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ABSTRACT

We examine the effect of thermal conduction on the low-angular momentum hot
accretion flow (HAF) around non-rotating black holes accreting mass at very low rate.
While doing so, we adopt the conductive heat flux in the saturated form, and solve the
set of dynamical equations corresponding to a steady, axisymmetric, viscous, advective
accretion flow using numerical methods. We study the dynamical and thermodynam-
ical properties of accreting matter in terms of the input parameters, namely energy
(ε0), angular momentum (`0), viscosity parameter (α), and saturation constant (Φs)
regulating the effect of thermal conduction. We find that Φs plays a pivotal role in
deciding the transonic properties of the global accretion solutions. In general, when Φs

is increased, the critical point (rc) is receded away from the black hole, and flow vari-
ables are altered particularly in the outer part of the disc. To quantify the physically
acceptable range of Φs, we compare the global transonic solutions with the self-similar
solutions, and observe that the maximum saturation constant (Φmax

s ) estimated from
the global solutions exceeds the saturated thermal conduction limit (Φsc) derived from
the self-similar formalism. Moreover, we calculate the correlation between α and Φmax

s
and find ample disagreement between global solutions and self-similar solutions. Fur-
ther, using the global flow variables, we compute the Bernoulli parameter (Be) which
remains positive all throughout the disc, although flow becomes loosely unbound for
higher Φs. Finally, we indicate the relevance of this work in the astrophysical context
in explaining the possibility of massloss/outflows from the unbound disc.

Key words: accretion, accretion disc – black hole physics – conduction – hydrody-
namics

1 INTRODUCTION

The accretion of gas onto black holes (BHs) is believed to
be one of the primary sources of power for a wide range
of active phenomena in our universe, such as X-ray bina-
ries (XRBs), gamma-ray bursts and active galactic nuclei
(AGNs) (e.g., Lamb et al. 1973; Treves et al. 1988; Esin
et al. 1997; Fryer et al. 1999; Davis et al. 2006; Wilkin-
son & Uttley 2009; Yuan et al. 2010; Veledina et al. 2013;
Chatterjee et al. 2020). In terms of their temperature, the
accreting gas can be classified into two very distinct cate-
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gories, namely cold and hot accretion flows. The cold accre-
tion flow, commonly explained using either standard thin
disc model (Shakura & Sunyaev 1973) and/or the slim disc
model (Abramowicz et al. 1988), are radiatively efficient,
and remain optically thick. These models are characterized
by high mass accretion rate usually exceeds the Eddington
limit. Indeed, the cold accretion models with temperatures
in the range of 104−107 K successfully explain the spectrum
of luminous AGNs (Liu et al. 2012; Netzer & Trakhtenbrot
2014), black hole X-ray binaries (BX-XRBs) in the high-soft
state (Meyer et al. 2000; Dexter & Quataert 2012), narrow-
line Seyfert galaxies (Mineshige et al. 2000; Wang & Netzer
2003; Haba et al. 2008), and ultra luminous X-ray sources
(Watarai et al. 2001; Chen & Wang 2004; Godet et al. 2012;
Soria et al. 2015).

On the contrary, in a hot accretion model with a low
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mass accretion rate, only a small fraction of the energy gen-
erated by turbulence is radiated away and most of the ther-
mal energy is stored in the accretion flow, which is then
advected into the BH. As a result, the temperature of the
gas becomes extremely high although its density and scale
height remain smaller in comparison with the well-known
standard thin disc (Shakura & Sunyaev 1973). Hot accre-
tion flows (HAFs), the subject of this study, have a drasti-
cally reduced radiative efficiency, leading to this model being
referred to as a radiatively inefficient accretion flow (RIAF)
(Ichimaru 1977; Narayan & Yi 1994; Yuan & Narayan 2014).

It is noteworthy that HAF models successfully explain
the observational features of various BH systems includ-
ing the supermassive BH in our Galactic center (Sgr A*)
(Manmoto et al. 1997; Yuan et al. 2002; Yuan & Narayan
2014), M87 (Reynolds et al. 1996; Park et al. 2019), and the
other low-luminosity AGNs (LLAGNs) (Lasota et al. 1996;
Nemmen et al. 2006, 2014; Younes et al. 2019), and also
BH-XRBs in the hard/quiescence states (Esin et al. 1997;
Hameury et al. 1997; Yuan & Cui 2005; Liu et al. 2011).

One of the most important findings of the numeri-
cal simulations is the existence of outflows in HAFs (e.g.,
Ohsuga et al. 2009; Yuan et al. 2012a,b, 2015; Bu et al.
2016b,c; Mosallanezhad et al. 2022) that have been con-
firmed by observation of LLAGNs and XRBs (e.g., Wang
et al. 2013; Cheung et al. 2016; Homan et al. 2016; Ma et al.
2019; Park et al. 2019). In the presence of outflows, mass,
angular momentum, and energy are removed from the disc,
which can have a profound effect on the dynamics and struc-
ture of the flow (Yuan et al. 2018; Bu & Yang 2019). There-
fore, the modelling of HAFs is able to make the properties of
winds/outflows easier. For instance, a recent study of Yang
et al. (2021) indicates that a larger BH spin and stronger
magnetic fields lead to stronger winds/outflows from the
disk.

Taking into account the temperature and density pro-
files of the HAFs with very low accretion rates, it appears
that the collisional mean free paths of the charged particles
are much larger than the typical length-scale of accretion
flows, i.e., rg = GMBH/c

2, where rg is the gravitational ra-
dius, and G, MBH, and c are the gravitational constant, the
BH mass, and speed of light, respectively (Mahadevan &
Quataert 1997; Tanaka & Menou 2006; Johnson & Quataert
2007). The plasma in HAFs is therefore expected to be col-
lisionless with thermal conduction playing a significant role.

The effect of thermal conduction on the physical prop-
erties of HAFs has been explored in several studies based
on self-similar assumptions (Tanaka & Menou 2006; Shad-
mehri 2008; Faghei 2012b; Khajenabi & Shadmehri 2013;
Ghoreyshi & Shadmehri 2020; Mosallanezhad et al. 2021).
In an early attempt, Tanaka & Menou (2006) reported that
thermal conduction in HAFs possibly helps the gas to be
launched from the disc as outflows. In addition, the effect of
thermal conductivity on the energy flux of outflows as well
as the size of the outflowing region appears to be signifi-
cant (Khajenabi & Shadmehri 2013). Meanwhile, numerical
simulations of HAFs indicate that the energy flux carried
by the outflows in the presence of thermal conduction can
be increased by a factor of ∼ 10 (Bu et al. 2011, 2016a).
Further, Narayan & Yi (1995a,b) suggested that the posi-
tive Bernoulli parameter is required for outflows to occur in
an accretion disc. As a result, the gas becomes gravitation-

ally unbound and escape from the gravitational potential of
the central BH. It is noteworthy that a positive Bernoulli
parameter results from the self-similar framework as well
(Nakamura 1998; Yuan 1999; Abramowicz et al. 2000; Yuan
et al. 2015).

Although the self-similar solutions provide the physi-
cal insights of the accretion flow, they fail to decipher the
global behaviour of the accretion flow, especially at the in-
ner and outer disc boundaries (Narayan et al. 1997; Chen
et al. 1997). Because of this, several authors investigated
the global solutions to HAFs around black holes in a self-
consistent manner (Abramowicz et al. 1996; Narayan et al.
1997; Chen et al. 1997; Nakamura et al. 1997; Popham &
Gammie 1998; Lu et al. 1999; Becker & Le 2003; Chakrabarti
& Das 2004; Das 2007; Yuan et al. 2008; Das et al. 2009;
Narayan & Fabian 2011; Kumar & Gu 2018; Kumar &
Yuan 2021; Das et al. 2022; Mitra et al. 2022). A pioneering
and fascinating study of the global structure and dynam-
ics considering single temperature HAFs was carried out by
Narayan et al. (1997). Upon comparing the global and self-
similar solutions, they showed that the self-similar solutions
satisfactorily mimic the regions avoiding the inner and the
outer boundaries of the disc. Due to this, the spectra derived
by using the self-similar solutions require modifications, as
the swarm of high energy photons originated from the re-
gions near the inner boundary are not accounted appropri-
ately. In addition, Narayan et al. (1997) reported that the
global solution leads to a negative Bernoulli parameter in the
outer regions of the disc (see also Yuan 1999; Kumar & Gu
2018). Further, Yuan (1999) showed that the outer bound-
ary conditions may significantly affect the value of Bernoulli
parameter and its sign, as well. In reality, the Bernoulli pa-
rameter depends not only on the outer boundary conditions,
but also on factors, such as the viscosity parameter, the adi-
abatic index, and the advection parameter (Narayan et al.
1997; Popham & Gammie 1998; Narayan & Fabian 2011;
Kumar & Gu 2018).

Over the course of accretion, the infall velocity ap-
proaches the speed of light when the accreting matter en-
ters the BH (Weinberg 1972), while it becomes negligible
at large distances away from the BH horizon (Frank et al.
2002; Das 2007, and references therein). As a result, the ac-
creting gas experiences a subsonic to supersonic transition
at a point called the critical point (Liang & Thompson 1980;
Abramowicz & Zurek 1981). The critical point depends on
the value of the viscosity parameter and the outer bound-
ary conditions (Chakrabarti 1996; Narayan et al. 1997; Yuan
1999; Chakrabarti & Das 2004; Yuan et al. 2008). Moreover,
if there are multiple critical points in accretion flows, the
flows may undergo shocks (Fukue 1987). The shocked disc
may satisfy the observational criteria for the formation of the
observed outflows (Das et al. 2001; Becker et al. 2008; Das
& Chattopadhyay 2008; Das et al. 2009; Aktar et al. 2015,
2017, 2018). In particular, Das et al. (2009) demonstrated
that the existence of shocks relies on the level of viscous dis-
sipation. However, Narayan et al. (1997) examined similar
transonic solutions for a wide range of the viscosity parame-
ter, but did not report any shock (see also Chen et al. 1997;
Nakamura et al. 1997; Lu et al. 1999; Yuan et al. 2008),
possibly due to the choice of selective boundary conditions.

Considering all these, in this work, we intend to ex-
amine the three primary objectives concerning the HAFs.
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Firstly, we aim to investigate the global transonic solutions
of HAFs that include thermal conduction. This is particu-
larly relevant for systems with an extremely low mass ac-
cretion rate, such as Sgr A* and the M87 galaxy, where the
accretion flows are weakly collisional. In such systems, the
electron collisional mean free path can be comparable to the
typical size of the system, resulting in a significant influence
of thermal conduction on the dynamics of the accretion flow
and energy transport from the inner to outer regions (John-
son & Quataert 2007; Quataert 2008). Our next objective
is to determine the range of the thermal conduction param-
eter within which global solutions are viable for the given
set of physical input parameters. This is an essential step in
our study, as it allows us to identify the critical threshold
for thermal conduction for which the global solutions cease
to exist. Thirdly, we compare the results of global transonic
solutions with the self-similar solutions of HAFs in the pres-
ence of thermal conductivity. This analysis provides a more
detailed understanding of the impact of thermal conduction
on the dynamics of HAFs.

The remainder of the manuscript is organized as follows.
In Section 2, the basic equations, physical assumptions, and
the boundary conditions are introduced. The numerical re-
sults are presented in detail in Section 3. Finally, in Section
4, we provide the discussion and summary of the present
work.

2 HOT ACCRETION FLOWS WITH
SATURATED THERMAL CONDUCTION

We begin with a low angular momentum, steady, axisym-
metric, viscous, advective accretion flow around a non-
rotating black hole. Moreover, we assume that the mass ac-
cretion takes place at very low rate representing the radia-
tively inefficient hot accretion flow (HAF). In the subsequent
sections, we study the properties of the HAF in the presence
of thermal conduction.

2.1 Dynamical equations

In order to deal with the HAF, we adopt a cylindrical co-
ordinate system (r, φ, z). We employ the same set of height-
integrated governing equations as delineated in Narayan
et al. (1997) except the energy equation, where we include
the effect of thermal conduction. In addition, we consider the
hydrostatic equilibrium in the vertical direction and hence,
the flow variables are vertically averaged. Accordingly, in
this formulation, the flow variables are expressed as func-
tions of the cylindrical radius r only. Under these assump-
tions, the governing equations are given by,

Ṁ = −4πrHρv, (1)

v
dv

dr
= (Ω2 − Ω2

K
)r − 1

ρ

d(ρC2
s )

dr
, (2)

ρrHv
d(Ωr2)

dr
=

d

dr

(
νρHr3 dΩ

dr

)
, (3)

ρv

(γ − 1)

dC2
s

dr
− C2

s v
dρ

dr
= fνρr2

(
dΩ

dr

)2

− 1

r

d(rFs)

dr
. (4)

In the above equations, ρ and Ω are the mass density and the
angular velocity of the gas, respectively. The radial velocity
of the flow v is assumed to be negative for an inward flow
of gas. Here, H ≡ Cs/ΩK is the vertical half-thickness of
the flow, where Cs is the isothermal sound speed and ΩK is
the Keplerian angular velocity. Adopting pseudo-Newtonian
potential Ψ = −GMBH/(r− rs) (Paczyńsky & Wiita 1980),
the Keplerian angular velocity is given by,

Ω2
K

=
GMBH

r(r − rs)2
, (5)

where rs = 2GMBH/c
2 is the Schwarzschild radius for a BH

with mass MBH. The last term on the right hand side of
equation (2) is the acceleration due to the pressure gradi-
ent. Here, the pressure is defined by the isothermal sound
speed Cs and the density ρ as p = ρC2

s . A Shakura-Sunyaev
prescription (Shakura & Sunyaev 1973) is adopted for the
kinematic coefficient of viscosity (ν) as,

ν = αCsH, (6)

where α is the viscosity parameter. We assume that the vis-
cosity parameter is a constant, and is independent of r. By
substituting equation (6) into equation (3), and using equa-
tion (1), we have,

d

dr

(
ρHvr3Ω

)
=

d

dr

(
αC2

s ρHr
3

ΩK

dΩ

dr

)
, (7)

which on integration gives

dΩ

dr
=
vΩK(`− `0)

αr2C2
s

, (8)

where ` = Ωr2 is the angular momentum per unit mass
(hereafter specific angular momentum) for the accreting gas
at radius r. The integration constant `0 represents the spe-
cific angular momentum eventually swallowed by the black
hole. In energy equation (4), γ is the ratio of specific heats
of the gas. The advection parameter f (= 1−Qrad/Qvis) is
assumed to be a constant which lies in the range 0 6 f 6 1.
Here, Qvis and Qrad denote viscous heating and radiative
cooling rates. Since the collisional mean free paths of the
charged particles in HAFs are much larger than the typical
length-scale of the accretion flows, one may no longer ap-
ply the classical theory for thermal conduction. Under these
conditions, the heat flux is described as the saturated form
of conduction. The last term on right hand side of equation
(4) represents the transfer of energy due to the saturated
thermal conduction. Following Cowie & McKee (1977), the
saturated conduction flux Fs is obtained as,

Fs = 5ΦsρC
3
s , (9)

where Φs is the dimensionless saturation constant with
0 6 Φs < 1. It is noteworthy that the self-similar solutions
describing the accretion flow tend to become non-rotating
(Ω→ 0) when the saturation constant (Φs) reaches its limit-
ing value (Φsc) (Shadmehri 2008; Ghasemnezhad et al. 2012;
Faghei 2012a; Ghoreyshi & Shadmehri 2020). Accordingly,
the physically acceptable accretion solutions around a black
hole are given by the remaining allowed range of the satu-
ration constant, 0 6 Φs 6 Φsc.
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2.2 Critical point and boundary conditions

Using equations (1), (4), (8), and (9), we get the radial gra-
dient of the sound speed as,

(
γ + 1

γ − 1
+ 10 Φs

Cs

v

)
d lnCs

dr
= −

(
1− 5Φs

Cs

v

)
d ln |v|
dr

+

(
1− 5Φs

Cs

v

)
d ln ΩK

dr
−1

r
+
fvΩK
αr2C4

s

(
`−`0

)2
.

(10)

We next use equations (1) and (10) to eliminate dρ/dr
and dCs/dr in equation (2) and thereby express the differ-
ential dynamical equation as,

[
2γ + 5 Φs(γ − 1)Cs/v

(γ + 1) + 10 Φs(γ − 1)Cs/v
− v2

C2
s

]
d ln |v|
dr

=
r
(
Ω2

K
− Ω2

)
C2

s

−
[

2γ + 10 Φs(γ − 1)Cs/v

(γ + 1) + 10 Φs(γ − 1)Cs/v

]
1

r

+

[
2γ + 5 Φs(γ − 1)Cs/v

(γ + 1) + 10 Φs(γ − 1)Cs/v

]
d ln ΩK

dr
+
fΩKv

αr2C4
s

×
[

γ − 1

(γ + 1) + 10 Φs(γ − 1)Cs/v

]
(`− `0)2 . (11)

We numerically solve the differential equations (8), (10),
and (11) to obtain the radial profile of v, Cs and `. In do-
ing so, one requires to supply the boundary conditions. As
stated in the introduction, the inflowing gas starts its jour-
ney from the outer edge of the disc with negligible radial
velocity (|v| � c, i.e., subsonic). However, the matter flows
into the BH with supersonic velocity (|v| ∼ c) to satisfy
the inner boundary conditions imposed by the event hori-
zon. Therefore, the flow must change its sonic state at the
critical point (rc) to become transonic at least once, if not
multiple times. At the critical point, the radial velocity gra-
dient takes the form dv/dr|c = 0/0 as both numerator Nc

and denominator Dc simultaneously vanish at rc, and we
have the critical point conditions Nc = Dc = 0, which are
explicitly yielded as,

Dc ≡
2γ + 5 Φs(γ − 1)Csc/vc

(γ + 1) + 10 Φs(γ − 1)Csc/vc
− v2

c

C2
sc

= 0, (12)

Nc ≡
rc

(
Ω2

K
− Ω2

c

)
C2

sc

−
[

2γ + 10 Φs(γ − 1)Csc/vc

(γ + 1) + 10 Φs(γ − 1)Csc/vc

]
1

rc

+

[
2γ + 5 Φs(γ − 1)Csc/vc

(γ + 1) + 10 Φs(γ − 1)Csc/vc

]
d ln ΩK

dr
+
fΩKvc

αr2
cC4

sc

×
[

γ − 1

(γ + 1) + 10 Φs(γ − 1)Csc/vc

]
(`c − `0)2 = 0. (13)

where vc, Ωc, Csc, and `c denote the radial, and the angu-
lar velocities, sound speed and the angular momentum at
the critical point (rc), respectively. Since the flow remains
smooth along the streamline, dv/dr must be real and finite
all throughout. Hence, we calculate dv/dr|c by applying the
l′Hôpital’s rule, leading to(
dv

dr

)
c

=

(
dN/dr
dD/dr

)
r=rc

. (14)

In general, dv/dr|c possesses two distinct values at rc. When
both values of dv/dr|c are real and of opposite sign, i.e.,

dv/dr|c < 0, and dv/dr|c > 0, we obtain saddle type critical
points (Das 2007; Das et al. 2009; Mitra et al. 2022, and
referenceses therein). Note that saddle type critical points
are of special interest as the global transonic accretion flow
has to pass through it (Chakrabarti & Das 2004).

Another boundary condition implies the vanishing of
the viscous shear stress at the horizon (Becker & Le 2003;
Das et al. 2009). Hence, considering dΩ/dr = 0, we obtain,

lim
r→rs

Ω(r) ≡ Ω0 =
`0
r2
s

. (15)

Applying the aforementioned conditions and adopting
the methodology outlined in the following subsection, we ob-
tain the comprehensive global transonic accretion solutions
around black holes in the presence of thermal conduction.
With careful adherence to this approach, we can accurately
model the behaviour and characteristics of the accretion flow
that provides the precious insights into the underlying phys-
ical processes under considerations.

2.3 Globally conserved energy equation

In order to obtain the energy transport rate per unit mass
of a viscous advective flow in the presence of thermal con-
duction, we rewrite equation (4) as

E =
v2

2
− `2

2r2
+ Ψ + h+

``0
r2

+
5ΦsC

3
s

v

−
∫ (

5ΦsC
3
s

vH

dH

dr

)
dr, (16)

where h [= γp/ρ(γ − 1)] is the specific enthalpy. We note
that the saturated conduction flux decreases in regions of
the accreting flow where the electrons become relativistic
(Tanaka & Menou 2006). Therefore, the effect of thermal
conduction can be negligible in the inner regions (rin) of the
disc. Accordingly, we set Φs ∼ 0 at rin, and redefine the
energy transport rate per unit mass (ε0) at rin as

ε0 =
v2

2
− `2

2r2
+ Ψ + h+

``0
r2
. (17)

We fix the energy ε0 at rin and obtain the global solutions
following the methodology as delineated in Appendix A. It
is important to note that ε0 is conserved for a viscous, ad-
vective accretion flow. Moreover, we express the Bernoulli
parameter (Be) (Nakamura et al. 1997) that contains the
local information of radial motion, azimuthal motion, grav-
ity and thermodynamic terms, and is given by,

Be =
v2

2
+

`2

2r2
+ Ψ + h. (18)

Needless to mention that in absence of any viscosity, ` = `0
and hence, we have ε0 = Be.

3 NUMERICAL RESULTS

In obtaining the accretion solutions, we employ a unit sys-
tem with GMBH = c = 1. This allows us to simplify our cal-
culations and obtain results that are seamlessly compared
with previous studies. The structure of HAFs is influenced
by a variety of factors, including the energy transport rate
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Figure 1. Variation of Mach number (M = |v|/Cs) as function
of radial coordinate (r) for different Φs values starting from 0 to

0.0250 which are marked. Here, the input parameters are chosen
as (ε0, `0, α) = (0.001, 2.75, 0.05). The filled circles represent the

critical points. See text for the details.

ε0 at rin, angular momentum transport rate `0 at the hori-
zon, the viscosity parameter α, the saturation constant Φs,
and the ratio of specific heats, γ. In this study, we choose
γ = 1.5 unless stated otherwise, and set f = 1 for the pur-
pose of representation. To find the critical point location,
we utilize the iteration methodology as described in Becker
& Le (2003); Das et al. (2009); Kumar & Gu (2018) (see
appendix A for more details). We then solve the coupled
differential equations (8), (10), and (11) simultaneously for
a given set of input parameters (ε0, `0, α,Φs) to obtain the
global solution for HAFs in the presence of thermal con-
duction. This approach allows us to accurately model the
behaviour of HAFs and gain insights into the complex pro-
cesses that govern their structure.

3.1 Global transonic solutions

We choose a set of input parameters, (ε0, `0, α) =
(0.001, 2.75, 0.05), and integrate the flow equations (8, 10,
11) towards the outer edge (redge) of the disc starting from
rin = 2.001 considering Φs = 0. The obtained results are
depicted in Fig. 1, where the solid (black) curve smoothly
connects the horizon with redge = 1000 via a critical point
at rc = 6.233. Solutions of this kind where a sub-sonic flow
(v � c) from a large distance smoothly crosses the BH
horizon supersonically are called global accretion solutions.
Next, we increase the saturation constant to Φs = 0.00025,
and notice that the obtained global solution (dashed curve
in red) deviates from the global solution with Φs = 0. It is
interesting to note that the global accretion solutions ob-
tained for different Φs remain quite insensitive, particularly
in the inner regions of the disk. However, the effect of ther-
mal conduction on the accretion solutions is prominently
visible in the region far from the black hole horizon. We
keep increasing the saturation constant to a critical value
Φs = 0.000425 (dot-dashed curve in green), beyond that
the flow fails to connect the outer edge as the solution be-
comes closed (Sarkar et al. 2018), shown using a dotted (ma-
genta) curve. If we keep increasing Φs, we continue to ob-

6.0

6.2

6.4

r c

ε0 = 0.001

0.0025

0.005

(a)

5.0

5.5

6.0

6.5

r c

`0 = 2.75

2.85

2.95

(b)

10−4 10−3 10−2

Φs

5.8

6.0

6.2

6.4
r c

α = 0.05

0.06

0.07

(c)

Figure 2. Variation of the critical point location (rc) as function

of Φs. In panel (a), we fix (α, `0) = (0.05, 2.75), and show rc for
ε0 = 0.001, 0.0025, and 0.005. In panel (b), we choose (ε0, α) =

(0.001, 0.05), and obtain results for different angular momentum

at the horizon as `0 = 2.75, 2.85, and 2.95. In panel (c), we set
(ε0, `0) = (0.001, 2.75), and vary the viscosity parameter as α =
0.05, 0.06, 0.07. In each panel, open circles, squares and asterisks

represent the location of critical points rc. See text for the details.

tain closed solutions depicted in long-dashed (blue) and dot-
dashed (purple) curves. Note that these solutions are appar-
ently unphysical unless they join via shock with other solu-
tions passing through another critical point usually located
far away from the horizon (Fukue 1987; Chakrabarti 1989,
1996; Das et al. 2001; Chakrabarti & Das 2004; Das 2007;
Das et al. 2009, 2022, and references therein). Finally, we
find an upper limit of the saturation constant, Φs = 0.025,
above which accretion solutions cease. We observe that the
critical point shifts outwards when increasing the satura-
tion constant (see § 3.2). This finding contradicts the previ-
ously reported results (Faghei 2012b) and hence, we intend
to analyse this in detail in the following subsection § 3.2.

3.2 Dependency of critical point on input
parameters

In Fig. 2, we find a unique correspondence between the
critical point location and the saturation constant (Φs) for
different combinations of (ε0, `0, α). In Fig. 2a, we choose
(ε0, `0, α) = (0.001, 2.75, 0.05), and start with Φs = 0. For
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Figure 3. The profiles of velocity v, temperature T , angular mo-
mentum `, and aspect ratio H/r are plotted as function of radial

distance r for different values of Φs = 0 (solid), 0.0005 (dashed),

and 0.0010 (dot-dashed), respectively. Here, the input parame-
ters are chosen as (ε0, `0, α) = (0.0025, 2.75, 0.05). See text for

the details.

this configuration, we obtain the critical point at rc = 6.233,
and as Φs is increased, the critical point shifts outwards. In
reality, as Φs is increased, flow temperature at a given radial
coordinate is decreased (see Fig. 3b for more details), and
hence, Cs is also decreased there. Further, since Mach num-
ber Mrc [= (v/Cs)rc ] at rc remains largely insensitive to Φs,
rc shifts outward with the increase of Φs to restore Mrc . This
result is shown using open circles joined using solid (black)
lines. Next, we keep (`0, α) fixed, and increase energy to
ε0 = 0.0025, 0.005 that causes the critical point location to
reduce (see open squares in blue and open asterisks in red).
Indeed, as energy is increased, the temperature of the disc
is also increased, which causes the critical points to move
inwards to maintain the higher temperature. In Fig. 2b, we
fix (ε0, α) = (0.001, 0.05) and vary angular momentum as
`0 = 2.75, 2.85, and 2.95, respectively. Finally, in Fig. 2c, we
only vary the viscosity parameter as α = 0.05, 0.06, and 0.07
keeping other parameters fixed. When `0 or α is increased,
the frictional force increases within the flow that eventu-
ally yielding enhanced viscous heating. Hence, the critical
points move inwards with the increase of `0 or α, although
we observe an anti-correlation between Φs and any one of
the global input parameters, namely ε0, `0, and α, over the
variation of rc. However, the overall variation of the critical
point location (rc) with ε0, `0, and α appears to remain sim-
ilar as was reported earlier (Chakrabarti & Das 2004; Das
et al. 2009, 2022; Mitra et al. 2022).

3.3 The effect of thermal conduction on flow
variables

In Fig. 3, we depict the behaviour of flow variables cor-
responding to global transonic solution in the presence of
thermal conduction. Here, we set the input parameters as
(ε0, `0, α) = (0.0025, 2.75, 0.05). The solutions are illus-
trated for different values of the saturation constant as
Φs = 0.0, 0.0005, and 0.0010, which are plotted using solid
(black), dashed (red), and dot-dashed (green) curves, re-
spectively. In panel (a), the sub-sonic accretion flow from

redge = 1000 starts accreting with negligible velocity and
gradually gains radial velocity as it proceeds towards the
black hole. At rc, flow becomes supersonic and ultimately
crosses the horizon supersonically. Note that flow velocity
exceeds the speed of light just outside the horizon. This
happens due to the limitation of the pseudo-Newtonian po-
tential which deviates to mimic the space-time geometry
of the black hole there. For Φs = 0.0, 0.0005, and 0.0010,
the critical points are obtained at rc = 6.0924, 6.1113, and
6.1219, respectively. We find that radial velocity is increased
marginally with Φs at the inner part of the disc shown at
the inset, however, noticeably deviation is observed towards
the outer part of the disc. In a convergent flow, the temper-
ature (T ) is increased with the decrease of r mainly due to
the geometrical compression. However, the presence of ther-
mal conduction generally leads to the reduction of tempera-
ture, because the heat generated by the viscous dissipation
is transferred away due to the thermal conduction. As ex-
pected, the reduction of temperature at the outer edge of the
disc is observed (see panel (b) of Fig. 3), which are in agree-
ment with the results of the numerical simulation (Wu et al.
2010). In panel (c), we display the variation of the angular
momentum ` with r corresponding to the solutions presented
in panel (a). We find that the angular momentum transport
is very inefficient particularly at the inner part of the disc,
although the increase of ` is seen at higher radial coordi-
nates. Meanwhile, Faghei (2012b) argued that for enhanced
Φs, viscous turbulence is reduced that weakens the efficiency
of angular momentum transport inside the disc. We further
compare the flow angular momentum profile with the Keple-
rian angular momentum (`Kep) distribution (dotted curve in
blue) and observe that ` of HAFs remains sub-Keplerian all
throughout. In panel (d), we demonstrate the relative thick-
ness of the disc H/r at all radii. From the figure, it is clear
that H/r � 1 is generally maintained at the inner region,
however, flow is intended to become quasi-spherical H/r ∼ 1
towards the outer regions. Moreover, we find that the disc
thickness is reduced at the outer regions as the influence of
thermal conduction is increased. This is naturally expected,
as the increased Φs generally reduces the disc temperature
(T ) at the outer part of the disc that eventually resulted the
reduction of the disc height.

3.4 Self-similar solutions

In this paper, our main objective is to study the global tran-
sonic solutions of HAFs in presence of thermal conduction.
In addition, we also intend to conduct a comparative analy-
sis of HAFs by means of the self-similar solutions (Narayan
& Yi 1994). These analyses provide the valuable insights
of the similarities and differences between the two solu-
tions. Indeed, the self-similar solutions satisfactorily describe
the structure of an accretion flow far from boundaries, and
hence, such solutions are obtained for r � rs that reduces
the pseudo-Newtonian potential in the Newtonian form. Fol-
lowing Narayan & Yi (1994), we choose the self-similar treat-
ment in the following forms

v(r) = −αC1vK , (19)

Ω(r) = C2ΩK , (20)
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C2
s (r) = C3v

2
K
, (21)

where vK (=
√
GMBH/r, G = MBH = 1) is the Keplerian

velocity, and C1, C2 and C3 are constants. By substituting
the self-similar solutions (equations (19), (20), (21)) into the
equations (2)-(4), we obtain a closed set of dimensionless
equations that allow us to determine the constants C1, C2,
and C3. The closed set of dimensionless equations are given
by,

−1

2
α2C1

2 = C2
2 − 1 +

5

2
C3, (22)

C1 =
3

2
C3, (23)

[ 1

γ − 1
− 3

2

]
C1 =

9

4
fC2

2 + 10
Φs

α

√
C3. (24)

After some algebraic manipulations, an equation for C1 is
obtained as

9fα2

8
C1

2 +
[ 1

γ − 1
− 3

2
+

15f

4

]
C1−

10
√

6Φs

3α

√
C1−

9f

4
= 0.

(25)

As reported in Tanaka & Menou (2006), that the solution
of equation (25) yields the significant changes in the radial
and rotational velocity profiles when thermal conduction is
active inside the flow. In particular, they pointed out that
in the presence of thermal conduction, the accreting flow
rotates with lower rate, while its inward motion becomes
faster. Meanwhile, we mention in §2.1 that the accreting flow
reaches a non-rotating limit at a specific saturation constant
Φsc. Accordingly, we calculate Φsc using equations (22)-(24)
subject to the condition C2 = 0. With this, we have

Φsc =

√
−10 + 2

√
18α2 + 25

5− 3γ

40(γ − 1)
. (26)

Equation (26) clearly indicates that Φsc strictly depends on
both viscosity parameter α and ratio of specific heats γ,
when self-similar solutions are adopted. What is more is that
for Φs > Φsc, C2

2 in equation (24) becomes negative result-
ing unphysical solutions as it leads to Ω2 < 0.

In Fig. 4, we compare the global transonic solutions
with the self-similar solutions. While doing so, we choose the
same set of input parameters for global solutions as used in
Fig. 3, i.e., (ε0, `0, α) = (0.0025, 2.75, 0.05). And, for self-
similar solutions, we use α = 0.05, f = 1, and γ = 1.5,
respectively. In panel (a), the profile of the radial velocity
|v| is presented and in panel (b), we show the variation of
sound speed Cs. For the self-similar solutions, the effects of
thermal conduction in |v|, and Cs appear to be insignificant
even for high saturation constant Φs = 0.001. This happens
because both radial velocity and sound speed follow simple
power law as |v|, Cs ∼ r−1/2 having ignorable impact of
thermal conduction. On contrary, the impact of Φs is seen
to be prominent on the global solutions. In addition, the
Mach number M (= |v|/Cs) in global solutions generally
decreases with radius, whereas it remains independent on r
for self-similar solutions (Faghei 2012b). In fact, self-similar
solutions do not possess critical point as they remain sub-
sonic across the length scale of the disc. In panel (c), we
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Figure 4. Comparison of global (solid curves) and self-similar

(dashed curves) solutions in presence and absence of thermal
conduction. In panels (a), (b), (c) and (d), radial velocity (|v|),
sound speed (Cs), angular momentum (`) and local disc thick-
ness (H/r) are plotted. Here, we choose the input parameters for

global solutions as (ε0, `0, α) = (0.0025, 2.75, 0.05) (same as in

Fig. 3). The thin and thick curves represent results for Φs = 0
and Φs = 0.001, respectively. For self-similar solution, we choose

f = 1 and γ = 1.5. See text for the details.

illustrate the variation of angular momentum ` for the same
solutions presented in Fig. 4(a). We find that ` is reduced
with the increase of saturation constant Φs particularly to-
wards the outer part of the disc, which is in agreement with
the results of Tanaka & Menou (2006). Moreover, ` steeply
rises at larger radii as ` ∝ r1/2 in self-similar approach, al-
though HAFs remain sub-Keplerian all throughout provided
α does not assume high end values. In panel (d), we present
the variation of the local disc thickness H/r as function of
r. We observe that in self-similar model, H/r remains al-
most constant (H/r ∼ 0.6) at the outer regions of the disc,
whereas flow geometry becomes quasi-spherical (H/r ∼ 1)
for global solutions.

3.5 Parameter space for global and self-similar
solutions

In this section, we put effort to determine the Φs that ad-
mits global accretion solutions for a given set of input pa-
rameters (ε0, `0, α). Upon tuning the (ε0, `0), we compute
the maximum value of saturation constant Φmax

s for a given
α and present the obtain results in Fig. 5. Here, open cir-
cles, open squares, and open asterisks are for `0 = 2.55, 2.75
and 3.05 and these points join using solid (blue), dotted
(maroon), and dashed (red) lines corresponds to the results
for ε0 = 0.0010, 0.0025, and 0.0050, respectively. We ob-
serve that for a set of (ε0, `0), Φmax

s increases with the in-
crease of α, which is in agreement with the results obtained
from the self-similar solutions (Ghasemnezhad et al. 2012;
Faghei 2012a). Further, we notice that for a given ε0, when
`0 is small (high), flow with relatively higher (lower) viscos-
ity admits global transonic solutions. On the other hand,
for a given α, when ε0 is increased (decreased), the accept-
able range of Φmax

sc is also increased (decreased), irrespective
to the choice of `0 values. The shaded (violet) region cor-
responds to the self-similar solutions (see Eq. (26)) where
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saturation constant (Φmax

s = Φsc). See text for the details.
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tively. See text for the details.

slanting solid line refers the limiting value of saturation con-
stant (Φmax

s = Φs). Here, we choose f = 1, and γ = 1.5.
When Φs > Φmax

s , global solutions become infeasible and
ceases to exist (see §3.4). It is noteworthy that for lower
`0, Φsc agrees well with Φmax

s obtained from the global so-
lutions. When `0 is higher, a coarse agreement is observed
for flows with lower ε0 values. With this, we argue that the
physically motivated global accretion solutions are prevalent
than the simplistic self-similar solutions.

Next, we compare the limiting range of Φmax
s = Φsc as

function of viscosity parameter α for different γ values. The
obtained results are shown in Fig. 6, where Φmax

s is plotted
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Figure 7. Plot of Bernoulli parameter (Be) as function of loga-

rithmic radial coordinate for different saturation constants Φs.
Here, we choose the input parameters as γ = 1.5, f = 1.0,

and α = 0.05, respectively. Thick curves represent results ob-

tained from the global solutions using ε0 = 0.0025, and `0 =
2.75, whereas thin curves are for self-similar solutions. The solid

(black), dashed (red) and dot-dashed (green) curves denote re-
sults for Φs = 0, 0.0005, and 0.0010, respectively. The dotted

(magenta) horizontal line corresponds to Be = 0. See text for the

details.

as function of α. In the figure, the effective domain shaded
in violet is for γ = 1.5, whereas the same in red is obtained
for γ = 1.6. It is evident that the acceptable range of the
saturation constant Φs decreases as γ is increased (see also
Tanaka & Menou 2006). Based on this findings, we infer that
self-similar solutions obtained using relatively lower γ seems
to be potentially more viable in articulating the features of
global accretion solutions of HAFs (see Fig. 5).

3.6 Bernoulli parameter

In this section, we study the Bernoulli parameter Be (see
equation (18)) which coarsely accounts the evidence of out-
flow likely to be originated from the accretion disc. Accord-
ingly, in Fig. 7, we display the typical variation of Bernoulli
parameter Be as function of radial coordinate (r). In the
figure, thick curves correspond to the results obtained from
the global accretion solutions, where input parameters are
chosen as γ = 1.5, f = 1.0, α = 0.05, ε0 = 0.0025, and
`0 = 2.75, respectively. Here, solid (black), dashed (red) and
dot-dashed (green) curves represent results corresponding
to Φs = 0.0, 0.0005, and 0.0010. Note that the overall profile
of Be is in agreement with the smooth solutions reported
in Das et al. (2009) (see also Kumar & Gu 2018). We find
that the Bernoulli parameter Be of global transonic solu-
tions remain positive throughout the disc which is again in
agreement with Narayan et al. (1997). The positive Bernoulli
parameter suggests that the accreting gas are unbound and
therefore, a part of the accreting gas may escape (equiv-
alently massloss) in the form of outflow with a net posi-
tive (kinetic) energy avoiding the strong gravitational pull of
BH. With this, accreting gas tends to become energetically
bound. However, these outflows are expected to be quite
weak as the terminal Lorentz factor ranges Γ = Be+1 ∼ 1.01
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(Das et al. 2009). Indeed, shock-induced global accretion
solutions seems potentially promising to generate powerful
outflows having Γ ∼ 6 (Das et al. 2009), however, imple-
mentation of the shock physics is beyond the scope of the
present paper and will be reported elsewhere.

It is worthy to compare the Bernoulli parameter ob-
tained from global and self-similar solutions. Although the
Bernoulli parameter of global transonic solution always re-
main positive, however, in self-similar approach, it often al-
ters its sign from positive to negative as the accreting flow
moves towards the black hole from the outer edge. In Fig.
7, we present the profile of Be obtained from self-similar so-
lutions using thin curves, where γ = 1.5, f = 1.0, α = 0.05
are used as input parameters. As before, the results plot-
ted using solid (black), dashed (red) and dot-dashed (green)
curves are for Φs = 0.0, 0.0005, and 0.0010, respectively. We
observe that Be becomes negative only at the inner part of
the disc, where potential energy overcomes the remaining
terms in equation (18) yielding strongly bound flow. This
happens because the radial and rotational velocities close to
BH in the self-similar solutions are smaller than those in the
global solutions. Further, we notice that the effect of ther-
mal conduction on the Bernoulli parameter Be is seen to be
opposite. We infer that this finding possibly arises as the ra-
dial dependence of the disc variables in self-similar solutions
(see equation (19)−(21)) differs considerably from the global
solutions when the thermal conduction is active inside the
HAFs.

4 SUMMARY AND DISCUSSION

In this paper, we present a comprehensive study of a low an-
gular momentum, steady, axisymmetric, viscous, advective
accretion flow around a non-rotating BH in presence of ther-
mal conduction. Here, the conductive heat flux is described
in the saturated form. This is because, the accretion flow
becomes weakly collisional in such systems (Quataert 2004;
Tanaka & Menou 2006). We adopt the pseudo-Newtonian
potential introduced by Paczyńsky & Wiita (1980) that sat-
isfactorily mimics the space-time geometry around the non-
rotating BHs. With this, we examine the effect of thermal
conduction on the properties of the global transonic hot ac-
cretion flows around BHs.

The present model is based on the same set of governing
equations that describe the advection dominated accretion
flow (ADAF) (Narayan et al. 1997). Moreover, the conserva-
tion equations augmented by the inner boundary conditions
(Becker & Le 2003; Das et al. 2009; Kumar & Gu 2018)
permit us to carry out the analysis from the location just
out side the BH horizon rin = 2.001. Using the model input
parameters, namely energy (ε0), angular momentum (`0),
viscosity parameter (α), adiabatic index (γ), and saturation
constant (Φs) and following the solution methodology pre-
sented in Appendix A, we obtain the complete set of global
transonic solutions for the first time to the best of our knowl-
edge in presence of thermal conduction. We summarize our
findings below.

We find that the effect of thermal conduction on the
global accretion solutions is significant particularly towards
the outer part of the disc. When the saturation constant Φs

exceeds its limiting value, the nature of the global solution is

altered and it becomes closed failing to connect the BH hori-
zon with the outer edge of the disk (see Fig. 1). Solution of
this kind remain unphysical unless it is connected via shock
with another solution passing through a critical point usu-
ally located far from the horizon (Fukue 1987; Chakrabarti
1996; Das et al. 2001; Chakrabarti & Das 2004; Becker et al.
2008; Das et al. 2009, 2022, and referenes therein). Needless
to mention that the studying shock-induced global accretion
solution is beyond the scope of this paper and hence, will be
reported elsewhere. Moreover, our results confirm that the
thermal conduction affects the transonic properties of the
HAFs. When Φs is increased for flows with fixed input pa-
rameters (ε0, `0, α), critical points recede away from the BH
horizon (see Fig. 2).

We also examine the role of thermal conduction on the
flow variables. We see that the increase of Φs reduces the flow
temperature, and disc height at the outer region (see Fig.
3). This possibly happens due to the fact that high thermal
conduction generally weakens the viscous turbulence (Faghei
2012a) that lowers the disc temperature. Indeed, this find-
ings are in agreement with the results reported in Tanaka
& Menou (2006); Wu et al. (2010). Further, we compare the
flow variables obtained by means of global and self-similar
solutions and ample disagreement is seen (see Fig. 4). In
fact, we observe that radial velocity and sound speed are
not noticeably affected by thermal conduction for self-similar
solutions. Notice that global accretion solutions remain sub-
Keperian all throughout, however, self-similar solutions may
become super-Keplerian near the critical radius provided α
assumes lower value (Narayan et al. 1997; Chen et al. 1997;
Kumar & Gu 2018).

One of the important results of this work is to identify
the correlation between viscosity α and maximum satura-
tion constant Φmax

s that renders the global transonic solu-
tions of HAFs. We find a positive correlation where Φmax

s

increases with α irrespective to the choice of (ε0, `0). We
also observe that the flow with higher ε0 can sustain higher
Φmax

s for global solutions, however, such dependencies are
non-existence indicating the limitation of the self-similar ap-
proach (see Fig. 5).

In addition, we calculate the Bernoulli parameter Be in
the presence of thermal conduction to explore the possible
existence of outflows in HAFs. Global solutions display a
positive Bernoulli parameter at all radii, whereas self-similar
solutions yield negative Bernoulli parameter at the inner
part of the disc (see Fig. 7). Evidently, an accretion flow
with positive Bernoulli parameter is unbound and therefore,
matter is likely to escape from such unbound disc avoiding
the strong gravity of BH in the from of outflow.

Finally, we mention the limitations of the present for-
malism as it is developed based on several approximations.
We adopt pseudo potential to mimic the gravitational ef-
fect around a non-rotating black hole, instead of using gen-
eral relativity. We consider single temperature disc assuming
strong coupling existed between ion and electron. However,
in HAFs, the ion-electron coupling generally becomes weak
and hence, two-temperature flow structure seems to be vi-
able at least at the inner part of the disc (Rees et al. 1982;
Yuan & Narayan 2014; Dihingia et al. 2018, 2020). We ne-
glect magnetic fields although the transport of angular mo-
mentum is expected due to the Maxwell stress associated
with Magnetohydrodynamics (MHD) turbulence driven by
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magneto-rotational instability (MRI). Moreover, we refrain
studying self-consistent accretion-ejection solutions that re-
quires two dimensional approach. All these are indeed rele-
vant, however, their implementations are beyond the scope
of the present work. Indeed, we plan to take up these issues
in our future works and will be reported elsewhere.
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APPENDIX A: SOLUTION METHODOLOGY:
ITERATION METHOD

We obtain the global transonic solutions using an iteration
method. In this method, we begin the numerical integration
of the flow equations from a location just outside the black
hole horizon as rin = rs + 0.001. For a given set of input
parameters (ε0, `0, α,Φs), we compute three flow variables,
namely velocity vin, sound speed Csin , and angular momen-
tum `in at rin. Needless to mention that 0 < `0 < `ms,
where `ms = 2

√
3 is the innermost stable angular momen-

tum around a Schwarzschild BH. Considering this, we pursue
the following chronology for obtaining the global solutions.

• Close to horizon i.e., r − rs → 0, the matter falls with
free fall velocity vff = −

√
2/(r − rs) . Here, we consider

3 5 10

r

0.1

0.5

1.0

|v
|

rc
δ = 0.999075

δ = 0.999080

δc = 0.9990773

Figure A1. Variation of flow velocity |v| as function of ra-
dial coordinate r for three different iteration parameters. Dashed

(red), solid (black) and dot-dashed (blue) curves denote results for

δ = 0.999075, 0.9990773, and 0.999080. Here, δ = δc = 0.9990773
corresponds to transonic solution where critical point is obtained

at rc = 5.0286 for the chosen input parameters (ε0, `0, α,Φs, γ) =

(0.005, 3.05, 0.04, 0.0015, 1.5).

a fractional constant δ < 1, such that vin = δ × vff , and
accreting matter enters into the BH with this velocity vin.
• Next, we determine the asymptotic flow variables just

outside the horizon at rin. Using Frobenius expansion, we get
the asymptotic behaviour of flow angular momentum as,

`in = `0 +B(r − rs)
β ; r → rs, (A1)

where B and β are positive constants. We implement `in in
equation (8) and we demand that,

lim
r→rs

d`in
dr

= 0, lim
r→rs

δ
√

2B(r − rs)
β

√
rs(r − rs)

3
2αC2

s

=
2`0
rs
. (A2)

To eliminate all terms involving (r−rs) in equation (A2), we
require β = 3/2 and B =

√
2/rs(αC

2
s `0/δ). Accordingly, we

get the expression of angular momentum at rin for a suitable
choice of (δ, `0, α,Φs).
• We use vin and `in in equation (16), where we consider

that the effect of conduction is negligible (Tanaka & Menou
2006), and determine the sound speed Csin by solving equa-
tion (17) for a given energy ε0,
• Using vin, Csin , and `in, we start integrating equations

(8, 10, 11) from rin outwards, and check the critical point
conditions described in equations (12) and (13). We keep
tuning the iteration parameter δ until the critical point con-
ditions are satisfied for δ = δc, and thereafter, we obtain the
critical point rc (see Fig. A1 for more details).
• At rc, we calculate dv/dr|c by applying the l′Hôpital’s

rule. The real and negative radial velocity gradient corre-
sponds to accretion solution, and hence, for dv/dr|c < 0, we
further integrate equations (8, 10, 11) starting from rc upto
to the outer edge of the disc redge = 1000. Finally, we join
both parts of the solutions (from rin to rc and rc to redge)
to obtain the global transonic accretion solution for a HAF
around non-rotating BH.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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