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ABSTRACT
We present a novel approach to study the global structure of steady, axisymmetric,
advective, magnetohydrodynamic (MHD) accretion flow around black holes in full
general relativity (GR). Considering ideal MHD conditions and relativistic equation
of state (REoS), we solve the governing equations to obtain all possible smooth global
accretion solutions. We examine the dynamical and thermodynamical properties of ac-
creting matter in terms of the flow parameters, namely energy (E), angular momentum
(L), and local magnetic fields. For a vertically integrated GRMHD flow, we observe
that toroidal component (bφ) of the magnetic fields generally dominates over radial
component (br) at the disk equatorial plane. This evidently suggests that toroidal
magnetic field indeed plays important role in regulating the disk dynamics. We further
notice that the disk remains mostly gas pressure (pgas) dominated (β = pgas/pmag > 1,
pmag refers magnetic pressure) except at the near horizon region, where magnetic fields
become indispensable (β ∼ 1). We observe that Maxwell stress is developed that even-
tually yields angular momentum transport inside the disk. Towards this, we calculate
the viscosity parameter (α) that appears to be radially varying. In addition, we exam-
ine the underlying scaling relation between α and β, which clearly distinguishes two
domains coexisted along the radial extent of the disk. Finally, we discuss the utility of
the present formalism in the realm of GRMHD simulation studies.
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1 INTRODUCTION

Black hole X-ray binary sources (BH-XRBs) are often con-
sidered to be the most ideal cosmic laboratory to probe the
effect of strong gravity due to their rapid dynamical evo-
lution in millisecond time scale (Belloni et al. 2000, 2005;
Remillard & McClintock 2006; Nandi et al. 2012, 2018;
Sreehari et al. 2019; Baby et al. 2020, 2021; Majumder
et al. 2022, and references therein). These BH-XRBs are
embedded in the disk of inwardly spiralling accreting mat-
ter that are known to emit X-rays in the energy range of
sub-keV to a few hundred keV (Remillard & McClintock
2006; Yuan & Narayan 2014). Therefore, the signatures of
strong gravity are likely to be imprinted into those X-ray
photons emitted from the surrounding of the BH-XRBs.
Moreover, the existence of relativistic jets are observation-
ally confirmed in both BH-XRBs and active galactic nuclei
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(AGN) (Curtis 1918; Jennison & Das Gupta 1953; Baade &
Minkowski 1954; Zensus 1997; Davis & Tchekhovskoy 2020;
Janssen et al. 2021), which are presumed to be launched
from the vicinity of the black hole (Blandford & Znajek
1977; Chakrabarti 1999; Das & Chattopadhyay 2008; Aktar
et al. 2015, 2017, and references therein). Indeed, the inflow-
ing matter plays a viable role for the generation of such an
enigmatic outflowing feature. In general, the differentially
rotating convergent accretion flow around the central object
is extremely viscous as well as turbulent (Shakura & Sun-
yaev 1973; Balbus & Hawley 1991; Hawley & Balbus 1995;
Balbus & Hawley 1998). Since magnetic fields are ubiquitous
in all astrophysical environments, the accretion flow around
black hole is also expected to be indubitably magnetized in
nature.

During the course of accretion, magnetic field is rooted
in the disk either from the low-mass companion star or from
the interstellar medium (Bisnovatyi-Kogan & Ruzmaikin
(1974, 1976)), as these fields are ‘frozen in’ to the accret-
ing matter. In a magnetized disk, the dynamics of both in-
flowing and outflowing matters are primarily guided by the
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magnetic fields. In particular, the discovery of the magneto-
rotational instability (MRI) suggests that accretion flows are
driven by magnetohydrodynamical (MHD) turbulence (Bal-
bus & Hawley 1991; Stone et al. 1996; Balbus & Hawley
1998; Hawley 2000; Hawley & Krolik 2001; Stone & Pringle
2001; Pessah et al. 2007) that eventually facilitates the an-
gular momentum transport required to accrete matter onto
the central object.

In studying the BH-XRBs and AGNs, the advection
dominated accretion flow model received tremendous at-
tention among the researchers (Narayan & Yi 1995; Yuan
& Narayan 2014, for review), although the magnetic fields
are regarded there in stochastic limit. In reality, an accre-
tion disk around black hole is likely to be threaded with
large scale magnetic fields, and accordingly, several succes-
sive attempts were made to examine the accretion disk struc-
ture considering toroidal magnetic fields (Akizuki & Fukue
2006; Oda et al. 2007; Begelman & Pringle 2007; Oda et al.
2010, 2012; Samadi et al. 2014; Sarkar et al. 2018; Sarkar
& Das 2018; Dihingia et al. 2020). Meanwhile, Hirose &
Krolik (2004) reported that the ordered toroidal magnetic
fields govern the flow dynamics at the inner part of the
disk, whereas the plunging region is mostly dominant by
the poloidal fields. Further, global MHD simulations (Haw-
ley (2001); Kato et al. (2004)) revealed that inside the disk,
the poloidal component of the magnetic fields remains weak
compared to the toroidal one. Mishra et al. (2020) exam-
ined the dynamical structure of geometrically thin accretion
disks using global 3D MHD simulation and investigated the
viscous effect resulted by means of the turbulent magnetic
stress. Avara et al. (2016) performed 3D general relativistic
magnetohydrodynamic (GRMHD) simulations of radiatively
efficient thin accretion discs and reported that large-scale
magnetic field naturally accretes through the disk yielding
enhanced radiative efficiency. Needless to mention that all
these works are model dependent and hence, the plausible
structure of the disk magnetic fields remains unsettled.

Very recently, Event Horizon Telescope collaboration
(EHTC) performed a comprehensive analysis on the be-
haviour of the linear polarization of light emitted from
M87∗ (Event Horizon Telescope Collaboration et al. 2021a,b;
Goddi et al. 2021) and for the first time, provided the novel
insight of the magnetic field structures in the nearby re-
gion of any supermassive black hole (SMBH). The estimated
magnetic field for M87∗ appears to be 1− 30 Gauss at 5rg,
rg being the gravitational radius (Event Horizon Telescope
Collaboration et al. 2021a,b) that yields 5 − 150 Gauss at
the horizon as obtained assuming a 1/r dependence (Rip-
perda et al. 2022), r being the radial coordinate. And, the
observed polarization map possibly resulted due to ordered
radial and/or vertical magnetic fields present in the emission
region. Recently, simulation studies of magnetically arrested
disk (MAD; Igumenshchev et al. 2003; Narayan et al. 2003)
successfully reproduced the similar polarimetric signatures
(Palumbo et al. 2020; Narayan et al. 2021; Yuan et al. 2022),
which eventually indicate that the magnetic fields are dy-
namically important in the near-horizon region. Also, it is
worth mentioning that the structure of seed magnetic fields
plays an important role in governing the accretion-ejection
mechanism around black hole. In particular, the initial mag-
netic fields affect the dynamical structure of the relativis-
tic jets/outflows (e.g. Nathanail et al. 2020; Dihingia et al.

2021). This evidently indicates that the choice of the initial
magnetic field structure is important but often it remains
model dependent (Komissarov 2006; Pu et al. 2015) due the
lack of steady-state GRMHD accretion solution available in
the literature.

Being motivated with this, in this paper, we develop a
formalism to study the MHD accretion flow in the general
relativistic framework and provide an insight on the possi-
ble magnetic field configuration in the steady state. Here,
we adopt ideal GRMHD approximations (Koide et al. 1998,
1999, 2000; Koide 2004; McKinney & Gammie 2004; McK-
inney 2006) and ignore the exchange of energy between the
plasmas and the radiation field (Anile (1990); Porth et al.
(2019) and references therein) for simplicity. We consider
vertically integrated MHD flow and in this configuration,
both radial (br) and toroidal (bφ) components of the mag-
netic fields are pertinent in regulating the accreting matter.
With this, we solve the mass and energy-momentum conser-
vation equations and obtain the complete set of global accre-
tion solutions around Schwarzschild black hole. We calculate
all relevant dynamical and thermodynamical flow variables
and study their dependence on flow parameters, such as en-
ergy (E), angular momentum (L) and local magnetic fields
(br and/or bφ). We observe that the magnetic field allows
matter to accrete where toroidal component plays the dom-
inant role in controlling the disk dynamics over the radial
component. We notice that disk remain mostly gas pressure
(pgas) dominated (plasma-β = pgas/pmag > 1, pmag being
magnetic pressure), however, magnetic fields become pre-
dominantly important at the near horizon region (B ∼ 106

G at r < 10rg for MBH/M� = 1, where MBH is the mass of
the black hole and M� is the solar mass). We further exam-
ine the viscous effect developed due to turbulent Maxwell
stress and find that viscosity parameter (α) is radially vary-
ing and often exceeds unity at the vicinity of the black hole.
We also explore the nexus between α and plasma-β, and
find two distinct scaling law features indicating the presence
of separate accretion domains along the disk length. Over-
all, in this paper, for the first time to our knowledge, we
provide a useful formalism to study the steady state global
MHD accretion solutions around black hole in full general
relativity.

The paper is organized as follows. In Section 2, we
present the model assumptions and governing GRMHD
equations. In Section 3, we discuss the critical point analysis
and the solution methodology. In Section 4, we elaborately
present obtained results. Finally, we summarize our findings
in Section 5.

2 GRMHD FORMALISM AND UNDERLYING
ASSUMPTIONS

We consider the general relativistic magnetohydrodynamic
equations in a stationary axisymmetric spacetime. This
spacetime possesses two commuting killing vectors associ-
ated with time (t) and azimuthal coordinate (φ) and are
given by ξt and ξφ, respectively. The general line element
in this space-time is written in Boyer-Lindquist coordinate
(t, r, θ, φ) (Boyer & Lindquist (1967)) as,

ds2 = gttdt
2 + 2gtφdtdφ+ grrdr

2 + gθθdθ
2 + gφφdφ

2. (1)
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The BH is placed at the origin of the coordinate system and
the event horizon is identified as grr = 1/grr = 0. We confine
our calculations to the equatorial plane of the disk (i.e.,
θ = π/2). To express the flow variables, we use a unit system
as, MBH = G = c = 1, where MBH is the black hole mass,
G is the gravitational constant and c is the velocity of light,
respectively. With this unit system, the radial coordinate,
angular momentum, and flow velocity are measured in units
of, GMBH/c

2, GMBH/c, and c, respectively.

2.1 GRMHD equations

In order to describe the relativistic magnetized accretion
processes, the governing GRMHD equations are obtained
from the mass conservation, energy-momentum conservation
and the homogeneous Faraday’s law (Anile 1990; De Villiers
et al. 2003; Gammie et al. 2003; McKinney & Gammie 2004)
as follows,

∇µ (ρuµ) = 0; ∇µTµν = 0; ∇µ∗Fµν = 0. (2)

In these equations, ρ is the mass density, uµ is the four-
velocity of matter, Tµν is the stress energy-momentum ten-
sor and ∗Fµν = 1

2
(−g)−1/2ηµνδκFδκ, denotes the Hodge

dual of Faraday electromagnetic tensor Fµν . In general, the
energy-momentum tensor is expressed as:

TµνGen = TµνFLU + TµνVIS + TµνMAX + TµνRAD,

where, 1st, 2nd, 3rd and 4th terms in the right hand side
denote the contributions from the FLU-id, VIS-cous, MAX-
well, and the RAD-iations (Abramowicz & Fragile 2013). For
the purpose of simplicity, in this work, we restrict ourselves
only with the FLU-id and MAX-well parts. With this, we
obtain the simplified energy-momentum tensor as

Tµν = (e+ pgas)u
µuν + pgasg

µν + FµλF
νλ − 1

4
F 2gµν , (3)

where e and pgas are the internal energy density, and the
gas pressure of the flow. Here, F 2 = FµνF

µν , and all the
spacetime indices (µ, ν, λ) run from 0→ 3.

In the fluid frame, Fµν can be decomposed into elec-
tric field, eµ = Fµνuν , and magnetic field bµ = ∗Fµνuν ,
such that the following relation holds (Misner et al. 1973;
Baumgarte & Shapiro 2003),

Fµν = uµeν − uνeµ − (−g)−1/2ηµνλδuλbδ. (4)

∗Fµν = uµbν − uνbµ − (−g)−1/2ηµνλδuλeδ. (5)

In this work, we consider ideal GRMHD approximation
where conductivity of the fluid tends to infinity and con-
sequently, electric field eµ = 0. This allows the magnetic
field lines to remain frozen into the accreting plasmas that
reduces the form of field tensors as,

Fµν = −(−g)−1/2ηµνλδuλbδ,
∗Fµν = uµbν − uνbµ. (6)

Using equation (6), we obtain the energy-momentum
tensor as,

Tµν = (e+pgas)u
µuν+pgasg

µν+
1

2
gµνb2+b2uµuν−bµbν . (7)

After some simple algebra, we get,

Tµν = ρhtotu
µuν + ptotg

µν − bµbν . (8)

Here, htot = h + B2/ρ, where the specific enthalpy of the
fluid is given by h = (e+ p)/ρ, and ptot = pgas + pmag with
pmag = B2/2, where 1/

√
4π factor is absorbed while defining

the magnetic fields. The square of the magnetic field strength
measured in the fluid frame is computed as B2 = bµb

µ.

2.2 Conserved quantities in GRMHD

From the particle number conservation the continuity equa-
tion boils down to,

√
−gρur = constant. (9)

The energy-momentum conservation supplemented by the
killing condition, ∇µξν + ∇νξµ = 0, assumes the following
form,

∇µ(Tµνξν) = 0. (10)

The above equation (10) will provide us two conserved quan-
tities which are as follows,

−
√
−g T rt√
−gρur

= −htotut +
1

ρur
br
(
gttb

t + gtφb
φ) = E , (11)

and
√
−g T rφ√
−gρur

= htotuφ −
1

ρur
br
(
gφφb

φ + gtφb
t) = L, (12)

where E and L are the globally conserved energy and angular
momentum, respectively.

In addition, the time-component of source-free
Maxwell’s equation implies,

√
−gBr =

√
−g(utbr − urbt) = constant, (13)

and φ−component equation implies the relativistic iso-
rotation equation (McKinney & Gammie 2004),

√
−g ∗F rφ =

√
−g(urbφ − uφbr) = constant. (14)

In the above equations the magnetic field components are
expressed in terms of magnetic field 3-vector (Bi) as,

bt = Biuµgiµ, bi =
(
Bi + btui

)
/ut. (15)

We construct the projection operator with respect to fluid
frame as γiµ = δiµ + uiuµ, where i runs from 1 → 3. The
projection operator also satisfies γiµu

µ = 0, which allows
us to project the Navier-Stokes equation into three vector
equations as

γiµ∇νTµν = 0. (16)

Setting i = r in equation (16), we obtain the radial momen-
tum equation.

2.3 Assumptions and Governing Equations

We consider a magnetized, advective accretion disc confined
around the black hole equatorial plane in the steady state.
Therefore, given the background axisymmetry, we assume
θ = π/2 and consequently uθ ∼ 0 throughout the disk. Fur-

ther, we define the azimuthal velocity v2
φ =

uφuφ
−utut

and the

associated bulk azimuthal Lorentz factor as γ2
φ = 1/(1−v2

φ).
Subsequently, the radial three-velocity in the corotating
frame is defined as, v2 = γ2

φv
2
r , where v2

r = urur
−utut

and the

associated bulk Lorentz factor γ2
v = 1/(1 − v2). Moreover,
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the specific angular momentum of the fluid is defined as,
λ = −uφ/ut and the angular velocity is given by,

Ω = uφ/ut =
2ak + λ(r − 2)

a2
k(r + 2)− 2akλ+ r3

. (17)

With this, the continuity equation (equation (9)) can
be written in comoving frame as,

Ṁ = −4πρvγvH
√

∆, (18)

where Ṁ represents the accretion rate that we treat as global
constant. In the subsequent analysis, we express the accre-
tion rate in terms of mass Eddington rate as ṁ = Ṁ/ṀEdd,

where ṀEdd = 1.44 × 1018
(
MBH
M�

)
g s−1. In this work, we

choose MBH = 1M� all throughout. In equation (18), H
denotes the local half-thickness of the disc which is calcu-
lated assuming the flow to be in hydrostatic equilibrium in
the vertical direction and is given by (Riffert & Herold 1995;
Peitz & Appl 1997),

H2 =
pgasr

3

ρF , F = γ2
φ

(r2 + a2
k)2 + 2∆a2

k

(r2 + a2
k)2 − 2∆a2

k

. (19)

2.3.1 Relativistic Equation of State

The governing equations are closed with an equation of state
(EoS) describing the relation among pressure (pgas), density
(ρ), and internal energy (e). Following Chattopadhyay &
Ryu (2009), we adopt an EoS for relativistic flow as

e =
ρf(

1 +
mp
me

) , (20)

with

f =

[
1 + Θ

(
9Θ + 3

3Θ + 2

)]
+

[
mp

me
+ Θ

(
9Θme + 3mp

3Θme + 2mp

)]
,

where Θ (= kBT/mec
2) is the dimensionless temperature,

me is the mass of electron, and mp is the mass of ion. Ac-
cording to the relativistic EoS, we express the adiabatic in-
dex and polytropic index of the flow as Γ = (1 +N)/N and
N = (1/2)(df/dΘ), respectively (Dihingia et al. 2019).

Following Gammie et al. (2003), the sound speed (cs)
and the Alfvén velocity (ca) for relativistic flow are expressed
as c2s = Γpgas/ρh and c2a = B2/ρhtot, respectively. Moreover,
Gammie et al. (2003) introduces the dispersion relation for
the fast MHD wave ω2 =

[
c2s + c2a − c2sc2a

]
k2, where ω and k

denote the frequency and the wavenumber of an MHD wave
in the frame comoving with the fluid. Accordingly, we obtain
the Mach number M = v/

√
c2s + c2a − c2sc2a and the Alfv́enic

Mach number MA = v/ca of the flow.

3 CRITICAL POINT ANALYSIS/CONDITIONS

Using equations (11), (12), (13), (14), (16) and (18), we ob-
tain the wind equation of the flow (see Appendix A) and is
given by,

dv

dr
=
N (r, v,Θ, λ, br, bφ)

D(r, v,Θ, λ, br, bφ)
, (21)

where the numerator N and the denominator D are the ex-
plicit functions of r, v, Θ, λ, br, and bφ, and their expressions
are given in Appendix A. Similarly, the radial derivative of

the other flow variables are expressed in terms of
(
dv/dr

)
as,

dλ

dr
= λ11 + λ12

dv

dr
, (22)

dΘ

dr
= Θ11 + Θ12

dv

dr
, (23)

dbr

dr
= br11 + br12

dv

dr
, (24)

dbφ

dr
= bφ11 + bφ12

dv

dr
. (25)

The explicit expressions of the coefficients, namely λ11, λ12,
Θ11, Θ12, br11, br12, bφ11, and, bφ12 are given in Appendix.

During the course of accretion around the black hole,
the inflowing matter starts its journey from the disk outer
edge (redge) with negligible radial velocity (subsonic) and ul-
timately, enters into the black hole satisfying infall boundary
conditions at the horizon (rh). Because of this, accretion flow
around black hole must change its sonic state at the critical
point (rc) and becomes transonic at least once, if not more.
Such points are located in between rh and redge. At the
critical point, equation (21) has the form (dv/dr)rc = 0/0
as both numerator (N ) and denominator (D) simultane-
ously vanish there, and we have the critical point condi-
tions Nrc = Drc = 0. Accordingly, we apply the l′Hospital
rule to calculate (dv/dr)rc . In general, (dv/dr) owns two
distinct values at rc: one is for accretion and the other is
for wind. When both the values of (dv/dr)c are real and
of opposite sign, the corresponding rc is called as saddle
type critical point (Matsumoto et al. 1984; Kato et al. 1993;
Chakrabarti & Das 2004, and references therein). Similarly,
when (dv/dr)c are real, but of the same sign, rc is called as
nodal type, and for imaginary values of (dv/dr)c, the critical
point becomes spiral type. In the astrophysical context, sad-
dle type critical points have special importance as the global
transonic accretion flow can only pass through it. Depend-
ing on the input parameters, GRMHD flow possesses either
single or multiple critical points. When the critical point is
formed near the horizon, it is referred as the inner critical
point (rin), and when it forms far away from the horizon, we
call them as outer critical point (rout) (Chakrabarti & Das
2004, and references therein).

4 GLOBAL ACCRETION SOLUTIONS

In order to obtain the global solution of the GRMHD ac-
cretion flow, one requires to solve the coupled differential
equations (21-25) by employing the set of input parameters
of the flow. Among these parameters, E , L, ak, and ṁ are
used as global parameters, whereas the critical point (rc) and
the radial magnetic field brc at rc are treated as local param-
eters. In this work, we consider flows around static black
holes with Kerr parameter ak = 0 and also set ṁ = 0.01
all throughout unless stated otherwise. Using these flow pa-
rameters, we simultaneously solve N = 0, and D = 0 to
calculate the radial velocity (vc), temperature (Θc), specific
angular momentum (λc) and toroidal magnetic fields (bφc )
at rc. Employing these parameters, we first integrate equa-
tion (21) inwards up to the horizon and then outwards up
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Figure 1. Example of a complete GRMHD accretion solution

that passes through the inner critical point, rin = 5.1553. Here,

E = 1.0012, L = 3.10, and brin = 9.75 × 104 G are used. In
panels (a)−(j), the profile of Mach number (M), velocity (v),

density (ρ), temperature (T ), disk aspect ratio (H/r), adiabatic

index (Γ), vertical optical depth (τ), magnetic field components
(B, br, bφ), plasma-β, and Alfv́enic velocity (ca) are plotted as

function of radial distance (r). Filled circle denotes the location

of rin in panel (a). See text for details.

to a large distance, equivalently the outer edge of the disk
(redge ∼ 1000). Subsequently, we join both segments of the
solutions to obtain the global transonic accretion solutions
around the black holes. Depending on the input parameters,
accretion flow passes through either the inner critical point
(rin, usually forms close to the horizon), or outer critical
point (rout, usually forms far away from the horizon) before
entering into the black hole.

To this end, we emphasis that in the frame work of
GRMHD, the accretion solutions passing through either in-
ner critical point (rin) or outer critical point (rout) remain
largely unexplored and hence, in this work, we intend to
study the properties of the magnetized relativistic accretion
flow around black holes extensively.

4.1 Fluid properties of global accretion solutions
containing inner critical point

In Fig. 1, we present a typical solution passing through the
inner critical point (rin = 5.1553) where each panel shows

the variation of the flow variables as function of the ra-
dial distance (r). This solution is obtained for E = 1.0012,
L = 3.10, and brin = 9.75 × 104 G that smoothly con-
nects the black hole horizon with the outer edge of the disc
redge = 1000. In Fig. 1a, we present the Mach number (M)
variation of the transonic flow solutions. In this work, our in-
terest is to focus only on the accretion solution (solid curve),
however, for the purpose of completeness, we demonstrate
its corresponding wind branch (dotted curve) as well. We ob-
serve that sub-sonic accretion flow from the outer edge of the
disk (redge = 1000rg) gradually gains its radial velocity as
it moves inwards and eventually makes smooth transition to
become super-sonic at the inner critical point (rin = 5.1553)
before falling into the black hole. At rin, we obtain the other
flow variables as vin = 0.1999, Θin = 27.9544, λin = 3.1717
and bφin = 6.73 × 104 G. In the figure, arrows indicate the
direction of the flow motion and inner critical point (rin)
is marked using filled circle. In Fig. 1b, we show the radial
velocity (v) variation of the flow corresponding to the accre-
tion solution depicted in Fig. 1a and find that flow enters
into the black hole with velocity comparable to the speed
of light. We demonstrate the density profile of the accreting
flow in Fig. 1c, where gradual increase of density is observed
as the flow proceeds towards the black hole. This happens
mainly due to the geometric compression of the flow, and
as a consequence, temperature of the flow is also increased
with the decrease of radial distance as shown in Fig. 1d. We
find that the disk becomes sufficiently hot with tempera-
ture as large as T ≥ 1011 K at the near horizon region with
r < 8rg. We display the dependence of the vertical scale
height (H/r) on the radial coordinate in Fig. 1e, where we
find that H/r remains less than unity all the way from the
outer edge of the disc to the horizon. In Fig. 1f, we depict the
profile of adiabatic index (Γ) as function of r. As expected,
Γ decreases with the decreasing r and flow tends to become
thermally trans-relativistic (Γ ∼ 1.4) as it accretes towards
the black hole (Aktar et al. 2015, and references therein).
Further, we estimate the scattering optical depth τ = κρh,
where the electron scattering opacity κ = 0.38 cm2 g−1 and
present the obtained result in Fig. 1g. We observe that the
flow remains optically thin (τ < 1) even at the inner part
of the disk (r . 20rg) although the density profile remains
steeper there. This intuitively indicates that the possibility
of escaping the high energy radiations from the inner part
of the disk seems to be very much significant. In Fig. 1h,
we display the variation of br (dotted), bφ (dashed) and B
(solid) with the radial distance. We find that although the
strength of the magnetic fields is negligible (br, bφ ∼ 1 G) at
redge, however, it is enhanced to ∼ 106 G at the near horizon
region yielding the inner part of the disk to be magnetically
active. Next, we display the overall variation of the plasma-
β in panel Fig.1i, where we find that disk remains mostly
gas pressure dominated at all radii except at r . 10rg. Fi-
nally, we show the overall variation of the Alfv́enic velocity
(ca) in panel Fig.1j, which initially decreases due to the slow
increase of B, however enhances its value as flow moves to-
wards the black hole.
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Figure 2. Variation of global GRMHD accretion solutions around

black hole for different values of radial magnetic field (bredge) at
the outer edge of the disk redge = 1000, where E = 1.0012 and

L = 3.10. The dotted (S1, green), solid (S2, red) and dashed

(S3, blue) curves denote the solutions for bredge = 3.55 G, 2.84
G, and 2.15 G, respectively that pass through the inner critical

points (rin). For the same set of the outer edge parameters, when

bredge = 0.70 G is chosen, accretion solution passes through the
outer critical point (rout) as depicted by dot-dashed (S4, ma-

genta) curve. In the figure, inner critical points are zoomed, and

rin and rout are marked. Arrows indicate the direction of flow
motion as it approaches towards the black hole.

4.2 General behaviour of global accretion
solutions with fixed outer edge

In Fig. 2, we examine the role of magnetic fields in de-
ciding the nature of the accretion solutions having fixed
outer boundary. Here, the dotted (green) curve demonstrates
a global accretion solutions that starts its journey from
redge = 1000 with bredge = 3.55 G, E = 1.0012, and L = 3.10,
and it passes through the inner critical point rin = 4.9257
with brin = 1.34× 105 G before entering into the black hole.
We mark this solution as S1. Now, we decrease radial mag-
netic field to bredge = 2.84 G keeping E and L unchanged,
and calculate the global accretion solution by suitably tun-
ing vedge = 0.006356 and Θedge = 0.6680. Here, we need to
supply vedge and Θedge values additionally to obtain the ac-
cretion solution as the critical point is not known a priori.
We plot this solution using solid (red) curve and for this
solution rin = 5.1553, and brin = 9.75 × 104 G. This solu-
tion is identical to the result presented in Fig. 1 and marked
as S2. Upon decreasing bredge gradually, we observe that be-
low a minimum value of radial magnetic field at the outer
edge br,min

edge = 2.15 G, the accretion solution fails to pass

through the inner critical point. For br,min
edge = 2.15 G, the ob-

tained accretion solution (marked as S3) is shown by dashed
(blue) curve, where rin = 5.3781, and brin = 6.78 × 104 G.
When bredge < br,min

edge , namely 0.70 G, the accretion solution
changes its character allowing the flow to pass through the
outer critical point (rout = 181.465) instead of inner critical
point (rin) with brout = 21.08 G, E = 1.0012 and L = 3.10.
In the figure, this solution (marked as S4) is depicted by the
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Figure 3. Similar to Fig. 2, showing the variation of accretion

solutions, when E = 1.0012 and bredge = 2.84 G are chosen and L
is varied as marked in the figure. See text for details.

dot-dashed (magenta) curve. In the figure, filled circles de-
note the inner and outer critical points and arrows indicate
the overall direction of the flow motion towards the black
hole.

Since the nature of the transonic GRMHD accretion
solutions also depend on E and L, in addition to bredge, it
is instructive to study their behavior by tuning these flow
parameters. We find that the behavior of the accretion so-
lutions changes as L is decreased for flows with E = 1.0012
and bredge = 2.84 G at redge = 1000. We present the ob-
tained results in Fig. 3, where the solutions corresponding
to L = 3.20 (dotted, green), 3.15 (dashed, blue), and 3.10
(solid, red) are seen to pass through the inner critical points
as rin = 4.8830, 5.0105, and 5.1553, respectively, whereas
the solution with L = 3.0 becomes transonic after crossing
the outer critical point at rout = 161.3239 (dot-dashed, ma-
genta). Thus, one arrives at conclusion that the effect of L is
significant in deciding the nature of the accretion solutions
around black holes. In the figure, the arrowed paths show
the direction of the flow motion towards the black hole.

Similarly, Fig. 4 gives the examples of accretion solu-
tions that change their character due to the variation of E .
Here, we fix L = 3.10, and bredge = 2.84 G at redge = 1000.
The results plotted using dotted (green), dashed (blue), and
solid (red) curves are for E = 1.0020, 1.0015 and 1.0012, and
these solutions cross the inner critical points at rin = 5.1419,
5.1502, 5.1553, respectively, before entering into the black
hole. As the energy is decreased further, keeping all the re-
maining flow parameters unchanged, the accretion solution
alters its trajectory and pass through the outer critical point
at rout = 216.4050 (dot-dashed, magenta) instead of the in-
ner critical point. As before, we assert that E plays impor-
tant role in stipulating the nature of the accretion solutions
and arrows are used to indicate the direction of the flow
motion.

It is customary to examine the effect of magnetic fields
on the properties of the disk fluid confined at the disk equa-
torial plane. For the purpose of representation, we consider

MNRAS 000, 1–?? (0000)



GRMHD flow around black hole 7

101 102 103

r

0.0

0.5

1.0

1.5

2.0

M

= 3.10, br
edge = 2.84 G

rin rout

= 1.0020
= 1.0015
= 1.0012
= 1.0010

5.14 5.16
0.912

0.914

Figure 4. Similar to Fig. 2, showing the variation of accretion

solutions, when L = 3.10 and bredge = 2.84 G, and E is varied as
marked in the figure. See text for details.

accretion solutions marked as ‘S1’, ‘S2’ and ‘S3’ in Fig. 2 and
present the associated fluid variables in Fig. 5. While doing
so, we show the variation of B (Fig. 5a), plasma-β (Fig. 5b),
brb

r/2 and bφb
φ/2 (Fig. 5c), Alfv́enic velocity (Fig. 5d), spe-

cific angular momentum λ (Fig. 5e), and α (Fig. 5f) with ra-
dial distance (r). In each panel, dotted (green), solid (red),
and dashed (blue) curves are plotted for bredge = 3.55 G, 2.84
G and 2.15 G, respectively. As expected, we observe in panel
(a) that the profile of B corresponding to higher bredge con-
tinues to remain higher compared to the cases with smaller
bredge values. It may be noted that in all cases, the flow starts
with a very low radial magnetic fields (bredge ∼ 1 G), however,
the strength of the magnetic field tends to attain as high as
∼ 106 G in the near horizon limit of the black hole. In panel
(b), it is seen that as flow accretes towards the black hole,
the gas pressure (pgas) initially increases compared to the
magnetic pressure (pmag) leading to the increase of plasma-
β. But, once the toroidal field component starts growing,
plasma-β decreases towards the black hole. Nevertheless, we
find that disk is primarily gas pressure (pgas) dominated all
throughout, although magnetic pressure (pmag) tends to be-
come comparable to pgas at the inner part of the disk. Need-
less to mention that pmag is ascertained by the bredge value;
for a given r, higher bredge renders enhanced pmag as clearly
seen in panel (b). Next, we illustrate the magnetic pressure
corresponding to r and φ components of the magnetic fields
which are denoted by thin and thick curves in panel (c). We
observe that the magnetic field strength is predominantly
dominated by the toroidal component (bφbφ) all throughout
over the radial part (brbr) except at the inner edge close to
the horizon, r . 3rg. This finding is in agreement with the
recent simulation work of Begelman et al. (2022). As ob-
served before, higher bredge yields enhanced magnetic pres-
sure due to both r and φ components. In panel (d), we see
that relatively higher Alfv́enic velocity (ca) is obtained for
increasing bredge values. Since ca is directly depends on the
magnetic field strength, its radial variation in general follows
the B profile. In panel (e), we present how the specific angu-
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Figure 5. Parametric dependence of the flow variables for ac-
creting matter around black hole. Various flow variables, namely

(a) B, (b) plasma-β, (c) brbr/2 and bφb
φ/2, (d) ca, (e) λ, and (f)

α are plotted as function of r. In each panel, dotted (green), solid
(red), and dashed (blue) curves denote the results corresponding

to the solutions marked as ‘S1’, ‘S2’ and ‘S3’ in Fig. 2. See text

for details.

lar momentum (λ) is transported in a magnetized accreting
plasma. As the flow accrete towards the black hole from the
outer edge of the disk, the effect of magnetic fields becomes
increasingly important that causes the transport of angular
momentum. In reality, the transport of λ is mainly governed
by the Maxwell stress (TMAX

rφ = B2uruφ − brbφ), and there-
fore, it is evident that the profile of λ strongly depends on
the interplay among the flow variables. In general, for a given
radial distance, λ continues to remain higher for flows with
larger B. However, the overall transport of λ appears to be
weak resulting the flow to remain sub-Keplerian all through-
out the disk. This clearly indicates that MHD flow of this
kind seems to remain weakly viscous all throughout the disk
domain. Finally, in panel (f), we examine the profile of the
viscosity parameter, α = |TMAX

rφ |/pgas, which is defined as
the ratio of the Maxwell stress to the gas pressure (Haw-
ley & Krolik 2001; Pessah et al. 2007; Penna et al. 2012;
Mishra et al. 2020, and references therein). We find that
α varies with radial distance unlike the standard viscosity
prescription of Shakura & Sunyaev (1973). As the flow pro-
ceeds inwards, pgas initially increases over pmag (see panel
(b)) leading to the decrease of α, although α eventually en-
hances its value once the magnetic stress starts to dominate.
We notice that α exceeds its outer edge value at the inner
part of the disk where magnetic fields are very high (see
panel (a)) and because of this, rapid loss of λ is observed at
the vicinity of the black hole horizon. Overall, it is evident
that α in magnetized disks varies with radial distance as it is
computed using magnetic stress and this finding is in agree-
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ment with the results from GRMHD simulation (Hawley &
Krolik 2002; Avara et al. 2016, and references therein).

Now, we attempt to interpret the radial profiles of the
following quantities, namely density (ρ), gas pressure (pgas),
magnetic pressure (pmag), radial magnetic field (br), and
toroidal magnetic field (bφ) by means of the power-law fit.
For that we consider accretion solutions marked as ‘S1’ and
‘S3’ in Fig. 2, and present the radial variation of the above
quantities in Fig. 6(a-e). In each panel, thick dotted (green)
and thick dashed (blue) curves denote the results obtained
from solutions ‘S1’ and ‘S3’, and the corresponding power-
law fits are shown by thin dotted and thin dashed lines,
respectively. We find that the best fit for density at all radii
gives ρ ∝ r−(n+1/2) (panel a) with n ∼ 1, which seems
to be consistent with the results of Narayan & Yi (1995);
Blandford & Begelman (2004) for pure accretion having no
outflow. Similarly, the best fits for the remaining quanti-
ties are obtained as pgas ∝ r−(n+7/6), pmag ∝ r−(n+5/2),
br ∝ r−(n+1), and bφ ∝ r−(n+9/5). Needless to mention that
we observe in general poor fits of the accretion solutions in
the near horizon limit. This possibly happens due to the
fact that the transonic nature of the flow is not taken into
account in the power-law fitting.

Next, we make an effort to reconcile our theoretical pre-
dictions with previous studies of magnetized accretion flow
accomplished by the local shearing box simulations, where
tight correlation between the plasma-β and the viscosity pa-
rameter α is revealed as αβ ∼ 0.5 (Hawley & Balbus 1995;
Blackman et al. 2008; Sorathia et al. 2012; Salvesen et al.
2016, and references therein). Towards this, in Fig. 7, we
depict the correlation between α and β for the accretion
solutions marked ‘S1’ and ‘S3’ in Fig. 2. Here, the results
are obtained for r ≤ 50rg just to collate with the existing
simulation studies. In the figure, ‘S1’ and ‘S3’ solutions are
plotted using filled circles and filled squares, respectively.
The color code denotes the radial coordinate and its range
is shown using colorbar at the right side of the figure. The
best fit generally yields α ∝ β−q, where two distinct do-
mains are ascertained as a result of different exponents (q)
values. For 6rg . r < 50rg, we get the best fit value as
q ∼ 0.4 and ∼ 0.42 corresponding to ‘S1’ and ‘S3’, respec-
tively. This can be expressed approximately as α ∝ β−2/5

which is in close agreement with the value ∼ 0.53 as reported
in Salvesen et al. (2016). In addition, at the inner part of
the disk (2rg < r . 6rg) where the magnetic activity is rel-
atively stronger, we obtain q ∼ 1.35 and ∼ 1.39 as depicted
by dashed lines. Such stiff scaling relation (approximately
α ∝ β−7/5), to the best of our knowledge, has not yet been
reported in the literature which we plan to take up for future
works.

4.3 Modification of accretion solutions possessing
inner critical point

In this section, we examine how the nature of the accretion
solutions alters due to the variation of either magnetic fields
or inner critical points for flows with a given set of (E , L) val-
ues, and plot them in Fig. 8. In each panels of the figure, the
Mach number (M) is depicted as function of radial distance
(r), where solid (black) and dotted (blue) curves represent
the accretion and wind solutions, respectively and filled cir-
cles denote the inner critical points. In the upper panels, we
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Figure 6. Best fitted power-law of (a) density ρ, (b) gas pressure
pgas, (c) magnetic pressure pmag, (d) radial component of the
magnetic fields br and (e) toroidal component of the magnetic

fields bφ. In each panel, thick dotted (green) and thick dashed
(blue) curves are for solutions marked ‘S1’ and ‘S3’ in Fig. 2, and
thin dotted (green) and thin dashed (blue) correspond to the best
fit power-law representations. See text for details.
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(r). Solid (black) curve denotes accretion solution and dotted

(blue) curve refers corresponding wind solution. In the upper pan-

els, we choose rin = 5.0744, E = 1.0012, and L = 3.10, and in-
crease the local radial magnetic field (brin) at rin which are marked.

In the lower panels, we consider brin = 1.09× 105 G, E = 1.0012,

and L = 3.10 and vary rin as it is marked. See text for details.

choose rin = 5.0744, E = 1.0012, and L = 3.10, and vary ra-
dial component of the magnetic fields as (a) br = 1.09× 105

G, (b) 1.15× 105 G, and (c) 1.75× 105 G. In panel (a), the
flow passes through the inner critical point and smoothly
connects the event horizon to the outer edge of the accre-
tion disc (redge = 1000). When the radial magnetic field is
increased to br = 1.15 × 105 G (panel (b)), the flow solu-
tion becomes closed in the range rin < r < rout with Mach
number M(r) = Mc (Chakrabarti & Das 2004) and fails to
connect the black hole horizon with the outer edge of the disc
(redge). However, this solution can join with another solution
passing through the outer critical point, if it exists, via shock
transition (Fukue 1987; Chakrabarti 1989; Das 2007), and
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Figure 9. Plot of three-dimensional parameter space of flow en-
ergy (E), angular momentum (L), and inner critical point (rin).

Here, we fix brin = 1.15×105 G, bφin = 1.00×105 G. Solid (red) and

dashed (black) curves denote the boundary of the parameters sur-
face. Two-dimensional surface projection of the three-dimensional

plot is shown in E −L plane, where color code denotes the range

of rin. See text for details.

accordingly, the accretion solution can extends up to redge.
In reality, this happens because the inner critical point so-
lution possesses higher entropy than the outer critical point
solution (Becker et al. 2000). It is noteworthy that the accre-
tion solutions involving shocks are potentially promising in
explaining the observational findings of the Galactic black
hole sources (Chakrabarti & Titarchuk 1995; Chakrabarti
& Manickam 2000; Aktar et al. 2015; Sreehari et al. 2020;
Das et al. 2021). The study of shock solutions for GRMHD
flows is beyond the scope of the present paper and hence,
will be reported elsewhere. As the radial magnetic field is
increased further, the closed solution gradually shrinks and
ultimately disappears as the critical point turns in to nodal
type. With this, we indicate that for a given set of flow pa-
rameters, there exists two critical values of br — first one is
the lower critical value for which the open solution passing
through the fixed inner critical point becomes closed, and
other one corresponds to the higher critical value for which
saddle type critical points disappear. In the lower panels of
Fig. 8, we choose flow parameters as brin = 1.09 × 105 G,
E = 1.0012, and L = 3.10, and vary the inner critical point
as in panels (d) rin = 5.0795, (e) 5.1500, and (f) 5.5000. Sim-
ilar to the upper panels, we again find that as rin is gradually
receded away from the horizon, the flow behaviour changes
their character from open type to closed type and ultimately
it ceases to exist when rin turns in to nodal type.

So far, we have studied the global accretion solutions
that pass through either inner or outer critical points. Here,
we wish to emphasize that solutions of these kinds are not
isolated solutions, instead they exist for a wide range of flow
parameters. While envisaging this fact, we intend to examine
the range of flow parameters that admit closed accretion
solutions passing through the inner critical points (see Fig.
8). Accordingly, in Fig. 9, we separate the effective domain of
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Figure 10. Same as Fig. 1, but the accretion solution eventually

pass through the outer critical point rout = 181.465 with E =
1.0012, L = 3.10, and bredge = 0.7 G, respectively. See text for

details.

the parameter space spanned by E , L, and rin that provides
closed accretion solutions around black holes. Here, we fix
brin = 1.15 × 105 G and bφin = 1.00 × 105 G at rin and plot
the parameter space where solid and dotted curves denote
its two edges. A wrapping of the the parameter space is
clearly visible, which is possibly resulted due to the complex
non-linearity involved among the GRMHD flow variables.
Moreover, for the purpose of clarity, we present the two-
dimensional projection of the three-dimensional parameter
space in (E ,L) plane where color code denotes the allowed
range of rin as shown using colorbar. From the figure, it is
evident that for smaller L, generally higher rin is required to
obtain the closed accretion solution for GRMHD flow, and
vice versa.

4.4 Fluid properties of global accretion solution
possessing outer critical point

For completeness, we continue to emphasize the importance
of the GRMHD accretion flows that pass through the outer
critical point, and study the primitive variables associated
with the flow. For that we consider the accretion solution
marked as ‘S4’ in Fig. 2, and plot the profile of the corre-
sponding flow variables, namely M , v, ρ, T , H/r, Γ, τ , B,
br, bφ, plasma β, and ca as function of radial distance in
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Figure 11. Variation of the specific entropy function (s) as a

function of radial distance (r). Dotted and dot-dashed curves de-

note the results corresponding to the accretion solutions marked
‘S1’ and ‘S4’ in Fig. 2. In the figure, inner critical point (rin) and

outer critical point (rout) are marked. See text for details.

the respective panels (a)−(j) of Fig. 10. We observe that
the accreting flow attains supersonic speed at a relatively
larger radius (rout) in comparison to the accretion solutions
possessing the inner critical points (rin) (see Fig. 10(a)).
Because of this, the profiles of the primitive variables for
‘S4’ differ quantitatively from the solution ‘S1’ particularly
at lower radii (r . 10rg), although their qualitative be-
haviour appear to be similar (see Fig. 1). Nevertheless, it
is noteworthy to mention that the accreting matter largely
remains gas pressure dominated even at the near horizon
limit (r . 10rg) although the strength of the magnetic fields
reaches to B ∼ 0.75 × 105 G at the vicinity of the horizon
(see Fig. 10(h)). This evidently signifies that the accretion
disk presumably becomes magnetically more active for flows
passing through rin rather than rout (see Fig. 1(h)).

Next, in Fig. 11, we compare the specific entropy func-
tion s ∝ ptot/ρ

Γ−1 (Das et al. 2009; Porth et al. 2017) cor-
responding to the accretion solutions passing through rin

and rout. While doing this, we consider solutions marked
as ‘S1’ and ‘S4’ in Fig. 2 and depict the profile of s cor-
responding to these solutions using dotted (S1) and dot-
dashed (S4) curves. The inner and outer critical point lo-
cations are marked using the filled circles. We find that in
both the cases, s increases as the flow proceeds towards the
black hole. This happens as a result of dissipation yielded in
the differentially rotating magnetized flow around the black
hole. What is more is that s is seen to remain higher at
all radii for solution passing through rin compared to the
solution possessing rout. A point worth mentioning here is
that the global GRMHD accretion solution that changes its
sonic character at rin instead of rout to become transonic,
is perhaps thermodynamically favourable as it possess high
entropy content, although their outer boundary conditions
differ only by means of bredge values.
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5 CONCLUSIONS

In this paper, we investigate the global structure of a steady,
magnetized, advective accretion flow around a black hole.
Towards this, we self-consistently solve a set of governing
equations (Anile 1990; Porth et al. 2017, and references
therein) that regulate the dynamical structure of the MHD
flow under the general relativistic framework and obtain the
global transonic accretion solutions. Subsequently, we ex-
amine the properties of the accretion flow in terms of input
parameters, namely, energy (E), angular momentum (L) and
radial magnetic field (br), respectively. The findings of this
work are summarized as follows.

• We obtain a complete set of global GRMHD accretion
solutions around the black hole and find that accretion flow
passes through either inner critical point (rin) or outer crit-
ical point (rout) before entering in to the black hole. We
further notice that for a given (E ,L), when radial magnetic
field at the outer edge of the disk is below a minimum value
(br,min

edge ), accretion flow possessing rin changes its character
and moves through rout instead of rin while approaching the
black hole (see Fig. 2). Similar findings are also observed
when L or E are varied keeping other input parameters un-
changed (see Figs. 3 and 4).
• We observe that accretion flow remains mostly gas pres-

sure dominated throughout the disk (β > 10) except at the
near horizon limit . 10rg, where magnetic fields are seen to
become considerably active (β ∼ 1) (see Fig. 5b). We also
notice that the magnetic field strength is largely dominated
by the toroidal field (bφbφ) at all radii over the radial field
(brbr) except at the inner edge r . 3rg (see Fig. 5c). We
obtain the robust estimate of magnetic field strength over
the entire length scale of the disk and observe that B mono-
tonically increases with the decrease of radial distance. For
a solar mass (MBH = M�) black hole, the magnetic field
strength becomes very strong (∼ 106 Gauss) in the region
close to the horizon (see Fig. 5a). We also compute the vis-
cosity parameter (α) that governs the transport of specific
angular momentum (λ) by means of Maxwell stress (TMAX

rφ ).
We observe that unlike in standard disk (Shakura & Sunyaev
1973), α varies with r (see Fig. 5f) and its profile agrees with
the results from magnetically arrested disk (MAD) simula-
tions (Avara et al. 2016).
• We attempt to elucidate the radial profile of ρ, pgas,

pmag, br and bφ by means of best fit power-law distribu-
tion. We find that all these flow variables can be ascer-
tained satisfactorily as ρ ∝ r−(n+1/2), pgas ∝ r−(n+7/6),
pmag ∝ r−(n+5/2), br ∝ r−(n+1), and bφ ∝ r−(n+9/5), where
n ∼ 1. For pure accretion (no outflow), the density profile
appears to be consistent with the results of Narayan & Yi
(1995); Blandford & Begelman (2004) (see Fig. 6). We fur-
ther examine the correlation between α and plasma-β that
generally assumes the form of power law as α ∝ β−q. For
6rg . r < 50rg, we obtain α ∝ β−2/5 which are in close
agreement with results of the local shearing box simulation
(Salvesen et al. 2016). Interestingly, to the best of our knowl-
edge, we find a new scaling relation yielding α ∝ β−7/5 in
the region (2rg < r . 6rg), where the disk is magnetically
active (see Fig. 7).
• It may be noted that depending on the input param-

eters, the accretion solution passing through rin may not
extend up to redge as it becomes closed at r < redge (see Fig.

8). In reality, solutions of this kind are potentially promis-
ing as they can be a part of global shocked accretion flow.
Considering this, we identify the effective domain of three
dimensional parameter space in (L, E , rin) for a given set
of (brin, b

φ
in) that admits closed GRMHD accretion solutions

possessing rin. Generally, it appears that for smaller L, one
requires higher rin to obtain the closed solution and vice
versa (see Fig. 9).

With the above findings, we wish to emphasize that
magnetic fields play pivotal role in regulating the struc-
ture as well as the dynamics of the GRMHD accretion flow
around black hole. Overall, it is intriguing that the present
formalism provides an insight of GRMHD accretion solution
in the steady state limit and it would be useful in carry-
ing out the state-of-the-art GRMHD simulation studies in
higher dimensions which we plan to take up in future works.

Finally, we wish to mention the limitations of the
present work, as it is developed based on some approxima-
tions. We ignore the rotation of the black hole and also ne-
glect mass loss from the disk. Further, we ignore the vertical
component of the magnetic fields although it is expected to
be relevant in launching jets and/or outflows (Blandford &
Payne 1982; Blandford & Znajek 1977; Koide et al. 1998;
Dihingia et al. 2021). In addition, we neglect the radiative
cooling processes as well. Of course, the implementation of
such issues is beyond the scope of this paper, however, we
argue that the overall findings of the present analysis will
remain qualitatively intact.

We also state that in this work, we adopt ideal GRMHD
approximation as an introductory approach for the purpose
of simplicity, although the works involving complex non-
ideal MHD approximations are more suitable which we plan
to consider for future endeavour.
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APPENDIX A: CALCULATION OF WIND EQUATION

Using equation (18) in equations (11,12,13,14, and 16), we obtain,

R0 +Rv
dv

dr
+RΘ

dΘ

dr
+Rλ

dλ

dr
+Rbr

dbr

dr
+Rbφ

dbφ

dr
= 0, (A1)

L0 + Lv
dv

dr
+ LΘ

dΘ

dr
+ Lλ

dλ

dr
+ Lbr

dbr

dr
+ Lbφ

dbφ

dr
= 0, (A2)

E0 + Ev
dv

dr
+ EΘ

dΘ

dr
+ Eλ

dλ

dr
+ Ebr

dbr

dr
+ Ebφ

dbφ

dr
= 0, (A3)

Br0 + Brv
dv

dr
+ BrΘ

dΘ

dr
+ Brλ

dλ

dr
+ Brbr

dbr

dr
+ Brbφ

dbφ

dr
= 0, (A4)

Bφ0 + Bφv
dv

dr
+ BφΘ

dΘ

dr
+ Bφλ

dλ

dr
+ Bφbr

dbr

dr
+ Bφbφ

dbφ

dr
= 0. (A5)

The coefficients of the equations (A1-A5) take the form,

R0 =
(
Ri +AR2

)
/ρhtotA,A = (grr + urur), R2 = −gtφur0b

rbφ

ut
+
F1Θρ

Fτ − 3Θρ

rτ
+ htotρu

rur0 +R1,

R1 =
gtturut0b

rbt

u2
t

− gttur0b
rbt

ut
+
gtφurut0b

rbφ

u2
t

− Θρ∆′

∆τ
+

1

2
bφ

2

g′φφ + btbφg′tφ +
1

2
bt

2

g′tt,∆
′ =

∂∆

∂r

F ′ =
dF
dr

= F1 + F2
dλ

dr
,F1 =

∂F
∂r

,F2 =
∂F
∂λ

, u′µ = uµ0 + uµvv
′ + uµλλ

′, uµ
′

= uµ0 + uµvv
′ + uµλλ

′;µ ≡ (t, r, 0, φ),

uµ0 =
∂uµ

∂r
, uµv =

∂uµ

∂v
, uµλ =

∂uµ

∂λ
, uµ0 =

∂uµ
∂r

, uµv =
∂uµ
∂v

, uµλ =
∂uµ
∂λ

.

Ri = −2urbrbφ
(
gtφu

t + gφφu
φ
)(

1

2
gφφg′φφ +

1

2
gtφg′tφ

)
− br

2
(

1

2
gφφg′φφ +

1

2
gtφg′tφ

)
+Rh +Rg,

Rh = ρhtotu
φ

(
−1

2
grrutg′tφ −

1

2
grruφg′φφ

)
, Rg = −bφgrrurr

(
−1

2
bφgrrg′φφ −

1

2
btgrrg′tφ

)
+Rf ,

Rf = −2urbrbφ
(
gttu

t + gtφu
φ
)(

1

2
gtφg′φφ +

1

2
gttg′tφ

)
+Re, Re = −2urbrbt

(
gtφu

t + gφφu
φ
)(

1

2
gφφg′tφ +

1

2
gtφg′tt

)
+Rd,

Rd =
1

2
bφ

2

grrg′φφ −
1

2
br

2

gθθg′θθ + ρhtotu
t

(
−1

2
grrutg′tt −

1

2
grruφg′tφ

)
− btgrrur

2
(
−1

2
bφgrrg′tφ −

1

2
btgrrg′tt

)
+Rc,

Rc = −2urbrbt
(
gttu

t + gtφu
φ
)(

1

2
gtφg′tφ +

1

2
gttg′tt

)
− br

2
(

1

2
gtφg′tφ +

1

2
gttg′tt

)
− br

2

grrg′rr −
1

2
br

2

grrgrru
r2g′rr +Rb,

Rb =
1

2
bt

2

grrg′tt+
1

2
ρhtotg

rru2rg′rr+g
rrbtbφg′tφ−

br
2

ururut0
(
gttu

t + gtφu
φ
)

u2
t

+Ra, Ra = htotρu
rur0+

br
2

urur0
(
gttu

t + gtφu
φ
)

ut
,

Rv =
Rv0 +ARv1

Aρhtot
, Rv0 =

br
2

ururv
(
gttu

t + gtφu
φ
)

ut
−
br

2

ururutv
(
gttu

t + gtφu
φ
)

u2
t

,

Rv1 =
gtφurutλb

rbφ

u2
t

+
gtturutλb

rbt

u2
t

+ bφ
2

gtφ +
F2Θρ

Fτ + gttb
tbφ, RΘ =

1

htotτ
,Rλ =

Rλ0 +Rλ1 − urbrbφ
(
gttu

t + gtφu
φ
)

Aρhtot
,

Rλ0 = A
(
gtφurutλb

rbφ

u2
t

+
F2Θρ

Fτ +
gtturutλb

rbt

u2
t

+ bφ
2

gtφ

)
, Rλ1 = Agttbtbφ −

br
2

ururutλ
(
gttu

t + gtφu
φ
)

u2
t

,
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Rbr =

(
Rbr0 +

brurur
(
gttu

t + gtφu
φ
)

ut

)
/ρhtotA, Rbr0 = A(grrb

r − gtφurb
φ

ut
− gtturb

t

ut
)− 2br − grrbrur

2

,

Rbφ =

(
Rbφ0 − b

rurλ(gttu
t + gtφu

φ)− brur(gtφut + gφφu
φ)

)
/ρhtotA, Rbφ0 = A

(
gφφb

φ + gtφλb
φ + gtφb

t + gttλb
t),

L0 =
B2∆′uφ

2∆ρ
−
br∆′

(
bφgφφ + btgtφ

)
2∆ρur

− br
2

gtφurut0
ρuru2

t

− 2gtφur0uφb
rbφ

ρut
+
br

2

gtφur0
ρurut

− 2gttur0uφb
rbt

ρut
+ L01,

L01 =
2gtφurut0uφb

rbφ

ρu2
t

+
2gtturut0uφb

rbt

ρu2
t

+
bφ

2

uφg
′
φφ

ρ
−

3br
(
bφgφφ + btgtφ

)
2ρurr

+
3B2uφ

2ρr
− B2F1uφ

2Fρ + L02,

L02 =
F1b

r
(
bφgφφ + btgtφ

)
2Fρur +

brur0

(
bφgφφ + btgtφ

)
ρur2

+
br

2

uφg
′
rr

ρ
+ uφ0htot +

2uφb
tbφg′tφ
ρ

−
brbφg′φφ
ρur

+
bt

2

uφg
′
tt

ρ
−
brbtg′tφ
ρur

,

Lv = −2gtφurvuφb
rbφ

ρut
+
br

2

gtφurv
ρurut

− br
2

gtφurutv
ρuru2

t

+
2gtφurutvuφb

rbφ

ρu2
t

− 2gtturvuφb
rbt

ρut
+ uφvhtot +

B2uφ
(
v2γ2

v + 1
)

ρv
+ Lv1,

Lv1 =
brurv

(
bφgφφ + btgtφ

)
ρur2

−
br

(
v2γ2

v + 1
) (
bφgφφ + btgtφ

)
ρurv

,LΘ = −
br

(
bφgφφ + btgtφ

)
2Θρur

+
uφ
τ

df

dΘ
+

2uφ
τ

+
B2uφ
2Θρ

,

Lλ =
2gttuφb

tbφ

ρ
+
F2b

r
(
bφgφφ + btgtφ

)
2Fρur +

2gtφurutλuφb
rbφ

ρu2
t

− gtφb
rbφ

ρur
− br

2

gtφurutλ
ρuru2

t

− B2F2uφ
2Fρ + Lλ1,

Lλ1 =
2gtturutλuφb

rbt

ρu2
t

+
2bφ

2

gtφuφ
ρ

+ uφλhtot,Lbr = −2bφgtφuruφ
ρut

+
2brgrruφ

ρ
+
brgtφur
ρurut

− 2btgtturuφ
ρut

−
(
bφgφφ + btgtφ

)
ρur

,

Lbφ =
2λbφgtφuφ + 2bφgφφuφ

ρ
− λbrgtφ

ρur
− brgφφ

ρur
+

2λbtgttuφ
ρ

+
2btgtφuφ

ρ
,

E0 =
br∆′

(
bφgtφ + btgtt

)
2∆ρur

− ∆′utB
2

2∆ρ
+
brbφg′tφ
urρ

− bt
2

utg
′
tt

ρ
− br

2

gttur0
ρutur

+
br

2

gtturut0
ρu2

tu
r

+
2gtφur0b

rbφ

ρ
− 2gtφurut0b

rbφ

ρut
+ E01,

E01 =
2gttur0b

rbt

ρ
−2gtturut0b

rbt

ρut
+

3br
(
bφgtφ + btgtt

)
2urρr

−
bφ

2

utg
′
φφ

ρ
−
F1b

r
(
bφgtφ + btgtt

)
2urFρ −

brur0

(
bφgtφ + btgtt

)
ur2ρ

−
2utb

tbφg′tφ
ρ

+E02,

E02 = −3utB
2

2ρr
+
B2F1ut

2Fρ − htotut0 +
brbtg′tt
urρ

− br
2

utg
′
rr

ρ
+
F1ut

(
2gtφb

tbφ + br
2

grr + bt
2

gtt + bφ
2

gφφ
)

2Fρ ,

Ev =
2gtφurvb

rbφ

ρ
− br

2

gtturv
ρurut

+
br

2

gtturutv
ρuru2

t

+
2gtturvb

rbt

ρ
− 2gtφurutvb

rbφ

ρut
− 2gtturutvb

rbt

ρut
−
brurv

(
bφgtφ + btgtt

)
ρur2

+ Ev1,

Ev1 =
br

(
v2γ2

v + 1
) (
bφgtφ + btgtt

)
ρurv

−
B2ut

(
v2γ2

v + 1
)

ρv
− htotutv, EΘ =

br
(
bφgtφ + btgtt

)
2ρΘur

− B2ut
2ρΘ

− ut
τ

df

dΘ
− 2ut

τ
,

Eλ = −2gtφurutλb
rbφ

ρut
+
gttb

rbφ

ρur
+
br

2

gtturutλ
ρuru2

t

−2bφ
2

gtφut
ρ

−2gtturutλb
rbt

ρut
−2gttutb

tbφ

ρ
−
F2b

r
(
bφgtφ + btgtt

)
2Furρ +

B2F2ut
2Fρ −htotutλ,

Ebr =
2bφgtφur

ρ
+

2btgttur
ρ

− 2brgrrut
ρ

− brgttur
ρurut

+

(
bφgtφ + btgtt

)
ρur

,

Ebφ =

(
− 2λbφgtφut + 2bφgφφut + 2λbtgttut + 2btgtφut +

λbrgtt
ur

+
brgtφ
ur

)
/ρ,

Br0 = r
(
Br00 −Br01 −Br02

)
,Br00 = 2λbφur + λrbφur0 −

rbrurur0
ut

+
rbrururut0

u2
t

, Br01 = 2brut − rbrut0,
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Br02 =
rbruru

r
0

ut
− 2brurur

ut
,Brv = r

(
λrbφurv −

rbrururv
ut

+
rbrururutv

u2
t

− rbrutv −
rbruru

r
v

ut

)
,Brbφ = λr2ur,

Brbr = r

(
−rut − ruru

r

ut

)
, BrΘ = 0, Brλ = r

(
rbφur +

rbrururutλ
u2
t

− rbrutλ
)
,

Bφ0 = r2bφur0 − r2bruφ0 + 2r
(
bφur − bruφ

)
, Bφv = r2bφurv − r2bruφv, BφΘ = 0,

Bφλ = −r2 − bruφλ, Bφbr = −r2uφ, Bφbφ = r2ur.

With the help of equations (A1)-(A5), the wind equations is expressed as,

dv

dr
=
N (r, v,Θ, λ, br, bφ)

D(r, v,Θ, λ, br, bφ)
(A6)

where,

N (r, v,Θ, λ, br, bφ) = −
(
R0 + br11Rbr +RΘΘ11 +Rλλ11 +Rbφb

φ
11

)
(A7)

and

D(r, v,Θ, λ, br, bφ) = Rv + br12Rbr +RΘΘ12 +Rλλ12 +Rbφb
φ
12. (A8)

Here, are the remaining coefficients of above equations (A7, A8) as follows,

Θ11 = −Θc0

D
,Θ12 = −Θv0

D
, λ11 =

λc0
D
, λ12 =

λv0

D
, br11 = − b

r
c0

D
, br12 = − b

r
v0

D
, bφ11 = − b

φ
c0

D
, bφ12 = − b

φ
v0

D
,

where,

D = Brbφ
(
LλEbrBφΘ − EλLbrBφΘ + Bφλ (EΘLbr − LΘEbr ) + EλLΘBφbr − EΘLλBφbr

)
+ EλLΘ

(
−Brbr

)
Bφbφ + EΘLλBrbrBφbφ

+ Lbφ
(
EbrBrΘBφλ + EΘ

(
−Brbr

)
Bφλ + EλBrbrBφΘ − EλBrΘBφbr

)
+ LΘEbφBrbrBφλ − LλEbφBrbrBφΘ − LλEbrBrΘBφbφ

+ LλEbφBrΘBφbr + EλLbrBrΘBφbφ + Brλ
(
LΘEbrBφbφ − LΘEbφBφbr − EΘLbrBφbφ + EΘLbφBφbr + LbrEbφBφΘ − EbrLbφBφΘ

)
− LbrEbφBrΘBφλ ,

Θc0 = Brbφ
(
Bφ0LλEbr − Bφ0EλLbr + Bφλ (E0Lbr − L0Ebr ) + L0EλBφbr − E0LλBφbr

)
+ L0Eλ

(
−Brbr

)
Bφbφ + E0LλBrbrBφbφ

+ Lbφ
(
Br0EbrBφλ + E0

(
−Brbr

)
Bφλ + Bφ0EλBrbr − Br0EλBφbr

)
+ L0EbφBrbrBφλ − Bφ0LλEbφBrbr − Br0LλEbrBφbφ

+ Br0LλEbφBφbr + Br0EλLbrBφbφ + Brλ
(
L0EbrBφbφ − L0EbφBφbr − E0LbrBφbφ + E0LbφBφbr + Bφ0LbrEbφ − Bφ0EbrLbφ

)
− Br0LbrEbφBφλ ,

Θv0 = Brbφ
(
LλEbrBφv − EλLbrBφv + Bφλ (EvLbr − LvEbr ) + LvEλBφbr − EvLλBφbr

)
+ LvEλ

(
−Brbr

)
Bφbφ + EvLλBrbrBφbφ

+ Lbφ
(
EbrBrvBφλ + Ev

(
−Brbr

)
Bφλ + EλBrbrBφv − EλBrvBφbr

)
+ LvEbφBrbrBφλ − LλEbφBrbrBφv − LλEbrBrvBφbφ

+ LλEbφBrvBφbr + EλLbrBrvBφbφ + Brλ
(
LvEbrBφbφ − LvEbφBφbr − EvLbrBφbφ + EvLbφBφbr + LbrEbφBφv − EbrLbφBφv

)
− LbrEbφBrvBφλ ,

λc0 = L0EbrBrbφBφΘ − L0EbφBrbrBφΘ − Bφ0LΘEbrBrbφ + Bφ0LΘEbφBrbr − E0LbrBrbφBφΘ + Bφ0EΘLbrBrbφ + E0LbφBrbrBφΘ

− Bφ0EΘLbφBrbr − L0EbrBrΘBφbφ + L0EbφBrΘBφbr + Br0LΘEbrBφbφ − Br0LΘEbφBφbr + E0LbrBrΘBφbφ − Br0EΘLbrBφbφ

− E0LbφBrΘBφbr + Br0EΘLbφBφbr − Bφ0LbrEbφBrΘ + Br0LbrEbφBφΘ + Bφ0EbrLbφBrΘ − Br0EbrLbφBφΘ + L0EΘBφbr
(
−Brbφ

)
+ L0EΘBrbrBφbφ + E0LΘBφbrBrbφ − E0LΘBrbrBφbφ ,

λv0 = LvEbrBrbφBφΘ − LvEbφBrbrBφΘ − LΘEbrBrbφBφv + LΘEbφBrbrBφv − EvLbrBrbφBφΘ + EΘLbrBrbφBφv + EvLbφBrbrBφΘ

− EΘLbφBrbrBφv − LvEbrBrΘBφbφ + LvEbφBrΘBφbr + LΘEbrBrvBφbφ − LΘEbφBrvBφbr + EvLbrBrΘBφbφ − EΘLbrBrvBφbφ

− EvLbφBrΘBφbr + EΘLbφBrvBφbr − LbrEbφBrΘBφv + LbrEbφBrvBφΘ + EbrLbφBrΘBφv − EbrLbφBrvBφΘ + LvEΘBφbr
(
−Brbφ

)
+ LvEΘBrbrBφbφ + EvLΘBφbrBrbφ − EvLΘBrbrBφbφ ,
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brc0 = −L0EbφBrλBφΘ + L0EbφBrΘBφλ + Bφ0LΘEbφBrλ − Br0LΘEbφBφλ − Bφ0LλEbφBrΘ + Br0LλEbφBφΘ + E0LbφBrλBφΘ

− E0LbφBrΘBφλ − Bφ0EΘLbφBrλ + Br0EΘLbφBφλ + Bφ0EλLbφBrΘ − Br0EλLbφBφΘ + L0EΘBrλBφbφ − L0EλBrΘBφbφ
− E0LΘBrλBφbφ + Br0EλLΘBφbφ + E0LλBrΘBφbφ − Br0EΘLλBφbφ + L0EΘ

(
−Brbφ

)
Bφλ + L0EλBrbφBφΘ + E0LΘBrbφBφλ

− Bφ0EλLΘBrbφ − E0LλBrbφBφΘ + Bφ0EΘLλBrbφ ,

brv0 = −LvEbφBrλBφΘ + LvEbφBrΘBφλ + LΘEbφBrλBφv − LΘEbφBrvBφλ − LλEbφBrΘBφv + LλEbφBrvBφΘ + EvLbφBrλBφΘ

− EvLbφBrΘBφλ − EΘLbφBrλBφv + EΘLbφBrvBφλ + EλLbφBrΘBφv − EλLbφBrvBφΘ + LvEΘBrλBφbφ − LvEλBrΘBφbφ
− EvLΘBrλBφbφ + EλLΘBrvBφbφ + EvLλBrΘBφbφ − EΘLλBrvBφbφ + LvEΘ

(
−Brbφ

)
Bφλ + LvEλBrbφBφΘ + EvLΘBrbφBφλ

− EλLΘBrbφBφv − EvLλBrbφBφΘ + EΘLλBrbφBφv ,

bφc0 = L0EbrBrλBφΘ − L0EbrBrΘBφλ − Bφ0LΘEbrBrλ + Br0LΘEbrBφλ + Bφ0LλEbrBrΘ − Br0LλEbrBφΘ − E0LbrBrλBφΘ

+ E0LbrBrΘBφλ + Bφ0EΘLbrBrλ − Br0EΘLbrBφλ − Bφ0EλLbrBrΘ + Br0EλLbrBφΘ + L0EΘBrbrBφλ − L0EλBrbrBφΘ

− E0LΘBrbrBφλ + Bφ0EλLΘBrbr + E0LλBrbrBφΘ − Bφ0EΘLλBrbr − L0EΘBrλBφbr + L0EλBrΘBφbr
+ E0LΘBrλBφbr − Br0EλLΘBφbr − E0LλBrΘBφbr + Br0EΘLλBφbr ,

bφv0 = LvEbrBrλBφΘ − LvEbrBrΘBφλ − LΘEbrBrλBφv + LΘEbrBrvBφλ + LλEbrBrΘBφv − LλEbrBrvBφΘ − EvLbrBrλBφΘ

+ EvLbrBrΘBφλ + EΘLbrBrλBφv − EΘLbrBrvBφλ − EλLbrBrΘBφv + EλLbrBrvBφΘ + LvEΘBrbrBφλ − LvEλBrbrBφΘ

− EvLΘBrbrBφλ + EλLΘBrbrBφv + EvLλBrbrBφΘ − EΘLλBrbrBφv − LvEΘBrλBφbr + LvEλBrΘBφbr + EvLΘBrλBφbr
− EλLΘBrvBφbr − EvLλBrΘBφbr + EΘLλBrvBφbr .

MNRAS 000, 1–?? (0000)


	Introduction
	GRMHD formalism and underlying assumptions
	GRMHD equations
	Conserved quantities in GRMHD
	Assumptions and Governing Equations

	Critical point analysis/conditions
	Global accretion solutions
	Fluid properties of global accretion solutions containing inner critical point
	General behaviour of global accretion solutions with fixed outer edge
	Modification of accretion solutions possessing inner critical point
	Fluid properties of global accretion solution possessing outer critical point

	conclusions
	Calculation of Wind Equation

