow may possess single or multiple
critical points (Das, Chattopadhyay & Chakrabarti 2001a; Sarkar &
Das 2013). These critical points are classified as inner (xin) or outer
(xout) critical points depending on whether they form close to or far
away from the black hole horizon.

3.2 Global accretion solutions with shock

When the accretion flow containing multiple critical points accretes
on to a black hole, it first passes through the outer critical point
(xout) to become supersonic and keeps on accreting further inwards.
Meanwhile, flow starts experiencing centrifugal repulsion result-
ing the accumulation of matter in the nearby region of the black
hole that ultimately induces the shock transition when the den-
sity threshold is reached. With this, an effective virtual barrier is
formed around the black hole. At shock, supersonic flow jumps
in to the subsonic branch that makes the post-shock flow hot as
the kinetic energy of the flow is converted to the thermal energy.
Moreover, across the shock, flow undergoes shock compression that
ultimately causes the post-shock flow to become dense. Interest-
ingly, 2nd law of thermodynamics suggests that shocked accretion
solutions are favorable as the entropy of the post-shock matter is
comparatively higher than the pre-shock matter (Becker & Kazanas
2001). We calculate the entropy of the flow that is expressed as

(Chakrabarti 1996a), Ṁ(x) = vxa2n+1
(

β

1+β

)n √
x

γ�
′
r

. In the dissi-

pation free limit, Ṁ remains constant all throughout except at the
shock transition. What is more is that at the discontinuous transi-
tion, the conservation of mass flux, momentum flux, energy flux,
and magnetic flux are held in order to satisfy the standing shock con-
ditions (see Sarkar & Das 2016 and reference therein) and hence,
these conservation laws across the shock front can be written as
the continuity of (a) mass flux (Ṁ− = Ṁ+), (b) the momentum flux
(W− + −υ2

− = W+ + +υ2
+), (c) the energy flux (E− = E+), and

(d) the magnetic flux (�̇− = �̇+), respectively. In this work, we con-
sider the shock to be thin and non-dissipative and the flow variables
with subscripts ‘−’ and ‘+’ represent their values just before and
after the shock. Following Fukue (1990) and Samadi et al. (2014),
we calculate the local energy of the magnetized dissipative accre-
tion flow as E(x) = υ2/2 + a2/(γ − 1) + �eff+ < B2

φ > /(4πρ),
where all the above quantities bear their usual meaning. In the sub-
sequent analysis, upon employing the above set of shock conditions,
we compute the shock position and its diverse properties knowing
the input parameters of the accretion flow.

In Fig. 1, we show the result obtained from one representative case
where the variation of Mach number (M = υ/a) with the logarithmic
radial distance is depicted. We choose the injection parameters of
the flow at the outer edge (xedge = 1000) as Eedge = 1.0793 × 10−3,
βedge = 1.6 × 105, αB = 0.02, and ṁ = 0.05, respectively. In
Fig. 1(a), we consider the black hole to be slowly rotating having
ak = 0.32 and the flow is injected with angular momentum, λedge

= 0.124 λK. Here, flow is subsonic at the outer edge and becomes
supersonic after crossing the outer critical point located at xout =
530.90. The supersonic flow proceeds further inwards and encoun-
ters shock transition at xs = 16.20 while jumping in to the subsonic
branch. In the figure, shock position is shown using vertical arrow.
Gradually flow velocity is increased as it moves inward and then it
passes xin smoothly at 4.1777 before crossing the horizon. Here, we
show the direction of the flow motion using arrows and mark the
inner and outer critical points with filled circles. Next, we intend to
examine the role of black hole spin in deciding the shock transition
and hence we inject matter on to a moderately rotating black hole
(ak = 0.52) keeping all the flow parameters same as in Fig. 1(a). It
may be noted that for this chosen set of flow parameters, standing
shock solution ceases to exist when ak > 0.52. The result is depicted
in Fig. 1(b), where the outer critical point, shock location, and inner
critical point are obtained as xout = 531.43, xs = 100.62, and xin

= 3.2502, respectively. Since all the flow parameters at the outer
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Shocks in magnetized accretion flows 3451

Figure 1. (a–b) Plot of Mach number with logarithmic radial distance. Flow
is injected with xedge = 1000, λedge = 0.124λK, Eedge = 1.0793 × 10−3,
βedge = 1.6 × 105, αB = 0.02, and ṁ = 0.05, respectively. We choose ak =
0.32 in panel (a) and ak = 0.52 in panel (b). (c–d) Logarithmic variation of
plasma-β corresponding to solutions (a) and (b). In each panel, xin and xout

are indicated using filled circles and shock transition is shown by vertical
arrow. See the text for details.

edge of the disc are kept fixed including angular momentum, we
observe that shock forms at larger radial distance for ak = 0.52.
In reality, a spinning black hole distorts the space-time fabric in its
vicinity, allowing matter to orbit at a closer distance as compared
to a non-rotating one. Due to the effect of frame dragging, the fluid
angular momentum is affected by the rotation of the black hole. It
is known that the shock formation in accretion flow happens as a
result of the competition between the gravitational pull and the cen-
trifugal repulsion. When flow is injected from the outer edge of the
disc with fixed boundary conditions, because of the spin-orbit cou-
pling term in the Kerr geometry, the increase of spin parameter (ak)
modifies the angular momentum profile of the flow and the shock
front is pushed away from the horizon as is observed in Fig. 1. This
finding is consistent with the results of Aktar et al. (2015). Overall,
we see that the standing shock in magnetized flow is continued to
exist around the rotating black hole and when ak is increased, shock
transition occurs for relatively low angular momentum flow and
vice versa. Further, in panels (c) and (d), we show the variation of
plasma-β with logx corresponding to solutions presented in panels
(a) and (b), respectively. In both the cases, we find that plasma-
β steadily decreases with the decrease of radial coordinate. This
clearly indicates that the magnetic activity inside the disc increases
as the flow accretes towards the horizon.

3.3 Properties of standing shocks

One of the pertinent aspects in understanding the magnetically sup-
ported accreting flow around the rotating black holes is to study the
dependence of the shock position (xs) on the β values. Accordingly,
we calculate xs in terms of βedge for flows with fixed outer boundary
values accreting on to a given black hole. For that, we choose the
outer boundary parameters as xedge = 1000, Eedge = 1.0793 × 10−3,
αB = 0.02, and ṁ = 0.05. In Fig. 2(a), we display the results ob-
tained for ak = 0.4, where solid, dotted, and dashed curves are for

Figure 2. Shock location (xs) variation with βedge. Here, the inflow pa-
rameters are chosen as xedge = 1000, Eedge = 1.0793 × 10−3, αB = 0.02,
and ṁ = 0.05, respectively. In every panel, spin of the black hole (ak) is
marked. In panel (a), results plotted with solid, dotted, and dashed curves
are obtained for λedge = 0.12845λK, 0.12791λK, and 0.12737λK. And in
panel (b), results depicted with solid, dotted, and dashed curves are for λedge

= 0.11443λK, 0.11390λK, and 0.11336λK, respectively. See the text for
details.

λedge = 0.12845λK, 0.12791λK, and 0.12737λK, respectively. We
notice that the shock front proceeds towards the horizon with the
decrease of βedge irrespective to the values of λedge. This happens
because when βedge is decreased, the efficiency of synchrotron cool-
ing is enhanced due to the increase of magnetic activity inside the
disc. The effect becomes more prominent at the inner part of the
disc (i.e. PSC) as, due to shock transition, both density and tem-
perature are relatively higher there compared to the pre-shock flow.
This renders the thermal pressure to drop down in the PSC region
and ultimately shock front moves inward to maintain the pressure
balance across it. Incidentally, keeping all the boundary flow pa-
rameters fixed, one cannot reduce βedge indefinitely as shock ceases
to exist when βedge < βcri

edge (shock conditions fail to satisfy there).
It may be noted that βcri

edge does not have a universal value, instead it
depends on the flow parameters fixed at the outer edge of the disc.
Further, we depict the results for ak = 0.8 in Fig. 2(b), where solid,
dotted, and dashed curves represent results corresponding to λedge

= 0.11443λK, 0.11390λK, and 0.11336λK, respectively. Here, we
keep all the other flow parameters same as in Fig. 2(a). We find that
the shock location proceeds towards the horizon with the decrease
of βedge in all cases as observed in Fig. 2(a).

Next, we examine the correlation of β values between the in-
ner and outer critical points for shock-induced global accretion
solutions. While doing this, we choose two cases where inflowing
matters are accreted on to rotating black holes having different spin
parameters as ak = 0.4 and 0.8, respectively. For ak = 0.4, we
consider the result depicted in Fig. 3(a) corresponding to λedge =
0.12845λK and show the variation of shock location as a function
of both βout (lower horizontal axis) and β in (upper horizontal axis).
The other flow parameters are considered same as in Fig. 2. Here,
β in and βout refer to β values measured at xin and xout, respectively.
We see that xs decreases when the magnetic activity is increased
(β is decreased) inside the disc. We continue our study choosing
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3452 S. Das and B. Sarkar

Figure 3. Variation of the shock location (xs) as a function of βout (lower
axis) and β in (upper axis). In each panel, ak is marked. See the text for
details.

the result presented in Fig. 3(b) for λedge = 0.11551λK and show
the variation of xs in terms of βout as well as β in in Fig. 3(b). We
observe that in all cases, β in < βout all throughout. This finding
is not surprising because, in our model, the advection of magnetic
flux increases as the inflowing matter approaches towards the hori-
zon and eventually, β is reduced towards the inner part of the disc.
Moreover, we find that shock solutions exist even for β in < 1 ir-
respective to the choice of ak value. This evidently indicates that
global transonic accretion solutions harbor standing shock waves
both in gas pressure dominated and in magnetic pressure-dominated
flows for a wide range of ak values.

It is worthy to explore the effect of cooling on the formation
of shock wave in an accretion flow and therefore, in Fig. 4, we
study the variation of shock location (xs) with accretion rate (ṁ).
Towards this, we consider the flow injection parameters as xedge =
1000, βedge = 105, Eedge = 1.0793 × 10−3, and αB = 0.02, respec-
tively. As before, in Fig. 4(a), we chose ak = 0.4 and the profile of
shock location (xs) is presented for various values of λedge. Here,
solid, dotted, and dashed curves represent flows injected with λedge

= 0.12845λK, 0.12737λK, and 0.12630λK, respectively. From the
figure, it is clear that a large range of ṁ admits standing shock in
magnetized accretion flow. Moreover, we find that for a given λedge,
xs moves inwards as ṁ is increased. In reality, enhanced accretion
rate boosts the efficiency of the radiative cooling that causes the
flow to lose energy during accretion. Since PSC is hot and dense,
the effect of cooling at PSC becomes profound that evidently de-
creases the post-shock thermal pressure. Consequently, this compels
the shock front to settle down at some smaller distance to fulfill the
shock conditions. Unfortunately, ṁ cannot be increased indefinitely
due to the fact that when ṁ exceeds its critical value (ṁcri), standing
shocks are no longer feasible as the shock conditions fail to satisfy
there. Clearly, ṁcri does not retain a global value, rather it depends
on the flow parameters. It is also apparent that the possibility of
standing shock formation reduces with the increase of ṁ. Further-
more, it is intriguing to understand what happens to the flow when
standing shock conditions fail to satisfy. Interestingly, in that case,
inner part of the accretion flow may start to modulate exhibiting

Figure 4. Variation of the shock location (xs) as function of ṁ. Flow
parameters at the outer edge of the disc is chosen as xedge = 1000,
Eedge = 1.0793 × 10−3, αB = 0.02 and βedge = 105, respectively. Results
depicted in top and bottom panels are for ak = 0.4 and 0.8. In (a), solid,
dotted, and dashed curves are obtained for λedge = 0.12845λK, 0.12737λK,

and 0.12630λK whereas in (b), solid, dotted, and dashed curves represent
results for λedge = 0.11443λK, 0.11336λK, and 0.11229λK. See the text for
details.

the feature of oscillatory shock (see Das & Aktar 2015and refer-
ences therein). Unfortunately, the investigation of non-steady shock
properties is beyond the scope of this paper. In addition, we find
that for a given ṁ, shock front recedes away from the black hole
when λedge is increased. In reality, the discontinuous shock tran-
sition is essentially the manifestation of the competition between
centrifugal repulsion and gravity. When λedge is higher, accretion
flow possesses higher angular momentum that causes the enhanced
centrifugal repulsion against gravity. Because of this, shock front
is pushed further out when λedge is increased. This finding estab-
lishes the fact that shocks are centrifugally driven. In Fig. 4(b), we
present the result corresponding to ak = 0.8, where solid, dotted,
and dashed curves represent results obtained for λedge = 0.11443λK,
0.11336λK, and 0.11229λK, respectively. Here also, we observe that
the formation of shock and its dependence on ṁ and λedge are in
general similar to the results shown in Fig. 4(a).

For completeness, we investigate the variation of shock location
in terms of viscosity (αB) for flows having fixed outer edge bound-
ary parameters. Here, we choose the flow injection parameters as
xedge = 1000, Eedge = 1.0793 × 10−3, βedge = 105, and ṁ = 0.05,
respectively. In Fig. 5(a), we show the obtained results for ak = 0.4,
where solid, dotted, and dashed curves are for λedge = 0.12845λK,
0.12791λK, and 0.12737λK, respectively. Notice that shocked accre-
tion solutions exist for a wide range of αB and shock location shifts
towards the horizon with the increase of αB for all cases having
different λedge values. In reality, as αB is increased, angular momen-
tum transport in the outward direction becomes more efficient that
causes the weakening of centrifugal repulsion and hence, shock
front is driven inward. When αB exceeds its critical limit (αcri

B ),
shock conditions do not remain favorable and as a result, standing
shock disappears. Again, it may be noted that αcri

B largely depends
on the accretion flow parameters. Further, in Fig. 5(b), we display
the result for ak = 0.8, where solid, dotted, and dashed curves
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Figure 5. Variation of the shock location (xs) as a function of αB. Accreting
matter is supplied with inflow parameters as xedge = 1000, with Eedge =
1.0793 × 10−3, ṁ = 0.05, and βedge = 105, respectively. In each panel, ak

is marked. In top panel (a), the results corresponding to λedge = 0.12845λK,
0.12791λK, and 0.12737λK are represented using solid, dotted, and dashed
line style. The same line style is used to denote the results for λedge =
0.11443λK, 0.11390λK, and 0.11336λK in lower panel (b). See the text for
details.

denote results for λedge = 0.11443λK, 0.11390λK, and 0.11336λK,
respectively. Here, we find that shock location decreases with the
increase of αB around rotating black holes as well.

3.4 Parameter space for shock

We have already mentioned that during the course of accretion, in-
flowing matter may contain shock wave provided it possesses mul-
tiple critical points. Interestingly, one can obtain standing shock
solution, if the standing shock conditions are satisfied (see Sec-
tion 3.2). But, when shock conditions are not favorable and the
entropy content at the inner critical point is higher than the outer
critical point, the shock formation never remains steady as the shock
location becomes imaginary (Das et al. 2001a) and therefore, shock
starts to execute continuous back-and-forth movements that seem
to exhibit the quasi-periodic oscillation phenomenon (Das et al.
2001a). In this case, accretion solution passing through the inner
critical point fails to connect the black hole horizon to the outer
edge of the disc as it becomes closed in the range xin < x < xout with
M(x) = Mc (Chakrabarti & Das 2004). Needless to mention that
it is not possible to examine the characteristics of the non-steady
shock solution in the framework of the present paper, however, we
estimate the critical accretion rate (ṁcri) that provides accretion so-
lutions containing standing shocks and/or closed topologies. While
doing this, we fix β in = 10, and for a given ak, we calculate ṁcri as a
function of αB, where xin and λin are varied freely. Accordingly, in
Fig. 6, we classify the parameter space spanned by αB and ṁcri that
provides closed topologies and standing shocks, respectively. Exam-
ples of closed topology (marked as C) and standing shock solution
(marked as S) are displayed in the small boxes, where the variation
of Mach number with radial coordinate is plotted. In the figure, long-
dashed, short-dashed, and dot-dashed curves are obtained for ak =
0, 0.4, and 0.8 that separate the αB − ṁcri plane where left-bottom

Figure 6. Variation of critical accretion rate (ṁcri) as a function of viscosity
parameter (αB) for various ak. Here, we choose β in = 10. Long-dashed,
dashed, and dot-dashed curves are obtained for ak = 0, 0.4, and 0.8 and
the region bounded by them in αB − ṁcri plane provides closed accretion
solutions passing through the inner sonic point. In addition, solid, dotted,
and short-long-dashed curves represent the effective region corresponding
to ak = 0, 0.4, and 0.8 that admits standing shock solutions. In the inset,
examples of closed (marked with C) and shocked solutions (marked with S)
are presented. See the text for details.

region allows closed topologies. Similarly, solid, dotted, and short-
long-dashed curves separate the standing shock parameter space for
ak = 0, 0.4, and 0.8, respectively. We observe that the shock param-
eter space appears to be the subset of parameter space for closed
topology all throughout. This is expected as the region of closed
topologies includes the region of standing as well as oscillating
shocks. Meanwhile, Das & Chakrabarti (2008) showed that for fixed
ak, the effective region of standing shock parameter space shrinks
with the increase of accretion rate for an inviscid flow. Actually,
when the accretion rate is enhanced, cooling becomes more effec-
tive and hence, inflowing matter loses energy during accretion. On
the other hand, viscosity enhances the flow energy as it accretes due
to viscous heating. Interestingly, when both dissipation processes,
namely, viscosity and synchrotron cooling, are present in the flow,
viscous dissipation effectively compensates a part of the energy
loss happens due to cooling. Here, in a way, viscosity and cooling
act oppositely in deciding the shock parameter space. However, as
synchrotron cooling and viscous heating depend differently on the
flow variables, one does not cancel the other effect completely (Das
2007). Overall, for a given ak, standing shock continues to form
until an optimum combination of (αB, ṁcri) is reached, which evi-
dently exhibits as a peak in the αB − ṁcri plane. In general, the flow
is dominated by cooling in the left side of the peak whereas viscous
heating dominates on the other side. As expected, shock disappears
when viscosity exceeds its critical limit (Chakrabarti & Das 2004).
In addition, in case of a rapidly rotating black hole, shock forms in a
relatively low angular momentum accretion flow (Aktar et al. 2015)
that effectively causes the weak centrifugal repulsion and therefore,
standing shock settles down at a smaller length scale. Moreover,
when the level of dissipation is increased (namely, the increase of
αB and ṁ), shock front is compelled to move towards the horizon
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3454 S. Das and B. Sarkar

Figure 7. Variation of critical accretion rate (ṁcri) for standing accretion
shock with viscosity parameter (αB) for different β in. Here, we fix black
hole spin as ak = 0.8. Solid, dotted, dashed, and long-dashed curves denote
results for β in = 5, 10, 50, and 100, respectively. See the text for details.

(see Figs 4–5). This clearly indicates that rapidly rotating black
holes can sustain shocks for lower dissipation rates and we observe
the similar findings in Fig. 6.

Now, we intend to study the effect of magnetic fields in decid-
ing the effective region of parameter space in (αB, ṁcri) plane for
standing shock. In Fig. 7, we present the obtained results, where
shock parameter space is computed for rapidly rotating black hole
(ak = 0.8) considering different β in values. In the figure, the regions
bounded with solid, dotted, short-dashed, and long-dashed curves
are obtained for β in = 5, 10, 50, and 100, respectively. We observe
that the effective region of the parameter space for shock gradually
reduces with the decrease of β in. This happens due to the fact that
when β in is low, synchrotron cooling becomes very much effective
and therefore, the level of dissipation experienced by the inflowing
matter turns out to be significant even with moderate accretion rates.
Thus, the possibility of shock formation is eventually reduced as
the magnetic activity is increased inside the disc.

We carry out the analysis further to calculate the critical accre-
tion rate (ṁcri) of the flow as a function of β in that provides global
accretion solutions containing standing shock. In Fig. 8, we com-
pare the critical accretion rate (ṁcri) where solid and dashed curves
represent the results obtained for non-rotating (ak = 0) and rapidly
rotating (ak = 0.8) black holes, respectively. Here, we choose the
viscosity parameter as αB = 0.01. We find that standing shocks exist
for a wide range of β in that effectively includes both gas-pressure-
dominated flows (β > 1) and magnetic pressure-dominated flows
(β < 1). Since synchrotron process directly depends on the density
and magnetic fields of the flow, one can achieve the desired cooling
efficiency by suitably adjusting the accretion rate and plasma β. In
the figure, we observe this findings for both the cases (for ak = 0
and 0.8) where the critical accretion rate (ṁcri) for shock is found to
be increased with β in. In reality, when β in < 1, the inner part of the
disc is magnetically dominated and a tiny amount of accretion rate
is sufficient to cool the flow. On the other hand, as β in is gradually
increased, the strength of magnetic fields becomes weak and there-

Figure 8. Comparison of critical accretion rate ṁcri for shock with β in. In
the plot, filled circles joined with solid line denote results for ak = 0 and
filled circles connected with dashed line represent results corresponding to
ak = 0.8, respectively. Here αB = 0.01 is used. See the text for details.

fore, enhanced accretion rate is needed for the cooling of the flow.
Interestingly, when β in � 1, magnetic fields becomes insignificant
and flow is capable of sustaining standing shocks even for super-
Eddington accretion rates (ṁcri > 1). Moreover, we find that for
a given β in, ṁcri is smaller for higher ak. This clearly indicates
that inflowing matter around rapidly rotating black holes contains
shocks for relatively lower accretion rates that are consistent with
the findings of Fig. 6.

In the context of the formation of standing shock in a magnetized
accretion flow, we now illustrate the dependence of the critical
accretion rate (ṁcri) on the spin of the black hole (ak) in Fig. 9.
In order for that we fix the viscosity as αB = 0.01. Here, solid,
dotted, dashed, and long-dashed curves are obtained for β in = 10,
50, 100, and 150, respectively. We observe that for a given β in, ṁcri

decreases with the increase of ak in all cases. Moreover, here again
we find that when β in is large, accretion flow continues to sustain
standing shock for higher accretion rate and vice versa.

3.5 Energy extraction from PSC

So far, we have carried out the investigation of standing shock
properties for flows accreting on to rotating black holes. While
doing this, we consider the shock to be thin and non-dissipative and
therefore, the specific energy remains essentially conserved across
the shock front (Chakrabarti 1989). However, in reality, the nature
of the shock can be dissipative as well and in that case, the available
energy dissipated at shock escaped through the disc surfaces along
the vertical direction. A part of this energy is then converted to hard
radiations and the rest may be used in jet generation as jets seem to be
originated from the PSC around rotating black holes (see Aktar et al.
2017 and references therein). In effect, this cause the depletion of
energy at PSC (Singh & Chakrabarti 2011). Moreover, Chakrabarti
& Titarchuk (1995) pointed out that the dissipative energy at shock
is likely to be regulated via thermal Comptonization process that
ultimately reduces the thermal energy of the PSC. Based on the
above insight, we model the dissipated energy to be proportional
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Shocks in magnetized accretion flows 3455

Figure 9. Variation of critical accretion rate ṁcri with ak for shock. Here,
we fix viscosity parameter as αB = 0.01. Results depicted with solid, dotted,
dashed, and big-dashed line style correspond to β in = 10, 50, 100, and 150.
See the text for details.

to the temperature difference between the immediate pre-shock and
post-shock flow. Following this, the energy loss (�E) at the shock
is estimated as (Das et al. 2010),

�E = f n
(
a2

+ − a2
−
)
, (17)

where a− and a+ specify the sound speed just before and after the
shock transition. Here, f refers the fractional value of thermal energy
difference dissipated at shock and we treat it as free parameter (Das
et al. 2010; Kumar & Chattopadhyay 2013; Sarkar & Das 2013;
Sarkar et al. 2018). For the purpose of representation, in this work,
we choose f = 0.1 all throughout.

In Fig. 10, we show how the maximum energy dissipated at
shock (�Emax) is varied with ak. While doing this, we choose
ṁ = 0.05 and αB = 0.01, respectively, and freely vary the other flow
parameters. In the plot, solid, dotted, and dashed curves illustrate the
results for β in = 6, 10, and 1000, respectively. We find that for given
β in, �Emax increases with the increase of ak. In general, standing
shock forms at a smaller radial coordinate when ak is increased
(Aktar et al. 2015) and hence, the thermal energy content across the
shock is also increased. Eventually, the accessible thermal energy
likely to be dissipated at shock is also enhanced. Therefore, for a
given β in, we find a positive correlation between �Emax and ak.
On the other hand, as β in is reduced, synchrotron cooling turns out
to be more compelling in the flow due to the increase of magnetic
field strength that ultimately reduces the thermal energy content in
the PSC. Thus, �Emax diminishes with the decrease of β in for fixed
ak. Finally, if the mass, spin, and accretion rate of a given black
hole candidate is known, the above formalism can be employed to
estimate the maximum accessible energy in the PSC region and then
this unbound energy could be compared with the observed radio jet
kinetic power. Such a task is under progress and would be reported
elsewhere.

Figure 10. Plot of maximum energy dissipation (�Emax) at the shock with
ak for three distinct values of β in. Here, we choose accretion rate as ṁ = 0.05
and fix viscosity parameter as αB = 0.01. Solid, dotted, and dashed curves
are obtained for β in = 6, 10, and 1000, respectively. See the text for details.

4 SU M M A RY

In this paper, we study the magnetized advection accretion flow
around rotating black hole where viscosity and synchrotron cooling
is considered as the dominant dissipation processes. We calculate
the shock-induced global accretion solutions and investigate the
effect of dissipation parameters, such as ṁ, αB, and β, in deciding
the formation of shock waves. The results are summarized below.

We find that accreting matter continues to harbor standing shock
waves for ak ≤ 0.8 (see Figs 1–5). It may be noted that we restrict the
upper limit of ak below its maximum allowed value (i.e. ak → 1),
because the adopted potential satisfactorily mimics the space-time
geometry around the rotating black hole for spin parameter ak � 0.8
(Chakrabarti & Mondal 2006). Furthermore, we have realized that
standing shocks in magnetized accretion flow are quite common
and they exist for a wide range of flow parameters (see Figs 2–5).

Next, we quantify the range of dissipation parameters that ad-
mit the formation of standing shocks in magnetized accretion flow
around rotating black holes. We find that flow can sustain shock
waves even when the level of dissipation is very high. More impor-
tantly, we observe that radiative cooling acts oppositely in contrast
with viscous dissipation in deciding the shock parameter space
(see Fig. 6). However, the effect of cooling cannot be mitigated
completely by viscous heating as their dependencies on the flow
variables are different. Further, we find that the possibility of shock
formation always decreases with the increase of dissipation strength.
Subsequently, we calculate the critical accretion rate (ṁcri) for stand-
ing shock. When accretion rate exceeds the critical limit, standing
shock conditions are not satisfied and consequently, standing shock
disappears. We find that ṁcri strongly depends on viscosity (αB),
magnetic fields (β), and spin of the black hole (ak), respectively
(see Figs 6–9). What is more is that standing shock exists in a
magnetically dominated accretion flow when the accretion rate lies
in general in the sub-Eddington domain (ṁ < 1) whereas for gas
pressure dominated flow, shock forms even for super-Eddington
accretion rate (ṁ > 1) (see Figs 7–9).

MNRAS 480, 3446–3456 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/480/3/3446/5063583 by IN
D

IAN
 IN

STITU
TE O

F TEC
H

N
O

LO
G

Y G
U

W
AH

ATI user on 15 O
ctober 2018



3456 S. Das and B. Sarkar

Further, we obtain the standing shock solution for magnetized
accretion flow, where the shock is considered to be dissipative by
nature. The available energy dissipated at shock (�E) is usually
escaped through the disc surface that is being utilized to power the
jets/outflows (Le & Becker 2004, 2005; Das et al. 2009). Towards
this, we compute the maximum energy dissipated at shock (�Emax)
and find that �Emax increases with ak although its dependence on
β in is very much conspicuous.

Finally, we would like to mention that the present formalism is
developed by adopting a simplified pseudo potential to delineate the
gravitational effect around a rotating black hole. Incidentally, while
studying the non-linear shock solutions, this approach allows us to
avoid the mathematical complexity of general theory of relativity
and at the same time it retains the salient features of space-time ge-
ometry around rotating black holes (Chakrabarti & Mondal 2006).
In this regard, although the present formalism introduces a bit of
imperfections, however, we believe that the basic findings of this
work will qualitatively remain unaltered due to this approximation.
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